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Abstract

Climate conditions are known tomodulate infectious disease transmission, yet their impact on
measles transmission remains underexplored. In this study, we investigate the extent to which
climate conditions modulate measles transmission, utilizing measles incidence data during
2005–2008 fromChina. Three climate-forcedmodels were employed: a sinusoidal function, an
absolute humidity (AH)-forced model, and an AH and temperature (AH/T)-forced model.
These models were integrated into an inference framework consisting of a susceptible–
exposed–infectious–recovered (SEIR) model and an iterated filter (IF2) to estimate epidemio-
logical characteristics and assess climate influences onmeasles transmission. During the study
period, measles epidemics peaked in spring in northern China and were more diverse in the
south. Our analyses showed that the AH/T model better captured measles epidemic dynamics
in northern China, suggesting a combined impact of humidity and temperature on measles
transmission. Furthermore, we preliminarily examined the impact of other factors and found
that population susceptibility and incidence rate were both positively correlated with migrant
worker influx, suggesting that higher susceptibility among migrant workers may sustain
measles transmission. Taken together, our study supports a role of humidity and temperature
in modulating measles transmission and identifies additional factors in shaping measles
epidemic dynamics in China.

Introduction

Measles is a highly transmissible viral disease. Reported basic reproductive number (R0) for
measles ranged from12 to 18 [1, 2], suggesting on average an infection can cause 12–18 secondary
infections in a fully susceptible population. Endemic transmission of measles exhibits varied
temporal patterns, ranging from annual [2–4] to bi-annual or multi-annual [5, 6] cycles. These
patterns may shift over time and across populations [5–9], likely driven by a combination of
factors related to population susceptibility, contact patterns, and climate conditions. For
instance, continual replenishment of susceptible individuals driven by high birth rates [5],
insufficient vaccination coverage [7], and agricultural labour migration [9, 10] have been shown
to help sustain a pool of individuals susceptible to infection and in turn fuel continued
transmission. In addition, measles transmission could vary seