
J. Functional Programming 9 (4): 427–462, July 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

427

Parallel functional programming on recursively
defined data via data-parallel recursionã

SUSUMU NISHIMURA † and ATSUSHI OHORI‡
Research Institute for Mathematical Sciences, Kyoto University,

Sakyo-ku, Kyoto 606-8502, Japan

(e-mail: {nisimura,ohori}@kurims.kyoto-u.ac.jp)

Abstract

This article proposes a new language mechanism for data-parallel processing of dynami-

cally allocated recursively defined data. Different from the conventional array-based data-

parallelism, it allows parallel processing of general recursively defined data such as lists or

trees in a functional way. This is achieved by representing a recursively defined datum as

a system of equations, and defining new language constructs for parallel transformation

of a system of equations. By integrating them with a higher-order functional language, we

obtain a functional programming language suitable for describing data-parallel algorithms

on recursively defined data in a declarative way. The language has an ML style polymorphic

type system and a type sound operational semantics that uniformly integrates the parallel

evaluation mechanism with the semantics of a typed functional language. We also show

the intended parallel execution model behind the formal semantics, assuming an idealized

distributed memory multicomputer.

Capsule Review

Data parallelism is a simple and effective method for programming massively parallel com-

puter systems: the data are distributed across the processors, allowing the program to perform

operations on all the data elements simultaneously. Traditional data parallel languages require

the data elements to be organised in a flat structure, such as a vector or matrix. This paper

offers a method for generalising data parallelism to recursively defined data structures such

as trees. The essential idea is a generalisation to user-defined recursive data structures of the

pointer-jumping method for traversing a linked list in log time on a parallel machine.

ã A preliminary summary of some of the results of this article appeared in the Proceedings of the
Workshop on Theory and Practice of Parallel Programming, Sendai Japan (LNCS 907, 1995, under the
title “A Calculus for exploiting data parallelism on recursively defined data.”
† Susumu Nishimura’s work was partly supported by the Japanese Ministry of Education, Science, Sports

and Culture, Grant-in-Aid for Encouragement of Young Scientists, 10780187, 1998.
‡ Atsushi Ohori’s work was partly supported by the Japanese Ministry of Education Grant-in-Aid for

Scientific Research on Priority Area no. 275 “Advanced databases”, and by the Parallel and Distributed
Processing Research Consortium, Japan.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


428 S. Nishimura and A. Ohori

1 Introduction

Data-parallelism is widely recognized as one of most practical parallel programming

paradigm, and a number of data-parallel programming languages have been devel-

oped and used in practice. The central idea underlying this paradigm is to evaluate a

uniform collection of data, typically an array, by simultaneously applying the same

function to each data element in the collection. The importance of this paradigm

is twofold. First, data-parallel programs are easy to understand. In data-parallel

languages, parallelism is coupled with primitive operations for some collection data

types. By this coupling, programmers can have a high level view of single threaded

execution of data-parallel programs: a data-parallel operation can be viewed as a

single operation for a collection of data. Secondly, in contrast to the programmer’s

viewpoint of single threaded execution, there is also a simple and effective paral-

lel execution model for data-parallel programs, which is called SPMD execution

model (Karp, 1987). In the SPMD model, data elements in a collection are scattered

over the processors in advance, and every processor in a parallel machine executes

the same program on those scattered data elements. The data-parallel primitive

operations are executed instantaneously by simultaneously operating on the portion

of data elements assigned to each processor.

One limitation of most of currently available data-parallel languages is that the

parallelism is restricted to some particular built-in data structures such as arrays

or sequences. Conventional data-parallel languages have been developed from an

existing imperative language by embedding a set of parallel evaluation primitives for

arrays. Examples include C∗ (Rose and Steele Jr., 1987), Dataparallel C (Hatcher and

Quinn, 1991), and High Performance Fortran (Forum, 1993). There are also a number

of proposals for functional data-parallel languages such as Connection Machine Lisp

(Wholey and Steele Jr., 1987), ∗Lisp (Lasser, 1986), Paralation Lisp (Sabot, 1988),

TUPLE (Yuasa, 1992), Plural EuLisp (Merrall and Padget, 1992), DPML (Hains and

Foisy, 1993), Nesl (Blelloch, 1993), FX (Talpin and Jouvelot, 1993), and Caml Flight

(Foisy and Chailloux, 1995). These languages enable us to exploit data-parallelism

in functional programming, but the source of data-parallelism in those languages is

still limited to predefined built-in collection data types.

The approach of restricting data-parallelism to a particular built-in data type has

the obvious advantage of ease of implementation and optimization. As demonstrated

by functional data-parallel languages mentioned above, it can also achieve a reason-

able integration of functional programming and data-parallelism relatively easily.

Unfortunately, however, this limited approach to parallel programming cannot take

full advantage of the benefits of functional programming. One of important features

of modern functional programming languages is the ability to define new data types

using recursive data type declaration and to use them with recursive functions.

In most of typed higher-order languages such as SML (Milner et al., 1990) and

Haskell (Hudak et al., 1992), this feature is so pervasive that it is almost impossible

to imagine a large practical program without using this feature. Data-parallelism

should ideally be integrated in a functional programming language so that the

programmer can freely define appropriate data structures for the application and

write functional data-parallel programs operating on them. The goal of this paper

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 429

is to achieve such integration by developing programming language constructs for

data-parallel evaluation of general recursively defined data, and integrating them in

a higher-order functional programming language with recursive types.

A crucial problem in achieving this goal is to find a proper mechanism for

applying the same operation to all the data elements in a given general recursive

data structure. For a particular data structure, it is not hard to design a set of

parallel primitives for this purpose. For simple linear data structures such as arrays

or lists, for example, it would be enough to provide some commonly used data-

parallel operations like map, scan, reduction, etc. For general recursively defined

data, however, finding a suitable mechanism for parallel evaluation constitutes a

non-trivial technical challenge.

In a conventional sequential machine, recursive data structures are implemented

as linked data structure and are processed by recursive functions. However, this

commonly adopted framework of recursive data processing becomes an obstacle

for effective parallelization. Conventionally, recursive functions can be parallelized

by annotating each recursive call with the speculative evaluation primitives, most

notably future and touch in Multilisp (Halstead, 1985). After the proposal of

Multilisp, various refinements and implementation methods have been proposed.

For example, PaiLisp (Ito and Matsu, 1988) provides more general speculative

evaluation primitives, and Olden (Rogers et al., 1995) allows speculative evaluation

in a distributed environment using process migration technique. Unfortunately, the

speculative evaluation strategy does not scale up to a large size of data. To see

the problem, consider the following recursive function (written in ML-like syntax),

which sums up all the elements in a given integer list:

fun sum L = case L of Nil => 0

| Cons(n,tl) => n+(sum tl)

end;

Even if all the recursive function applications are speculatively evaluated, this

function still requires the time proportional to the length of the given list due to

the inherent sequentiality of a recursive function operating on recursively defined

data: a recursive function forces a series of nested recursive calls to be processed

sequentially. To extend data-parallelism to general recursively defined data, we need

an alternative mechanism for parallel evaluation.

In this paper, we develop such a mechanism based on the following observation.

Instead of computing the desired value directly from the given recursively defined

value, we can equivalently compute a system of equations that defines the desired

result from a system of equations that defines the given datum by repeatedly

transforming systems of defining equations. To exploit this idea, we represent a

recursively defined datum as a system of equation of the form

Xi.〈X1 = C1(. . .), . . . , Xi = Ci(. . .), . . . , Xk = Ck(. . .)〉
where each Xj(1 6 j 6 k) is a variable indexing a node of the recursive datum

whose constructor is Cj(. . .) possibly containing references to other nodes through

X1, . . . , Xk , and the distinguished variable Xi indexes the root node. This represen-

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


430 S. Nishimura and A. Ohori

tation can be regarded as a generalization of Gupta’s (1992) representation of a

dynamically allocated linked data structure in a distributed environment using global

names. In a sequential functional language, this representation may only introduce

extra overhead by eliminating the possibility of sharing substructures. It also makes

it difficult to incrementally construct new datum from existing one. However, this

opens up a new possibility of parallelism, as seen in the following.

(i) By giving a concrete representation to a system of equations, we can treat

them as a uniform collection of data and therefore can transform it in a

data-parallel fashion.

(ii) Since any recursive datum can be represented as a system of equations and

the transformation operation on equations can be represented as a function,

this transformation mechanism serves as a general way to express data-parallel

computation on arbitrary recursive data in a functional style.

(iii) By simply regarding a system of equations as an array of equations, we obtain

an SPMD execution model for general recursively defined data.

Based on this observation, we develop a general language mechanism for data-

parallel evaluation of recursively defined data and integrate them in a higher-order

typed language. As we explain in detail later, the mechanism we propose can be

regarded as a generalization of the so called pointer jumping technique (Jájá, 1992),

which has been employed by many data-parallel algorithms on linked data structure.

So far the existing presentations of this technique are all based on imperative

manipulation of pointer arrays. Our recursive data representation and data-parallel

transformation mechanism provide a way to express and understand them in a more

declarative style.

We carry out our technical development in a formal framework of the typed

lambda calculus with recursive types. The proposed language has a rigorous seman-

tics that accounts for parallel evaluation of recursively defined data. There are some

attempts to give a formal semantics for a language with data-parallel constructs.

Hains et al. (1993) have given an execution model of data parallel categorical ab-

stract machine (DPCAM), whose prototype implementation is Caml Flight (Foisy

and Chailloux, 1995). The DPCAM intends the SPMD execution of an array of

sequential CAMs communicating with each other through a special primitive get.

Later, they proposed a few variants of more formal semantics for abstract compu-

tation models based on the DPCAM (Loulergue and Hains, 1997; Loulergue et al.,

1998). Hammarlund and Lisper (1993) have given a mathematical definition of some

data-parallel primitives that operate on a set of indices in parallel. Suciu and Tan-

nen (1994) have provided a clean formal semantics for their data-parallel language

which contains sequences and simple parallel primitives to map functions over se-

quences. In contrast to those approaches, which presume a specific data structure

for data-parallelism such as arrays, our language allows arbitrary recursive data to

be processed by the general data-parallel constructs and is therefore more general.

We should emphasize that our aim in this paper is not to invent new parallel

algorithms or optimization methods for various recursively defined data, but to pro-

vide a general language construct for expressing data-parallel operations on general

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 431

recursive data in a uniform and declarative way. To write data-parallel programs on

a particular recursively defined data, one must of course invent some algorithms that

efficiently work on the data structure, which is a task heavily depending on algebraic

properties of individual data structures. Our contribution should therefore be com-

plemented by the researches on developing new data structures, algorithms and op-

timization methods for efficient data-parallel execution. Toward this direction, there

are several relevant recent approaches for functional data-parallel programming.

O’Donnell (1993) has shown that a flexible array structure, extensible sparse func-

tional arrays, can be efficiently implemented on massively parallel computers. Misra

(1994) has shown that many data-parallel algorithms can be expressed as a recursion

of data-parallel operations on a specific data structure called powerlist, which is a list

constructed by concatenating two lists of the same length. Darlington et al. (1993)

have proposed using functional skeletons for optimizing parallel functional pro-

grams by program transformation. Skeletons, which have been introduced by Cole

(1989), are a set of high level templates for typical parallel programs, and functional

skeletons provides skeletons as higher-order functions whose behavior is parame-

terized by function arguments. There are also algebraic approaches for optimizing

parallel programs (Bratvold, 1994; Skillicorn, 1994) and for parallelizing sequential

programs (Hu et al., 1998) based on the general framework of Bird–Meertens for-

malism (Bird, 1987) for program transformation. We believe that our language could

serve as a framework to represent some of these results. For example, polymorphic

data-parallel functions can be used to define some functional skeletons, and the

program transformation technique could be applied to our language constructs.

The rest of the paper is organized as follows. In section 2, we explain the

basic idea of our data-parallel evaluation mechanism for recursively defined data.

Section 3 defines the language, and informally explains the intended behavior of the

language constructs. In section 4, we formally give a type system and an operational

semantics for the language and then show that the type system is sound with respect

to the operational semantics. Section 5 demonstrates how some typical data-parallel

algorithms are expressed in our language. Section 6 shows a simple SPMD execution

model for our language. Finally, section 7 concludes the paper.

2 Data-parallel recursion for recursively defined data

To analyze the desirable properties of data-parallel functions for recursively defined

data, let us consider again the function sum defined in the previous section. The

semantics of the recursive definition of sum implies that the application of sum

to an n element list yields a sequence of n recursive calls of sum, and therefore

straightforward parallelization of the recursive calls still requires a series of n

communications that must be processed sequentially. However, there is a data-

parallel algorithm, originally due to Wyllie (1979), which computes the sum of an n

element integer list in O(log n) parallel steps. Here we use the presentation by Hillis

and Steele Jr. (1986). The main idea behind the algorithm is to use an extra chum

pointer to maintain information about the necessary value to complete a partially

computed recursive call. The following pseudo code describes such an algorithm

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


432 S. Nishimura and A. Ohori

1 1 1 1 1 1 1

2 2 2 2 2 2 1

4 4 4 4 3 2 1

7 6 5 4 3 2 1

1st 
iteration

2nd
iteration

3rd
iteration

Initial cdr

chum

Fig. 1. Data-parallel suffix sum of an integer list.

that computes the suffix sum of an integer list with extra chum pointer, where value

and next pointers represent car and cdr in Lisp, respectively.

for all k parallel do

chum[k] := next[k]

while chum[k] 6= nil

value[k]:= value[k] + value[chum[k]]

chum[k]:=chum[chum[k]] od

Figure 1 illustrates how the suffix sum of a list is computed by this algorithm. In

each iteration, the partially computed value (value[k]) is combined with another

partially computed value (value[chum[k]]), and then all the chum pointers are

doubled. Iteration is repeated until all the chum pointers are set to nil. This technique

is often called pointer jumping and is widely used for data-parallel algorithms on

linked data structures.

The new recursive construct proposed in this paper is based on the observation

that the pointer jumping technique indicates a more general form of recursion

suitable for data-parallel evaluation of recursively defined data. We present below

the main idea using lists as an example.

The type of a list consisting of elements of type α is represented by the recursive

type µt.unit + α × t where unit is the type of the empty list, and + and × are

disjoint union and product constructor, respectively. A recursive function f of type

(µt.unit+ α × t)→ τ in general has the following structure:

fix f.λx.case x of inl (∗)⇒ c, inr((h, t))⇒ F h (f t)

where c is a constant of type α and F is some function of type α → τ → τ. In

the case of sum, c = 0 and F = λx.λy.x + y, with α = int and τ = int . Let L be

an n element list. Also let Lk be the kth sublist of L with L1 = L, and ak be the

first element in the list Lk . Then the application of f to L results in the following

sequence of applications:

f L1 = F a1 (f L2), f L2 = F a2 (f L3), · · · , f Ln = F an (f Ln+1), f Ln+1 = c

The data-parallel suffix sum algorithm can be understood as parallelization of such

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 433

χ1

parallel
map−→ χ2

parallel
map−→ · · ·

parallel
map−→
→

data-parallel recursion

χn

(χj: a system of equations representing a recursive datum)

parallel map

χ :


X1 = C1(. . .)

f−→ C ′1(. . .) = X ′1
...

...
...

Xn = Cn(. . .)
f−→ C ′n(. . .) = X ′n

 : χ′

Fig. 2. Data-parallel recursion.

a sequence of recursive function calls, as shown in the following. By indexing each

application f Li by Xi as an unknown value, the above sequence of function calls

can be considered as a system of equations over the set of unknowns X1, . . . , Xn+1,

as below:

X1 = F a1 (X2), X2 = F a2 (X3), · · · , Xn = F an (Xn+1), Xn+1 = c

Let Gi be the partially applied function F ai, and for any i 6 j let Gi,j be the

composition of functions Gi ◦ Gi+1 ◦ · · · ◦ Gj−1 ◦ Gj . Then, we can compute the

result f L = X1 = G1,n(c) by repeatedly transforming the system of equations in the

following way:

(initial) X1 = G1,1(X2) X2 = G2,2(X3) · · · Xn = Gn,n(Xn+1) Xn+1 = c

(1st) X1 = G1,2(X3) X2 = G2,3(X4) · · · Xn = Gn,n(c) Xn+1 = c

(2nd) X1 = G1,4(X5) X2 = G2,5(X6) · · · Xn = Gn,n(c) Xn+1 = c
...

...
...

...
...

(log n th) X1 = G1,n(c) X2 = G2,n(c) · · · Xn = Gn,n(c) Xn+1 = c

Transformation of a system of equations is done by applying the same function

to each equation simultaneously. In the case that the composition Gi,j ◦ Gj+1,k is

computed in constant time resulting in a function Gi,k whose application is computed

in constant time, the above method computes the application f L in O(log n) parallel

steps. The special pointers chum used in the data-parallel suffix sum algorithm can

be regarded as a representation of unknowns Xi.

The above observation leads us to a new notion of recursion for data-parallelism,

which we call data-parallel recursion. As illustrated in Figure 2, data-parallel recur-

sion is a series of transformations on a system of equations (denoted by χ, χ′, etc.

in the figure) representing a recursively defined datum. Each transformation is done

by a data-parallel operation called parallel map, which applies the same function

f simultaneously to each equation in a given system of equations to yield another

system of equations. Since every recursive datum is uniformly expressed by a system

of equations, data-parallel recursion can be applied to arbitrary recursively defined

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


434 S. Nishimura and A. Ohori

M ::= c (constant)

| x (identifier)

| fun f(x)⇒M (recursive function)

| MM (function application)

| (M,M) (pair)

| fst(M) (first component)

| snd (M) (second component)

| inl (M) (left injection)

| inr(M) (right injection)

| case M of inl (x)⇒M, inr(y)⇒M (case branch)

| let x = M in M (polymorphic let)

| foreach x ∈M with [f, d] do M (parallel map)

| up M with x1 = M1, . . . , xm = Mm end (recursive data constructor)

| dn(M) (recursive data destructor)

Fig. 3. Syntax of the language.

data types. Furthermore, it has the conceptual generality that will serve as a basic

tool for describing data-parallel algorithms for recursively defined data.

To integrate data-parallel recursion in the framework of the typed lambda calculus,

we introduce a recursive type µt.τ(t) as a data type whose value is represented by

a system of equations we have explained, and we provide a language construct for

defining data-parallel operation on those recursively defined data. The basic idea to

define a data-parallel operation is to specify a function that transforms each datum

in a given system of equations (Ci(. . .) in Figure 2) into another datum (C ′i (. . .)).
This language construct is introduced as a term constructor that lifts a constructor

transformer function of type τ(r) → τ′(s) to a function of type µt.τ(t) → µt.τ′(t). In

the following sections, we will formally define the language where these constructs

are available and give an operational semantics that accounts for the data-parallel

evaluation of recursive types.

3 The data-parallel functional language

The syntax of our data-parallel language is given in Figure 3. It is a variant of the

lambda calculus with constants, products and sums. We assume constants include

∗ of type unit. Lambda abstraction is combined with recursion in fun f(x) ⇒ M,

which should be understood as a function λx.M where f is bound to the function

itself in M. The language is intended to be typed implicitly, and the let expression

is for introducing ML-style polymorphism in the underlying type system.

The last three constructs are for our data-parallel recursive data manipulation.

In the rest of this section, we explain our recursive data representation and then

describe the behavior of each data-parallel construct in turn. For each of them, we

also describe the necessary typing constraint and briefly give the idea of parallel

execution. A formal type system and the operational semantics of the language will

be defined in section 4, and more detailed description of parallel execution will be

given in section 6.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 435

3.1 Representation of recursive data

As explained in section 2, every recursive datum is represented as a system of

equations in our language. Each system of equations is expressed by a run-time

value of the following form.

X.〈X1 → V1, . . . , Xk → Vk〉 (k > 1, X = Xi for some i)

This represents a system of k equations over variables X1, . . . , Xk , and each Xi → Vi
enclosed in the angle brackets is an equation, which reads “the variable Xi is

associated to a value Vi.” We call X1, . . . , Xk node variables and V1, . . . , Vk node

values. We call this representation association sequence. An association sequence is

always prefixed by a node variable indicating the root node of the recursive datum.

The type for the sequence is roughly given as follows: X.〈X1 → V1, . . . , Xk → Vk〉 has

type µt.τ(t) if Vi has type τ(t) for all i under the assumption that the node variables

X1, . . . , Xk have type t. For example, the following is a list [1, 2, 3] represented by an

association sequence of type µt.unit+ int × t.
X1.〈X1 → inr((1, X2)), X2 → inr((2, X3)), X3 → inr((3, X4)), X4 → inl (∗)〉.

The rationale of this representation is the following. The association sequence

X.〈X1 → V1, . . . , Xk → Vk〉 models a data distribution over the processors in such a

way that each data element Vi is allocated to a distinct processor identified by Xi.

The data distribution enables parallel map to be applied in constant time, and any

data element Vi can be accessed from any processor by communicating with the

processor identified by Xi.

3.2 Constructs for recursive data manipulation

To support data-parallel manipulation of recursive data represented as above, the

language provides the constructs for transforming, constructing, and destructing

those data.

3.2.1 Parallel map: Data-parallel recursive data transformation

The most important data-parallel construct is what we call parallel map.

foreach x ∈ N with [f, d] do M

This transforms a recursive data N represented by a system of equations to another

recursive data of possibly different recursive type in a data-parallel fashion. The data-

parallel transformation is achieved by simultaneously applying the same function

λx.M to each node value in the given system of equations. (This is equivalent to

creating a binding of x to each node value and evaluating M simultaneously under

each binding.) During the parallel function application, the identifiers f and d are

used as functions for special purposes explained below.

The parallel map construct first evaluates N to an association sequence Xi.〈X1 →
V1, . . . , Xk → Vk〉 of type µt.τ(t). Before data-parallel execution, the node names

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


436 S. Nishimura and A. Ohori

X1, . . . , Xk in each node value Vj are replaced by temporary node names Ak1, . . . , A
k
k ,

respectively. Temporary node names act like atomic values. The replacement proce-

dure is necessary for obtaining a type sound semantics for the language. (We later

give a formal definition of the temporary node names in section 4.2.) To assign types

to those names, we introduce special type variable, called node type variable (ranged

over by n). The set of newly introduced temporary names are typed by a fresh node

type variable n. Let V ′1, . . . , V ′k be the values obtained by the replacement. Each V ′j
has type τ(n). The map function λx.M is then simultaneously applied to each V ′j to

produce a system of equations constituted by a set of new node variables Y1, . . . , Yk ,

which are assigned to a fresh recursive type variable s. During the evaluation of the

function applications, the system binds variable f to the renaming function of type

n → s which maps each temporary node name Akj to the corresponding new node

variable Yj , and the system binds variable d to the down function of type n → τ(n)

which maps each temporary node name Akj to the corresponding value V ′j . The final

result of the parallel map is an association sequence Yi.〈Y1 → V ′′1 , . . . , Yk → V ′′k 〉,
where each V ′′j is the result of applying the function to V ′j . All V ′′j ’s have the same

type τ′(s), and therefore the type of the resulting recursive datum is µs.τ′(s).
Assuming the distributed data representation of the system of equations, we can

trigger the data-parallel computation by simultaneously applying the same function

λx.M to the data element allocated to every processor. The distinguished feature of

the parallel map is the special functions, especially the down function. The down

function can be used to retrieve the data element allocated to the processor identified

by a temporary node name Akj .

A function that simply maps a given function over the elements of a given list is

written via parallel map as follows.

λF.λL.foreach x ∈ L with [f, d] do

case x of inl (y)⇒ inl (∗),
inr(y)⇒ inr((F fst(y), f snd (y)))

This map function applies the function F simultaneously to each value in the list L.

The renaming function f is applied to temporary names contained in the cdr part of

each cell to retain the links in the resulting list. The following is an example which

uses the down function d:

foreach x ∈ L with [f, d] do

case x of inl (y)⇒ inl (∗),
inr(y)⇒ let p = case (d snd (y)) of inl (z)⇒ false,

inr(z)⇒ (fst(y) = fst(z))

in inr((p, f snd (y)))

This parallel map transforms an integer list L to a boolean list. It tests whether the

integer in each cell is equal to the integer in the next cell, and returns the result of

the tests as a boolean list. Suppose L is an integer list [1, 2, 2], represented as

X1.〈X1 → inr((1, X2)), X2 → inr((2, X3)), X3 → inr((2, X4)), X4 → inl (∗)〉.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 437

The parallel map applies the same function simultaneously to each of the values

inr((1, A4
2)), inr((2, A4

3)), inr((2, A4
4)), inl (∗). To obtain the next cell, the down function

d is applied to a temporary node name to get the value associated to the temporary

name. Finally, each temporary name A4
j is coerced to the corresponding new node

variable Yj by applying the renaming function f. The final result of the parallel map

is the new system of equations:

Y1.〈Y1 → inr((false, Y2)), Y2 → inr((true, Y3)), Y3 → inr((false, Y4)), Y4 → inl (∗)〉,
i.e. a boolean list [false, true, false].

Note that parallel map allows the user to write a parallel function that transforms

recursively defined data by simply writing a function that maps each node value

to another node value. The applicability of this mechanism is not limited to any

particular presupposed data types such as lists or sequences; we can write parallel

function that transforms arbitrary recursive datum of type µt.τ(t) to another recursive

datum of type µt.τ′(t) by writing a function of type τ(n) → τ′(s). This enables us to

write data-parallel programs for arbitrary recursive data in a uniform way by means

of data-parallel recursion explained in section 2.

3.2.2 Recursive data constructor and destructor

To understand our recursive data constructor and destructor, one should note the

difference between our recursive data representation and the usual one. Recursive

types are usually understood as types identified up to folding and unfolding, i.e. as

types satisfying the isomorphism µt.τ(t) ∼= τ(µt.τ(t)). In this view, to process recursive

data with ordinary recursion, it is sufficient to simply introduce recursive data

constructor and destructor as type coercion operators Up of type τ(µt.τ(t))→ µt.τ(t)

and Down of type µt.τ(t)→ τ(µt.τ(t)). That means, a recursive datum of type µt.τ(t)

and its unfolded type τ(µt.τ(t)) have the same data representation. In contrast to

this, the data representations corresponding to the two types are completely different

in our language: The former is an association sequence whose data elements are

scattered over the processors, but the latter is a scalar value. Therefore our recursive

data constructor and destructor are not simple type coercion operators but they are

operators for conversion between the two data representations.

The counterpart of the conventional recursive data construction is expressed in

our language as follows.

up M with x1 = N1, . . . , xm = Nm end

This expression is intended to create a new recursive datum of type µt.τ(t) by

combining the m recursive data N1, . . . , Nm as sub-data. The apparent difference

from the conventional one is that it explicitly names the sub-data N1, . . . , Nm by

the identifiers x1, . . . , xm through which the sub-data are referenced in M. The

explicit naming is needed because of our specific representation of recursive data:

each recursive datum is represented as a system of equations where a set of node

variables is used to identify the nodes of the recursive datum. Hence, to create a

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


438 S. Nishimura and A. Ohori

recursive datum with a new root node, the system need to know the node variables

by which sub-data are referenced.

To evaluate the expression, each sub-data Ni is evaluated to yield an associa-

tion sequence Xi.〈Xi
1 → V i

1, . . . , X
i
m → V i

m〉. The identifiers x1, . . . , xm are bound to

X1, . . . , Xm, respectively, and then M is evaluated to a value V . The value V will usu-

ally contain node variables X1, . . . , Xm to refer to the root node of the corresponding

recursive data. Finally, the new recursive datum is created as an association sequence

which is a merged sequence of the m sequences of the sub-data with an additional

association X → V , where X is a new node variable designating the root node (i.e.

X is prefixed on the sequence.) The expression should satisfy the following typing

constraint: for the expression to have a type µt.τ(t), N1, . . . , Nm should have the same

type µt.τ(t) and M should have type τ(t) under the assumption that the identifiers

x1, . . . , xm have type t.

Assuming every data element is allocated to a distinct processor, the idea of

parallel execution of the recursive data constructor is rather simple. First, let all

the processor select the same single processor to which any data element has not

been allocated. Then the result of evaluation of M is allocated to the processor,

which constitutes the association for the new root node. The association sequences

are automatically merged, as all the processors resume execution of the subsequent

computation. (See section 6.3 for more details.)

Here one should note that the construction of recursive data in our language

still remains sequential: for example, consider the construction of a two-element list

L = [1, 2]. (We simply write up(M) instead of up M with end in the rest of the

paper.)

L = up inr((1, x1)) with x1 = (up inr((2, x2)) with x2 = up(inl (∗)) end ) end

This yields the following result:

X1.〈X1 → inr((1, X2)), X2 → inr((2, X3)), X3 → inl (∗)〉
As this example shows, to construct a list of length n from scratch, we need to

apply the recursive data constructor n + 1 times, which is executed sequentially.

However, our language does not intend to build a recursive datum from scratch.

Instead, it assumes the recursive data to be processed are given in advance. For

example, a recursive datum can be given in the program text statically by using

some conventional syntax like [1, 2, 3, 4, 5] for list, which enables the construction of

recursive datum at compile time. For run-time construction of recursive data, one

should be able to introduce, for example, a primitive operation that generates a list

of a given number of a fixed element in a constant time.

The following expression is the recursive data destructor of our language:

dn(M)

This expression not only coerces type from µt.τ(t) to type τ(µt.τ(t)), but also changes

the representation of the recursive datum M to its unfolded form as follows. Suppose

M is evaluated to an association sequence Xi.〈X1 → V1, . . . , Xk → Vk〉. Then the

recursive data destructor returns a value V ′i obtained from Vi by substituting the

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 439

association sequence Xj.〈X1 → V1, . . . , Xk → Vk〉 for each node variable Xj in

Vi. For example, dn(L), where L is the list defined above, is evaluated to the

value: inr((1, X2.〈X1 → inr((1, X2)), X2 → inr((2, X3)), X3 → inl (∗)〉)). The parallel

execution of the unfolding by substitution involves broadcasting, since the unfolding

is a conversion from a collection of data, i.e. an association sequence, to a scalar

value which should be copied to all the processors. (See section 6.3 for details.)

4 Type system and operational semantics for the language

We present an ML-style polymorphic type system and an operational semantics

of the language. We then show that the type system is sound with respect to the

operational semantics.

In what follows, we use the following notations on sets and functions. The set

difference is written A \ B. For a function f, its domain and the range (codomain)

are written as Dom(f) and Range(f) respectively. A finite function f such that

Dom(f) = {x1, . . . , xn} and f(xi) = vi is written as {x1 7→ v1, . . . , xk 7→ vk}. For any

set A such that A ⊆ Dom(f), we define f(A) = {f(x) | x ∈ A}. For any functions

f, g, we define f + g as the following function: Dom(f + g) = Dom(f)∪Dom(g) and

for all x ∈ Dom(f+ g), (f+ g)(x) = g(x) if x ∈ Dom(g); otherwise (f+ g)(x) = f(x).

4.1 Type system

We assume that the meta-variable b ranges over a given set of base types including

the type unit. The type system contains three kinds of type variables: polymorphic

type variables (ranged over by α) to represent ML-style polymorphism, recursive type

variables (ranged over by t) to represent recursive types of the form µt.τ, and node

type variables (ranged over by n) to represent temporary names used in the parallel

map construct.

Following Damas and Milner (1982), the set of types is divided into the set of

monotypes (ranged over by τ) and the set of polytypes (ranged over by σ) given by

the syntax.

τ::= b (base types)

| α (polymorphic type variable)

| t (recursive type variable)

| n (node type variable)

| unit (unit)

| τ→ τ (function type)

| τ × τ (product type)

| τ+ τ (sum type)

| µt.τ (recursive type)

σ::= τ

| ∀α.σ
The constructs ∀α.σ and µt.τ binds polymorphic type variable α in σ and recursive

type variable t in τ respectively. The set of free type variables in a type τ, denoted

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


440 S. Nishimura and A. Ohori

Table 1. Typing rules

constant identifier
if constant c has type τ

Γ ` c : τ

x ∈ Dom(Γ ) τ � Γ (x)

Γ ` x : τ

function application
Γ + {f : τ1 → τ2, x : τ1} `M : τ2

Γ ` fun f(x)⇒M : τ1 → τ2

Γ `M : τ1 → τ2 Γ ` N : τ1

Γ `MN : τ2

product fst snd
Γ `M : τ1 Γ ` N : τ2

Γ ` (M,N) : τ1 × τ2

Γ `M : τ1 × τ2

Γ ` fst(M) : τ1

Γ `M : τ1 × τ2

Γ ` snd (M) : τ2

inl inr
Γ `M : τ1

Γ ` inl (M) : τ1 + τ2

Γ `M : τ2

Γ ` inr(M) : τ1 + τ2

case
Γ `M : τ1 + τ2 Γ + {x : τ1} ` N1 : τ Γ + {y : τ2} ` N2 : τ

Γ ` case M of inl (x)⇒ N1, inr(y)⇒ N2 : τ

let
Γ `M : τ′ Γ + {x : ClosΓ τ

′} ` N : τ

Γ ` let x = M in N : τ

up

Γ + {x1 : s, · · · , xk : s} `M : τ(s)

Γ ` Ni : µt.τ(t) for each i, 1 6 i 6 m

Γ ` up M with x1 = N1, . . . , xm = Nm end : µt.τ(t)

(s is a new recursive type variable.)

dn
Γ `M : µt.τ(t)

Γ ` dn(M) : τ(µt.τ(t))

foreach

Γ `M : µt.τ(t)

Γ + {f : n→ s, d : n→ τ(n), x : τ(n)} `M : τ′(s)
n does not occur free in τ′(s)

Γ ` foreach x ∈M with [f, d] do N : µt.τ′(t)
(s and n are new recursive type variable and node type variable, respectively.)

by FTV (τ), is the set of polymorphic type variables not bound by any ∀. We

identify types that differ only in the names of bound type variables and further

adopt the usual “bound variable convention” on (both polymorphic and recursive)

type variables, i.e. we assume that the set of all bound type variables are distinct

and are different from any free type variables and that this property is preserved

by substitution. A type substitution θ for free polymorphic type variables is a

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 441

function from a finite set of polymorphic type variables to monotypes. We write

[α1 7→ τ1, . . . , αk 7→ τk] for the substitution that maps each αi to τi. This substitution

for polymorphic type variables is extended to the substitution for monotypes by

the obvious induction on the structure of monotypes. The result of applying a

substitution θ to a polytype ∀α.σ is the type obtained by applying θ to its all

free type variables. Under the bound type variable convention, we can simply take

θ(∀α.σ) = ∀α.θ(σ). The analogous definition apply to type substitutions for recursive

type variables. We write τ(t) for a type τ which possibly has free occurrences of t, and

write τ(τ′) for the type obtained by substituting τ′ for every free occurrences of t in τ.

The type system for the language is defined by a set of rules in Table 1 to derive

a typing of the form

Γ `M : τ

where Γ is a type environment, which is a finite function from identifiers to polytypes.

We define FTV (Γ ) to be the set of free type variables that appear in Γ , i.e.

FTV (Γ ) =
⋃
x∈Dom(Γ ) FTV (Γ (x)). The relation σ � τ indicates that τ is an instance

of σ, i.e. σ = ∀α1 . . . αm.τ
′ for some τ′ and there exists a type substitution θ such

that Dom(θ) = {α1, . . . , αm} and τ = θ(τ′). ClosΓ τ is generalization of τ w.r.t. type

environment Γ , i.e. ClosΓ τ = ∀α1 . . . αm.τ where {α1, . . . , αm} = FTV (τ) \ FTV (Γ ).

4.2 Operational semantics

We present a formal operational semantics for the language in natural semantics

(Kahn, 1987).

4.2.1 Semantic values and environments

To represent a system of equations, we assume that there is a countably infinite set

of node variables, ranged over by X,Y , . . .. To evaluate a parallel map operation,

we need to regard a system of equations as a finite map from a finite domain of

atomic elements to values. For this purpose, we also assume that there is a countably

infinite set of node atoms Aji (1 6 i 6 j), whose finite subset is represented by a node

type variable n.

The set of semantic values, ranged over by V , for the language is given by the

following syntax

V ::= c (constant)

| ∗ (unit)

| fcl(ρ, f, x,M) (function closure)

| (V , V ) (pair)

| inl (V ) (left injection)

| inr(V ) (right injection)

| A
j
i (1 6 i 6 j) (node atom)

| X (node variable)

| X.〈X1 → V1, . . . , Xk → Vk〉 (system of equations)

| fmap(Ak1 → V1, . . . , A
k
k → Vk) (finite map function)

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


442 S. Nishimura and A. Ohori

where ρ stands for a run-time environment, which is a finite function from identifiers

to values. As explained before, the sequence X.〈X1 → V1, . . . , Xk → Vk〉 is an

association sequence, which is a run-time representation of a system of equations.

In an association sequence, the set of node variables Xi, . . . , Xk are pairwise distinct

and the order of the associations is insignificant. Association sequences are often

denoted by χ, χ′, . . .. The concatenation of two sequences, denoted as χ @ χ′, is

allowed only when the sets of node variables constituting the sequences are disjoint.

Concatenation of multiple sequences χ1 @ · · · @ χk is abbreviated as @k
i=1 χi.

fmap(Ak1 → V1, · · · , Akk → Vk) represents a semantic finite map function from the

set of node atoms {Ak1, . . . , Akk} to values. The set of node atoms are classified by

the super-scripted number: the node atoms Ak1, . . . , A
k
k are used to constitute the

semantic finite map function whose domain consists of k node atoms. These node

atoms are introduced each time a parallel map is applied to a system of equations

in order to set up the special functions bound by the identifiers f and d, where the

set of node atoms {Ak1, . . . , Akk} is selected for the temporary names of the k node

variables constituting the given system of equations.

The node variables X1, . . . , Xk in an association sequence Xi.〈X1 → V1, . . . , Xk →
Vk〉 are bound variables. An occurrence of a node variable X in V is free, if it is not

contained in any association sequence of the form Xi.〈X1 → V1, . . . , Xk → Vk〉 such

that X = Xj for some j; it is bound otherwise. We identify association sequences that

differ only in the names of the set of bound node variables, and further adopt the

“bound variable conventions” for bound node variables. We define a substitution

for free node variables to be a finite function from node variables to values,

written as [X1 7→ V1, . . . , Xk 7→ Vk]. Similar to type substitutions, a substitution

S for node variables is extended to the substitution for values by the induction

on the structure of values. The result of applying S to an association sequence

X.〈X1 → V1, . . . , Xk → Vk〉 is the association sequence obtained by applying S to its

all free node variables. Under the bound node variable convention, we can simply

take S(X.〈X1 → V1, . . . , Xk → Vk〉) = X.〈X1 → S(V1), . . . , Xk → S(Vk)〉. The result

of applying a substitution S to a function closure fcl(ρ, f, x,M) is the function

closure fcl(S(ρ), f, x,M), where S(ρ) is defined to be a run-time environment such

that Dom(S(ρ)) = Dom(ρ) and S(ρ)(x) = S(ρ(x)) for all x ∈ Dom(S(ρ)).

4.2.2 Semantic rules

We give the semantics by a set of rules that define the relation

ρ `M ⇓ r,
representing the fact that the expression M evaluates to a result r under the

environment ρ. The set of results is defined by the following grammar:

r ::= V | wrong

where wrong represents the run-time error. The set of rules for the language is given

in Table 2, where we assume that the rules yielding wrong is implicitly given: a deriva-

tion yields wrong , if the results of some sub-derivations do not match the pattern

of the values in any rules, or some premises (such as x ∈ Dom(ρ)) are not satisfied.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 443

Table 2. Parallel operational semantics

constant identifier

ρ ` c ⇓ c x ∈ Dom(ρ)

ρ ` x ⇓ ρ(x)

function function application

ρ ` fun f(x)⇒M ⇓ fcl(ρ, f, x,M) ρ `M ⇓ fcl(ρ′, f, x,M ′) ρ ` N ⇓ V ′
ρ′ + {f 7→ fcl(ρ′, f, x,M ′), x 7→ V ′} `M ′ ⇓ V

ρ `MN ⇓ V

pair fst snd
ρ `M ⇓ V ρ ` N ⇓ V ′
ρ ` (M,N) ⇓ (V , V ′)

ρ `M ⇓ (V , V ′)
ρ ` fst(M) ⇓ V

ρ `M ⇓ (V , V ′)
ρ ` snd (M) ⇓ V ′

inl inr
ρ `M ⇓ V

ρ ` inl (M) ⇓ inl (V )

ρ `M ⇓ V
ρ ` inr(M) ⇓ inr(V )

case let
ρ `M ⇓ inl (V ′) ρ+ {x 7→ V ′} ` N1 ⇓ V

ρ ` case M of inl (x)⇒ N1, inr(y)⇒ N2 ⇓ V
ρ `M ⇓ V ′ ρ+ {x 7→ V ′} ` N ⇓ V

ρ ` let x = M in N ⇓ V
ρ `M ⇓ inr(V ′) ρ+ {y 7→ V ′} ` N2 ⇓ V

ρ ` case M of inl (x)⇒ N1, inr(y)⇒ N2 ⇓ V

foreach

ρ `M ⇓ Xj.〈X1 → V ′1, · · · , Xk → V ′k〉

ρ+


f 7→ fmap(Ak1 → Y1, . . . , A

k
k → Yk),

d 7→ fmap(Ak1 → S(V ′1), . . . , Akk → S(V ′k)),
x 7→ S(V ′i )

 ` N ⇓ Vi for each i, 1 6 i 6 k

ρ ` foreach x ∈M with [f, d] do N ⇓ Yj.〈Y1 → V1, · · · , Yk → Vk〉
(Y1, . . . , Yk are fresh node variables, and S = [X1 7→ Ak1, . . . , Xk 7→ Akk].)

fmap application
ρ `M ⇓ fmap(Ak1 → V1, . . . , A

k
k → Vk) ρ ` N ⇓ Aki

ρ `MN ⇓ Vi
up

ρ ` Ni ⇓ Xi.χi for each i, 1 6 i 6 m
ρ+ {x1 7→ X1, . . . , xm 7→ Xm} `M ⇓ V

ρ ` up M with x1 = N1, . . . , xk = Nm end ⇓ X.(〈X → V 〉@ (@m
i=1 χi))

(X is a new node variable.)

dn
ρ `M ⇓ Xi.〈X1 → V1, · · · , Xk → Vk〉

ρ ` dn(M) ⇓ S(Vi)

(S = [X1 7→ X1.χ, . . . , Xk 7→ Xk.χ] where χ = 〈X1 → V1, . . . , Xk → Vk〉])

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


444 S. Nishimura and A. Ohori

In the rule for the foreach expression, M is first evaluated to an association

sequence Xj.〈X1 → V ′1, . . . , Xk → V ′k〉. Then the set of node atoms {Ak1, . . . , Akk}
matching the length of the sequence is introduced as the set of temporary names.

The map operation λx.N is applied to each S(V ′i ) where S is the substitution which

renames each node variable Xi to the corresponding node atom Aki . The special

functions f and d are bound to finite maps from the node atoms Ak1, . . . , A
k
k to

values. The semantics for the finite function application is given in the table in an

obvious way. The renaming function f is a one-to-one finite map from the node

atoms to fresh node variables Y1, . . . , Yk . The down function d maps each node atom

Aki to its corresponding value S(V ′i ). The final result is obtained by associating each

fresh node variable Yi to the value Vi, the corresponding result of map operation.

The root node is the node variable Yj which corresponds to the root node of the

original system of equations.

The rule for up M with x1 = N1, . . . , xm = Nm end first evaluates each sub-

data Ni to a system of equations Xi.χi. Then M is evaluated to a value V under

the binding {x1 7→ X1, ..., xk 7→ Xk}. The final result is the association sequence

X.〈X → V 〉 @ (@m
i=1 χi) where X is a new node variable. We can assume that

the set of node variables constituting each association sequence χi is disjoint by

renaming node variables. The rule for dn(M) first evaluates M to yield a system of

equations Xi.〈X1 → V1, . . . , Xk → Vk〉. Then it returns the value obtained from Vi by

instantiating its immediate sub-nodes, i.e. by replacing each free occurrence of Xj in

Vi with the corresponding system of equations, Xj.〈X1 → V1, · · · , Xk → Vk〉.

4.3 Type soundness

We show that the presented type system is sound with respect to the operational

semantics. There is one subtlety in establishing this desired property; the evaluation

of parallel maps involves application of finite maps, and the type system must also

ensure that a finite map always apply to the elements of its domain. For the purpose

of proving the fact, we assume that each node type variable is assigned a fixed

natural number k describing the cardinality of the corresponding set of node atoms

{Ak1, . . . , Akk}. We write | n | to denote the cardinality number assigned to a node

variable n, and we assume that there are countably infinite node type variables n

such that | n | = k.

We prove the type soundness in the style of Leroy (1992), which refines the

treatment of store typing in Tofte’s (1988) proof. Types of semantic values are

defined relative to a recursive type variable environment, which is similar to Leroy’s

store typing. A recursive type variable environment R is a finite map from recursive

type variables to the sets of node variables, written as

R = {t1 7→ {X1
1 , . . . , X

1
n(1)}, . . . , tk 7→ {Xk

1 , . . . , X
k
n(k)}}.

The type system of values is defined as a set of rules to derive the following form of

judgment

R |= V : τ

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 445

denoting the fact that the value V has the type τ under the type variable environment

R. The typing rules for values are defined below.

• R |= c : τ if constant c has type τ.

• R |= A
j
i : n if | n | = j

• R |= fcl(ρ, f, x,M) : τ1 → τ2 if there exists Γ such that R |= ρ : Γ and

Γ ` fun f(x)⇒M : τ1 → τ2.

• R |= (V1, V2) : τ1 × τ2 if R |= V1 : τ1 and R |= V2 : τ2.

• R |= inl (V ) : τ1 + τ2 if R |= V : τ1.

• R |= inr(V ) : τ1 + τ2 if R |= V : τ2.

• R |= X : t if t ∈ Dom(R) and X ∈ R(t).

• R |= X.〈X1 → V1, · · · , Xk → Vk〉 : µt.τ if X1, . . . , Xk are distinct, X = Xi

for some i(1 6 i 6 k), and R + {t 7→ {X1, . . . , Xk}} |= Vi : τ holds for all

i(1 6 i 6 k). (We assume {X1, . . . , Xk} ∩ R(s) = ∅ for all s ∈ Dom(R) by the

renaming convention.)

• R |= fmap(Ak1 → V1, · · · , Akk → Vk) : n → τ if | n | = k and R |= Vi : τ for all

i(1 6 i 6 k).

• R |= V : σ if R |= V : τ for all τ such that τ � σ.

• R |= ρ : Γ if Dom(ρ) = Dom(Γ ) and R |= ρ(x) : Γ (x) for all x ∈ Dom(ρ).

The following theorem shows the type system is sound with respect to the

operational semantics, i.e. no well-typed program causes run-time error.

Theorem 1 (Type soundness)

Let Γ be a type environment, M be an expression, and τ be a type such that

Γ ` M : τ. Then, for any R and ρ such that R |= ρ : Γ and ρ ` M ⇓ r, we have

r 6= wrong and R |= r : τ.

The proof of this theorem is deferred until Appendix A.

5 Examples of data-parallel programming

The language we have just defined is intended to serve as a core language for

data-parallel programming with general recursive types. However, the raw syntax

is too verbose. For ease of programming with recursive types, we introduce data

type declarations and a high level syntax similar to that employed by existing ML

languages. A data type declaration defines the structure of a recursive datum and

the data constructor names. For example, list type is defined as follows:

datatype α list = Nil | Cons of α * α list;

As in ML, this defines type α list of lists of elements of type α, and data

constructors Nil and Cons for lists. The constructor names are also used as patterns

in pattern matching constructs such as case and let expressions. Different from the

conventional functional languages, however, we should be able to use a constructor

name in two different meanings: one for folding or unfolding a recursive datum

represented as a system of equations; and the other for expressing node values in

a system of equations. These two are distinguished in our high level syntax by a

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


446 S. Nishimura and A. Ohori

prefix. If ’^’ is prefixed to a constructor name, it expresses a recursive datum of some

type µt.τ(t); otherwise, it is just a node value of type τ(t). For example, a sequential

version of map function is implemented as follows:

fun map F L =

case L of

^Nil => ^Nil

| ^Cons(hd,tl) => ^Cons(F hd, map F tl)

end;

where the expressions ^Nil and ^Cons(F hd, map F tl) on the right-hand of the

case arrows construct lists whose type is a recursive type µt.unit + α × t, and the

patterns ^Nil and ^Cons(hd,tl) are used to match a value of the same recursive

type. The counterpart of this program in the raw syntax is given below.

fun map(F)⇒ λL.case dn(L) of

inl (x)⇒ up(inl (∗)),
inr(y)⇒ let hd = fst(y)

in let tl = snd (y)

in up inr((F hd, z)) with z = map F tl end

The data-parallel version of map, which we have described in the raw syntax in

section 3.2.1, is written with the unprefixed constructor names as follows:

fun map F L =

foreach x in L with [f,d] do

case x of

Nil => Nil

| Cons(hd,tl) => Cons(F hd, f tl)

end

end;

where Nil and Cons are used as constructors and patterns for node values of type

unit+ α × t.

5.1 Data-parallel suffix sum via data-parallel recursion

We show how the data-parallel list suffix algorithm given in section 2 is expressed in

our language. The function suffix in Figure 4 takes two arguments, an associative

binary operator op and a list L, and performs the parallel suffix operation. This

function has a polymorphic type ∀α.(α→ α→ α)→ (µt.unit+α × t)→ (µt.unit+α ×
t). Therefore, the function is a general parallel suffix operation that works for any

list and any associative binary operation on the list elements. For example, if op is

the integer sum and L is an integer list, the function suffix returns the suffix sum

of the integer list.

The diagram in Figure 5 illustrates how suffix works. The function suffix is a

composite of three functions mk chum, scan, and strip. First mk chum, a parallel map

function, transforms the given list to the list with chums of type µt.unit+ α × t × t.
(The list with chum field is represented in the program by the data type α cList.)

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 447

datatype α List = Nil | Cons of α * α List;
datatype α cList = cNil | cCons of α * α cList * α cList;

fun suffix op L =
let fun mk_chum L =

foreach x in L with [f,d] do
case x of

Nil => cNil
| Cons(hd,tl) => cCons(hd,f tl, f tl)
end

end
fun square cL =

foreach x in cL with [f,d] do
case x of

cNil => cNil
| cCons(n,chum,tl) =>

case (d chum) of
Nil => cCons(n,f chum,f tl)

| cCons(m,chum’,_) => cCons((op n m),f chum’,f tl)
end

end
end

fun strip cL =
foreach x in cL with [f,d] do

case x of
cNil => Nil

| cCons(n,chum,tl) => Cons(n,f tl)
end

end
fun scan cL =

case cL of
^cNil => ^cNil

| ^cCons(_,chum,_) =>
case chum of

^cNil => cL
| ^cCons(_,_,_) => scan (square cL)
end

end
in

strip (scan (mk_chum L))
end;

Fig. 4. Data-parallel suffix program.

µt.unit+ α × t × t-

µt.unit+ α × t

?

6

-µt.unit+ α × t × t

-

-

suffix

strip

scan

µt.unit+ α × t

· · ·square square

mk chum

Fig. 5. Diagram for suffix.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


448 S. Nishimura and A. Ohori

The suffix of the list is computed by the function scan, a function for data-parallel

recursion, which iterates the function square repeatedly until the chum pointer in

the first cons cell reaches cNil. Finally, the function strip is applied to transform

the list with chum fields into the ordinary list.

In a similar way, we can describe data-parallel algorithms based on pointer

jumping technique. In Appendix B, a more complex data-parallel programming

example for binary tree is given. The program describes the algorithm called the

parallel pebble game, a variant of the so-called tree contraction algorithm, which

takes O(log n) parallel steps to perform suffix computation on n node binary trees

of arbitrary shape.

As we noted earlier, the purpose of our language is to express the essential

nature of data-parallel algorithms in a typed higher-order functional language. The

above examples demonstrate that data-parallel algorithms based on pointer jumping

technique are cleanly represented. Of course, the pointer jumping technique is not the

only one technique. There are several other significant programming techniques, and

some of them may not be easily expressed in our framework. To write a program in

our language that solves a particular problem, we need to find a proper data-parallel

algorithm that can be expressed in our framework, which is out of the scope of the

present paper.

6 A parallel execution model for the language

This section describes the intended parallel execution model of our language that

respects the formal semantics given in the previous section. For the purpose of giving

the principal idea of the parallel execution, we only consider a rather simplified case:

1. We assume SPMD execution on an idealized distributed memory multicom-

puter which consists of an unbounded number of processors. Each processor in

the idealized multicomputer has a local memory and is identified by a unique

processor id. We also assume that the multicomputer provides the facilities for

broadcasting and inter-processor communication.

2. We do not consider any nested parallelism, i.e. nested execution of foreach , up,

and dn .

3. We only consider simple recursive data structures such as integer lists and

binary trees.

Apparently, the parallel execution model we shall describe does not support the full

specification of the language and that it does not immediately yields a practical

compilation method either. Some important points that remain to be considered

includes the following:

1. In practice, the number of processors is bounded and possibly very small. We

need a method to allocate a limited number of physical processors to parallel

operations.

2. To support nested parallelism, we need to map the execution of the nested

expressions onto a flat parallel architecture. One promising way for doing

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 449

this is flattening, which is a transformation technique for unnesting the nested

expressions. There are several proposals to flatten arrays (Blelloch, 1990; Prins

and Palmer, 1993; Keller and Simons, 1996). Applying these methods to our

language requires further refinement.

3. The representation of nested recursive data, which would be closely related

to the nested parallelism, is not obvious. Even for a simple recursive data, a

subtle problem arises due to sharing of sub-structures. For example, consider

constructing a binary tree from two different subtrees. If some of data elements

of the both subtrees reside in the same virtual processors, then we need to

allocate new virtual processors for the duplicated data elements. Functional

recursive types such as µt.unit+ int → t add more complication since function

closures are passed around among the processors.

4. Data alignment is a critical issue for tuning the performance of parallel

computation: data elements should be placed so that the communication

overhead becomes as small as possible under the network configuration of

a specific architecture. This is more difficult for our language which can

dynamically allocate recursive data, while data alignment is optimized usually

due to the static size information of arrays.

As indicated by these points, significant further research will be needed to make

the parallel execution model to be a practical implementation method for our

language on an actual parallel machine. Furthermore, since our intended parallel

execution model is based on SPMD, which basically assumes a fine grain parallel

architecture, the proposed method may not be suitable for currently popular parallel

architectures of coarser grain. We nonetheless believe that our execution model is

conceptually worth considering for the study of data-parallelism on recursive data:

the model could be a basis of a general SPMD execution method for data-parallel

programs with arbitrary recursive data that are described by means of what we call

parallel recursion.

6.1 Representing recursive data by association pointers

As explained in section 3, the run-time value of a recursive datum is an asso-

ciation sequence Xj.〈X1 → V1, . . . , Xn → Vn〉 representing a system of equations.

The intention of this representation is that the associated values V1, . . . , Vn are

distributed over distinct processors identified by the node variables X1, . . . , Xn, re-

spectively. Using processor id’s as node variables, we map an association sequence

Xj.〈X1 → V1, . . . , Xn → Vn〉 onto the multicomputer as follows. Suppose that the

associations X1 → V1, . . ., Xn → Vn are allocated to the processors P1, . . ., Pn,

respectively. By this distribution, the associations are localized in each processor,

but the information on root node must be globally shared by all the processors. We

therefore represent the association sequence in each processor Pi as an association

pointer APi = (Pj, pPi), which is a pair of a processor id and a pointer to a local

datum. In all the processors, the association pointer has the same processor id Pj as

the first element, which indicates the processor allocating the root node. The second

element pPi is a pointer referring to the allocated node value stored in the local

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


450 S. Nishimura and A. Ohori

Cons 2 P1Cons 1 P2

P3

Processor P4

P3

Processor P3

P3

Processor P2

P3

Processor P1

Nil

Fig. 6. Representation of a list by association pointers.

memory of each processor Pi. The processors that are not allocated an association

has an association pointer A = (Pj,Undefined), where the special value Undefined

indicates that the processor is not in charge of processing the system of equations.

Figure 6 shows how a list [1, 2] represented by the following run-time representation

X1.〈X1 → inr((1, X2)), X2 → inr((2, X3)), X3 → inl (∗)〉
is expressed by association pointers. In the figure, an association pointer is depicted

by two vertically stacked boxes, where the top box represents the processor id and

the bottom one represents the pointer to the allocated cons cell or Nil. The special

value Undefined is represented in the figure by a backslash. Each cons cell contains

a processor id in its cdr part to represent the corresponding node variable indexing

the processor that is allocated the next cons cell.

6.2 Execution of parallel map

A parallel map foreach x ∈ N with [f, d] do M is evaluated by simultaneously

applying the map function λx.M to the value allocated in each processor. The

instruction stream executed in each processor is dependent on the allocated value,

and inter-processor communication is triggered by the application of the down

function d.

Suppose N is evaluated to a recursive datum, and it is represented in every

processor P by the association pointers AP = (P r, pP ). First, every processor P that

is not allocated a node value (i.e. if pP =Undefined) become inactive. Then, in each

remaining active processor P , the variable f is bound to the identity function and

the variable d is bound to a function which, given a processor id P , fetches the value

allocated to processor P via inter-processor communication. Under these bindings,

the variable x is bound to the value stored in the local address pP , and M is

evaluated simultaneously in each processor. The final result in each active processor

is an association pointer (P r, p) where p is the pointer to the value obtained by

evaluating M. Execution of the parallel map is finished by resuming the execution

of the inactivated processors. As a simple example, consider the following parallel

map:

foreach x ∈M with [f, d] do

case x of inl (y)⇒ inl (y),

inr(y)⇒ case (d snd (y)) of inl (z)⇒ inr((fst(y), f snd (y)))

inr(z)⇒ inr((fst(y) + fst(z), f snd (y)))

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 451

Cons 1 P2

P3

Processor P3 Processor P2 Processor P1

Cons 3 P2

P3

f

1+2=3

Cons 2 P1

P3

Cons 2 P1

P3

f

P3

Nil

P3

Nil

d

Fig. 7. Execution of foreach on a list.

This is a parallel version of the following sequential recursive function:

fun foo L = case L of

^Nil => ^Nil

| ^Cons(n,tl) => case tl of

^Nil => ^Cons(n,foo tl)

| ^Cons(m,_) => ^Cons(n+m,foo tl)

end

end;

We illustrate how the parallel map is executed in Figure 7 in the case M = [1, 2].

In the figure, the old data is drawn by dashed thin lines, and the resulting data is

drawn by plain thin lines. The dashed thick arrows labeled by f represent copying

of a processor id, the dashed thick arrow labeled by d represents data transfer by

inter-processor communication, and the thick arrows represent data flow inside a

processor.

6.3 Execution of up and dn

To construct a recursive datum by up M with x1 = N1, . . . , xm = Nm end , every

processor P first evaluates each Ni to an association pointer AP = (P ri , pP ) and M

to a new value under the binding of each xi to the corresponding association pointer.

Then every processor selects the same processor Q to which any elements of recursive

data have not been allocated. Then the processor Q yields an association pointer

(Q, q) where q is the pointer to a value obtained by replacing every association

pointer (P ′, p) contained in the value evaluated from M by the processor id P ′.
Every processor P other than Q discards the value evaluated from M and yields an

association pointer (Q, pP ). Figure 8 illustrates how up inr((0, x)) with x = N end ,

i.e. a cons operation, is executed and yields an association pointer in each processor,

in the case N = [1, 2].

A recursive data M is destructed by dn(M) as follows. First, every processor

P evaluates M to obtain an association pointer AP = (P r, pP ). The processor P r

broadcasts the node value allocated to the processor to all the processors. Then every

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


452 S. Nishimura and A. Ohori

1. Evaluating inr((0, x)).

Cons 2 P1Cons 1 P2

Processor P4 Processor P3 Processor P2 Processor P1

Nil

Cons 0 P3
Cons 0 P3

Cons 0 P3
Cons 0 P3

2. Creating new association pointers with processor P4 as the new root node.

Cons 2 P1Cons 1 P2

P4

Processor P4

P4

Processor P3

P4

Processor P2

P4

Processor P1

NilCons 0 P3

Fig. 8. Execution of Cons on a list.

1. Broadcasting the root node value.

Cons 2 P1Cons 1 P2

P3

Processor P4

P3

Processor P3

P3

Processor P2

P3

Processor P1

Nil

Cons 1 P2 Cons 1 P2 Cons 1 P2Cons 1 P2

2. Updating association pointers in the cdr part.

Cons 2 P1Cons 1 P2

Processor P4 Processor P3 Processor P2 Processor P1

Nil

Cons 1 P2
Cons 1 P2

Cons 1 P2
Cons 1 P2

Fig. 9. Application of dn to a list.

processor P other than the processor P r replace every processor id Q contained in

the broadcasted value by an association pointer (Q, pP ). The processor P r yields the

node value that has been allocated to the processor. Figure 9 shows how dn(M) is

executed for M = [1, 2].

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 453

7 Conclusion

We have proposed a new language mechanism, called data-parallel recursion, for

data-parallel processing of recursive data, and have worked out a functional lan-

guage suitable for describing data-parallel programs via data-parallel recursion. The

language supports distributed recursive data and a data-parallel function applica-

tion mechanism, called parallel map. The combination of the parallel map and the

ordinary recursion allows us to describe a class of typical data-parallel algorithms

on recursive data in a uniform way. Furthermore, the language is a typed functional

language with ML polymorphic let and the type system is sound with respect to a

formal operational semantics. In addition to the formal operational semantics, we

have also given a simple data-parallel execution model for the language.

To substantiate the feasibility of the data-parallel execution model, the authors

designed a prototype ML like data-parallel language embodying the results presented

in this paper, and implemented a prototype system on a SIMD architecture with

1024 PEs. The prototype system is a translator that converts the prototype language

into TUPLE language (Yuasa, 1992), a data-parallel variant of Lisp language. The

translator type checks a program and then generates the corresponding target Lisp

code for each data-parallel construct.

In a wider perspective, the paradigm of parallel transformation of system of

equations can be applied not only to data-parallel programming on recursively de-

fined data but also to various other areas where manipulation of mutually dependent

structures are crucial, such as object-oriented databases. Based on this general obser-

vation, we have recently proposed an object-oriented data model and a data-parallel

query language (Nishimura et al., 1996). In this model, the idea of parallel map

not only contributes to parallel query processing but it also enables us to achieve

declarative database query involving object identity, which have traditionally been

processed in an ad hoc way using pointer manipulation.

Acknowledgments

We thank Taiichi Yuasa for allowing us to use the TUPLE language system on a

parallel machine with 1024 PEs, which enabled us to implement a prototype data-

parallel language described in this article. We also thank the anonymous reviewers

whose comments were very helpful to improve the paper.

A Proof of type soundness

This appendix gives a proof for the soundness theorem. The proof structure is similar

to Leroy’s (1992).

Proposition 2

Let Γ be a type environment, M be an expression, and τ be a type such that

Γ `M : τ. Then, the following properties hold:

1. For any Γ ′ and τ′ obtained by replacing every occurrence of a node type

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


454 S. Nishimura and A. Ohori

variable n in Γ and τ by some fresh node type variable n′, there is a derivation

such that Γ ′ `M : τ′.
2. For any Γ ′ and τ′ obtained by replacing every free occurrence of a recursive

type variable t in Γ and τ by some type τ′′, there is a derivation such that

Γ ′ `M : τ′.
3. For any substitution θ for polymorphic type variables, there is a derivation such

that θ(Γ ) `M : θ(τ), where θ(Γ ) represents substitution for type environment,

i.e. Dom(θ(Γ )) = Dom(Γ ) and θ(Γ )(x) = θ(Γ (x)) for all x ∈ Dom(Γ ).

Proof

Properties 1 and 2 Easy induction on the structure of M.

Property 3 The proof is induction on the structure of M. The proof is the same

as the Leroy’s (1992), except for the case M is either up, dn, or foreach. We only

prove the case foreach. (The other two cases are proved in a similar way.)

Case M = foreach x ∈M with [f, d] do N.

The type of M is derived as follows.

Γ `M : µt.τ(t)

Γ + {f : n→ s, d : n→ τ(n), x : τ(n)} `M : τ′(s)
n does not occur free in τ′(s)

Γ ` foreach x ∈M with [f, d] do N : µt.τ′(t)

We can assume that n does not occur free in θ(α) for all α ∈ Dom(θ), by

renaming the node type variable n to a fresh one using property 1 if necessary.

By the induction hypothesis, we have the following derivations:

θ(Γ ) `M : µt.θ(τ(t)) and

θ(Γ ) + {f : n→ s, d : n→ θ(τ(n)), x : θ(τ(n))} `M : θ(τ′(s)).

By the assumption, n does not occur free in θ(τ′(s)) either. As a consequence,

we can conclude

θ(Γ ) ` foreach x ∈M with [f, d] do N : θ(µt.τ′(t)).

q

The following lemma shows that value typing is stable under extensions of the

recursive type variable environment.

Lemma 3

Let R be a type variable environment, V be a semantic value, and τ be a type

such that R |= V : τ. Then, the relation R′ |= V : τ holds for any recursive type

environment R′ such that Dom(R′) ⊇ Dom(R) and R′(t) ⊇ R(t) for all t ∈ Dom(R).

Proof

By induction on the structure of V . q

The next lemma shows that the type τ(t) of a value V is changed to τ(τ′) if every

node variable in V that belongs to type t is replaced by a value of type τ′.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 455

Lemma 4

Let R be a type variable environment, V be a semantic value, X1, . . . , Xk be node

variables, and τ(t) be a type such that {X1, . . . , Xk}∩R(s) = ∅ for all s ∈ Dom(R) and

R + {t 7→ {X1, . . . , Xk}} |= V : τ(t). Suppose S be a substitution for node variables

such that Dom(S) = {X1, . . . , Xk} and R |= S(Xi) : τ′ for all i(1 6 i 6 k), where τ′
does not contain any free occurrence of t. Then, the relation R |= S(V ) : τ(τ′) holds.

Proof

Let R′ = R+ {t 7→ {X1, . . . , Xk}}. Proof is induction on the structure of V . We prove

only one crucial case.

Case V = Yj.〈Y1 → V1, . . . , Yk → Vk〉.
We can assume that τ(t) = µs.τ′′(t) for some τ′′(t) and that t 6= s by the renaming

convention. Hence, by the definition of value typing and by lemma 3, we have

R′+ {s 7→ {Y1, . . . , Yk}} |= Vi : τ′′(t) for all i. By applying the induction hypothesis,

we have R′ + {s 7→ {Y1, . . . , Yk} |= S(Vi) : τ′′(τ′) for all i, and therefore R |= S(V ) :

τ(τ′).

q

We show in the following proposition that the value typing is stable under

substitutions for polymorphic type variables.

Proposition 5

Let R be a type environment, V be a semantic value, and τ be a type such that

R |= V : τ. Then, for any polymorphic type substitution θ, the relation R |= V : θ(τ)

holds. As a consequence, we have R |= ∀α1 · · · αk.τ for any set of polymorphic type

variables α1, . . . , αk .

Proof

The proof is induction on the structure of V . Most of the induction cases are easy

to prove, except for the case V is a function closure.

Case M = fcl(ρ, f, x,M) and τ = τ1 → τ2.

Let Γ be a type environment such R |= ρ : Γ and Γ ` fcl(ρ, f, x,M) : τ1 → τ2.

By proposition 2(property 3), we have

θ(Γ ) ` fcl(ρ, f, x,M) : θ(τ1 → τ2).

To show R |= ρ : θ(Γ ), let Γ (y) = ∀α1 · · · αn.τy for any y ∈ Dom(ρ). By the

renaming convention, we have θ(Γ (y)) = ∀α1 · · · αn.θ(τy). We need to show that

R |= ρ(y) : τ′ for any τ′ such that τ′ � θ(Γ (y)). There exists a type substitution ψ

such that τ′ = ψ(θ(τy)) for any instance τ′. From the definition of value typing for

type schemes, we also have R |= ρ(y) : τy . Therefore, by the induction hypothesis,

we have R |= ρ(y) : τ′. Since ψ is arbitrary, we have R |= ρ(y) : θ(Γ (y)). This

holds for all y ∈ Dom(Γ ). Therefore we can conclude R |= ρ : θ(Γ ).

q

We are now ready to prove the type soundness theorem.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


456 S. Nishimura and A. Ohori

Proof

The proof is by induction on the height of the derivation tree ρ `M ⇓ V . We prove

according to the last rule used to derive the value V . In the following, we prove

some non-trivial cases only.

Case M = let x = M in N.

The type is derived as follows:

Γ `M : τ′ Γ + {x : ClosΓ τ
′} ` N : τ

Γ ` let x = M in N : τ

By the induction hypothesis, we have

ρ `M ⇓ V ′ and R |= V ′ : τ′.

By proposition 5, we haveR |= V ′ : ClosΓ τ
′. By applying the induction hypothesis,

we obtain the relations:

ρ+ {x 7→ V ′} ` N ⇓ V and R |= V : τ,

and we have V as the result of evaluation by the following evaluation derivation:

ρ `M ⇓ V ′ ρ+ {x 7→ V ′} ` N ⇓ V
ρ ` let x = M in N ⇓ V

Case M = MN.

The type is derived as follows.

Γ `M : τ1 → τ2 Γ ` N : τ1

Γ `MN : τ2

There are two possible evaluation derivations corresponding to this type deriva-

tion.

Case M is evaluated to a functional closure.

By the induction hypothesis, we have R |= fcl(ρ′, f, x,M ′) : τ1 → τ2 and

R |= V ′ : τ1. By the definition of functional closure typing, there exists a type

environment Γ ′ such that R |= ρ′ : Γ ′ and Γ ′ + {f : τ1 → τ2, x : τ1} ` M ′ : τ2.

As R |= ρ′ + {f 7→ fcl(ρ′, f, x,M ′), x 7→ V ′} : Γ ′ + {f : τ1 → τ2, x : τ1}, by the

induction hypothesis we obtain the relations:

ρ′ + {f 7→ fcl(ρ′, f, x,M ′), x 7→ V ′} `M ′ ⇓ V and R |= V : τ2,

and we have V as the result of evaluation by the following evaluation derivation.

ρ `M ⇓ fcl(ρ′, f, x,M ′) ρ ` N ⇓ V ′
ρ′ + {f 7→ fcl(ρ′, f, x,M ′), x 7→ V ′} `M ′ ⇓ V

ρ `MN ⇓ V
Case M is a finite map and τ1 = n.

By the induction hypothesis, we have

ρ `M ⇓ fmap(Ak1 → V1, . . . , A
k
k → Vk) and ρ ` N ⇓ Aki ,

R |= fmap(Ak1 → V1, . . . , A
k
k → Vk) : n→ τ2 and R |= Vi : τ2 for all i(1 6 i 6 k).

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 457

By the definition of value typing, we have k = k′ = | n |. Hence, we have an

evaluation derivation:

ρ `M ⇓ fmap(Ak1 → V1, . . . , A
k
k → Vk) ρ ` N ⇓ Aki

ρ `MN ⇓ Vi
and the result Vi has the relation R |= Vi : τ2.

Case M = foreach x ∈M with [f, d] do N.

The type is derived as follows:

Γ `M : µt.τ(t)

Γ + {f : n→ s, d : n→ τ(n), x : τ(n)} `M : τ′(s)
n does not occur free in τ′(s)

Γ ` foreach x ∈M with [f, d] do N : µt.τ′(t)

In the above, we can assume n and s are fresh node type variable and recursive

type variable, respectively.

By the induction hypothesis, we have the following relations:

ρ `M ⇓ Xi.〈X1 → V ′1, . . . , Xk → V ′k〉 and

R |= Xi.〈X1 → V ′1, . . . , Xk → V ′k〉 : µt.τ(t).

We can assume | n | = k by proposition 2 (property 1). Let Y1, . . . , Yk be fresh

node variables, R′ = R + {s 7→ {Y1, . . . , Yk}}, and S = [X1 7→ Ak1, . . . , Xk 7→ Akk].

Then, by Lemmas 4 and 3, we have

R′ |= Yi : s and R′ |= S(V ′i ) : τ(n) for all i(1 6 i 6 k).

Hence, under the recursive type variable environment R′, the two finite maps have

the following types:

R′ |= fmap(Ak1 → Y1, . . . , A
k
k → Yk) : n→ s and

R′ |= fmap(Ak1 → S(V ′1), . . . , Akk → S(V ′k)) : n→ τ(n).

From these relations, we obtain

R′ |= ρi : Γ + {f : n→ s, d : n→ τ(n), x : τ(n)} for all i(1 6 i 6 k),

where ρi = ρ+


f 7→ fmap(Ak1 → Y1, . . . , A

k
k → Yk),

d 7→ fmap(Ak1 → S(V ′1), . . . , Akk → S(V ′k)),
x 7→ S(V ′i )

 .

By applying the induction hypothesis, we have the following relations:

ρi ` N ⇓ Vi and R |= Vi : τ′(s) for all i(1 6 i 6 k).

Hence, the expression is evaluated by the following derivation:

ρ `M ⇓ Xi.〈X1 → V ′1, . . . , Xk → V ′k〉

ρ+


f 7→ fmap(Ak1 → Y1, . . . , A

k
k → Yk),

d 7→ fmap(Ak1 → S(V ′1), . . . , Akk → S(V ′k)),
x 7→ S(V ′i )

 ` N ⇓ Vi
for each i, 1 6 i 6 k

ρ ` foreach x ∈M with [f, d] do N ⇓ Yi.〈Y1 → V1, . . . , Yk → Vk〉

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


458 S. Nishimura and A. Ohori

and the result value has type R |= Yi.〈Y1 → V1, . . . , Yk → Vk〉 : µt.τ′(t).

Case M = up M with x1 = N1, . . . , xk = Nm end .

The type is derived as follows:

Γ + {x1 : s, . . . , xm : s} `M : τ(s)

Γ ` Ni : µt.τ(t) for each i, 1 6 i 6 m

Γ ` up M with x1 = N1, . . . , xm = Nm end : µt.τ(t)

By the induction hypothesis and Lemma 3, we have the following relations:

ρ ` Ni ⇓ Xi.χi and R |= Xi.χi : µt.τ(t) for all i(1 6 i 6 m),

ρ+ {x1 7→ X1, . . . , xm 7→ Xm} `M ⇓ V and

R+ {s 7→ {X1, . . . , Xm}} |= V : τ(s).

Hence, the expression is evaluated by the following derivation:

ρ ` Ni ⇓ Xi.χi for each i, 1 6 i 6 m
ρ+ {x1 7→ X1, . . . , xm 7→ Xm} `M ⇓ V

ρ ` up M with x1 = N1, . . . , xm = Nm end ⇓ X.(〈X → V 〉@ (@m
i=1 χi))

Let χi = 〈Xi
1 → V i

1, . . . , X
i
k(i) → V i

k(i)〉. We can assume by the renaming conven-

tion that the node variables Xi
j ’s are all distinct and {Xi

j | 1 6 i 6 m, 1 6 j 6
k(i)} ∩ R(u) = ∅ for all u ∈ Dom(R). By the definition of value typing, we have

R+ {s 7→ {Xi
1, . . . , X

i
k(i)}} |= V i

j : τ(s) for all i(1 6 i 6 m). Let R′ = R+ {s 7→ {Xi
j |

1 6 i 6 m, 1 6 j 6 k(i)} ∪ {X}}. Then, by Lemma 3, we have R′ |= V
j
i : τ(s) for

all i, j(1 6 i 6 m, 1 6 j 6 k(i)). Similarly, we also have R′ |= V : τ(s). Therefore,

we can conclude that R |= X.(〈X → V 〉@ (@m
i=1 χi)) : µt.τ(t).

Case M = dn(M).

The type is derived as follows:

Γ `M : µt.τ(t)

Γ ` dn(M) : τ(µt.τ(t))

By the induction hypothesis, we have the following relations:

ρ `M ⇓ Xi.〈X1 → V1, . . . , Xk → Vk〉 and

R |= Xi.〈X1 → V1, . . . , Xk → Vk〉 : µt.τ(t).

Hence, the expression is evaluated by the following derivation:

ρ `M ⇓ Xi.〈X1 → V1, · · · , Xk → Vk〉
ρ ` dn(M) ⇓ S(Vi)

where S = [X1 7→ X1.χ, . . . , Xk 7→ Xk.χ] with χ = 〈X1 → V1, . . . , Xk → Vk〉. By the

definition of value typing, we have R+ {t 7→ {X1, . . . , Xk}} |= Vi : τ(t). Therefore,

by Lemma 4, the result has type R |= S(Vi) : τ(µt.τ(t)).

q

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 459

B Data-parallel suffix on binary tree

datatype α BTree = Leaf of α | Node of α * α BTree * α BTree;
datatype α State = Inactive | Active of α pBtree | Pebbled

and α pBTree = pLeaf of α * α State
| pNode of α * α State * α BTree * α BTree;

suffix_tree opr T =
let fun init_tree T =

foreach x in T with [f,d] do
case x of Leaf(n) => pLeaf(n,Pebbled)

| Node(n,t1,t2) => pNode(n,Inactive,f t1,f t2)
end

end
fun strip pT =

foreach x in pT with [f,d] do
case x of pLeaf(n,_) => Leaf(n)

| pNode(n,_,t1,t2) => Node(n,f t1,f t2)
end

end
fun activate pT =

foreach x in pT with [f,d] do
case x of

pLeaf(n,st) => pLeaf(n,st)
| pNode(n,Inactive,t1,t2) =>

let (n1,st1) = case (d t1) of
pLeaf(n,st) => (n,st)

| pNode(n,st,_,_) => (n,st)
end

and (n2,st2) = case (d t2) of
pLeaf(n,st) => (n,st)

| pNode(n,st,_,_) => (n,st)
end

in case (st1,st2) of
(Pebbled,_) => pNode(opr n n1,Active(f t2),f t1,f t2)

| (_,Pebbled) => pNode(opr n n2,Active(f t1),f t1,f t2)
| (_,_) => pNode(n,Inactive,f t1,f t2)
end

end
| pNode(n,Active(t),t1,t2) => pNode(n,Active(f t),f t1,f t2)
| pNode(n,Pebbled,t1,t2) => pNode(n,Pebbled,f t1,f t2)
end

end
fun square pT =

foreach x in pT with [f,d] do
case x of

pLeaf(n,st) => pLeaf(n,st)
| pNode(n,Active(t),t1,t2) =>

case (d t) of
pNode(m,Active(t’),_,_) => pNode(opr n m,Active(f t’),f t1,f t2)

| _ => (n,Active(f t),f t1,f t2)
end

| pNode(n,st,t1,t2) => pNode(n,st,f t1,f t2)
end

end
fun pebble pT =

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


460 S. Nishimura and A. Ohori

foreach x in pT with [f,d] do
case x of

pLeaf(n,st) => pLeaf(n,st)
| pNode(n,Active(t),t1,t2) =>

case (d t) of
pNode(m,Pebbled,_,_) => pNode(opr n m,Pebbled,f t1,f t2)

| _ => pNode(n,Active(f t),f t1,f t2)
end

| pNode(n,st,t1,t2) => pNode(n,st,f t1,f t2)
end

end
fun pebble_game pT =

case pT of
^pLeaf(_,Pebbled) => pT

| ^pNode(_,Pebbled,_,_) => pT
| _ => pebble_game (pebble (square (square (activate pT))))
end

in
strip (pebble_game (init_tree T))

end;

References

Bird, R. S. (1987) Introduction to the theory of lists. In: Broy, M., editor, Logic of Programming

and Calculi of Discrete Design. Springer-Verlag.

Blelloch, G. E. (1990) Vector Models for Data-parallel Computing. MIT Press.

Blelloch, G. E. (1993) NESL: A nested data parallel language. Technical Report CMU-CS-

93-129, Carnegie Mellon University.

Bratvold, T. A. (1994) Parallelising a functional program using a list-homomorphism skele-

ton. In: Hong, Hoon, editor, Pasco’94: First International Symposium on Parallel Symbolic

Computation, pp. 44–53. World Scientific.

Cole, M. (1989) Algorithmic Skeletons: Structured management of parallel computing. Pit-

man/MIT Press.

Damas, L. and Milner, R. (1982) Principal type schemes for functional programs. Proc. ACM

Symposium on the Principles of Programming Languages, pp. 207–212.

Darlington, J., Field, A. J., Harrison, P. G., Kelly, P. H. J., Sharp, D. W. N., Wu, Q. and While,

R. L. (1993) Parallel programming using skeleton functions. Proc. PARLE93: parallel

architectures and languages Europe. Lecture Notes in Computer Science 694, pp. 146–160.

Springer-Verlag.

Foisy, C. and Chailloux, E. (1995) Caml Flight: A portable SPMD extension of ML for

distributed memory multiprocessors. In: Bohm, A. P. W. and Feo, J. T., editors, High

Performance Functional Computing, pp. 83–96.

Forum, High Performance Fortran. (1993) High Performance Fortran language specification.

Gupta, R. (1992) SPMD execution of programs with pointer-based data structures on

distributed-memory machines. J. Parallel & Distributed Computing, 16, 92–107.

Hains, G. and Foisy, C. (1993) The data-parallel categorical abstract machine. Proc.

PARLE93: Parallel architectures and languages Europe. Lecture Notes in Computer Science

694. Springer-Verlag.

Halstead, R. H. (1985) Multilisp: A language for concurrent symbolic computation. ACM

Transactions on Programming Languages and Systems, 7(4), 501–538.

Hammarlund, P. and Lisper, B. (1993) On the relation between functional and data par-

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


Parallel functional programming via data-parallel recursion 461

allel programming languages. Sixth Conference on Functional Programming and Computer

Architecture, pp. 210–222.

Hatcher, P. J. and Quinn, M. J. (1991) Data-parallel Programming on MIMD Computers. MIT

Press.

Hillis, W. D. and Steele Jr., G. L. (1986) Data parallel algorithms. Communications of the

ACM, 29(12), 1170–1183.

Hu, Z., Takeichi, M. and Chin, W.-N. (1998) Parallelization in calculational forms. Proc.

ACM Symposium on the Principles of Programming Languages, pp. 316–328.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman, M.,

Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W. and Perterson,

J. (1992) Report on programming language Haskell a non-strict, purely functional language

version 1.2. SIGPLAN Notices, Haskell special issue, 27(5).

Ito, T. and Matsu, M. (1988) A parallel lisp language PaiLisp and its kernel specification. In:

Ito, T. and Halstead, R. H., editors, Parallel Lisp: Languages and systems. Lecture Notes in

Computer Science 441, pp. 58–100. Springer-Verlag.

Jájá, J. (1992) An Introduction to Parallel Algorithm. Addison-Wesley.

Kahn, G. (1987) Natural semantics. Proc. Symposium on Theoretical Aspects of Computer

Science. Lecture Notes in Computer Science 247, pp. 22–39. Springer-Verlag.

Karp, A. (1987) Programming for parallelism. IEEE Computer, 20(5), 43–57.

Keller, G. and Simons, M. (1996) A calculational approach to flattening nested data par-

allelism in functional languages. In: Jaffar, J. and Yap, R. H. C. (eds), Concurrency and

Parallelism, Programming, Networking, and Security: Second Asian Computing Science Con-

ference, ASIAN’96. Lecture Notes in Computer Science 1179, pp. 234–243. Springer-Verlag.

Lasser, C. (1986) The Essential ∗Lisp ¡anual. Thinking Machine Corporation, Cambridge,

MA.

Leroy, X. (1992) Polymorphic typing of an algorithmic language. PhD thesis RR-1778, INRIA,

France.

Loulergue, F. and Hains, G. (1997) Functional parallel programming with explicit processes:

beyond SPMD. In: Lengauer, C., Griebl, M. and Gorlatch, S., editors, Euro-PAR’97 Parallel

Processing. Lecture Notes in Computer Science 1300, pp. 530–537. Springer-Verlag.

Loulergue, F., Hains, G. and Foisy, C. (1998) A calculus of recursive-parallel BSP pro-

grams. CMPP’98 International Workshop on Constructive Methods for Parallel Program-

ming. Marstrand, Sweden. (Technical Report, University of Passau, Germany.)

Merrall, S. and Padget, J. (1992) Plural EuLisp: A primitive symbolic data parallel model.

Lisp and Symbolic Computation, 6(1/2), 201–219.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. MIT Press.

Misra, J. (1994) Powerlist: A structure for parallel recursion. Prentice Hall.

Nishimura, S., Ohori, A. and Tajima, K. (1996) An equational object-oriented data model

and its data-parallel query language. Proc. OOPSLA 96, pp. 1–17.

O’Donnell, J. T. (1993) Data parallel implementation of extensible sparse functional arrays.

Proc. PARLE93: Parallel architectures and languages Europe. Lecture Notes in Computer

Science, pp. 68–79. Springer-Verlag.

Prins, J. and Palmer, D. (1993) Transforming high-level data-parallel programs into vector

operations. Proc. 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp. 119–128.

Rogers, A., Carlisle, M. C., Reppy, J. H. and Hendren, L. J. (1995) Supporting dynamic data

structures on distributed memory machines. ACM Transactions on Programming Languages

and Systems, 17(2), 233–263.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457


462 S. Nishimura and A. Ohori

Rose, J. and Steele Jr., G. L. (1987) C∗: An extended C language for data parallel programming.

Technical Report PL87-5, Thinking Machine Corporation, Cambridge, MA.

Sabot, G. (1988) The Paralation Model: Architecture-independent parallel programming. MIT

Press.

Skillicorn, D. B. (1994) Foundations of Parallel Programming. Cambridge Series in Parallel

Computation 6. Cambridge University Press.

Suciu, D. and Tannen, T. (1994) Efficient compilation of high-level data parallel algorithm.

Proc. ACM Symposium on Parallel Algorithms and Architectures.

Talpin, J.-P. and Jouvelot, P. (1993) Compiling FX on the CM-2. Static Analysis (WSA ’93).

Lecture Notes in Computer Science 724, pp. 87–98. Springer-Verlag.

Tofte, M. (1988) Operational semantics and polymorphic type inference. PhD thesis CST-52-88,

Department of Computer Science, Edinburgh University.

Wholey, S. and Steele Jr., G. L. (1987) Connection machine lisp: A dialect of common lisp

for data parallel programming. Proc. International Conference on Supercomputing.

Wyllie, J. C. (1979) The complexity of parallel computations. Technical Report TR-79-387,

Department of Computer Science, Cornell University, Ithaca, NY.

Yuasa, T. (1992) A SIMD environment TUPLE for parallel list processing. Parallel Symbolic

Computing: Languages, systems, and applications. Lecture Notes in Computer Science 748,

pp. 268–286. Springer-Verlag.

https://doi.org/10.1017/S0956796899003457 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003457

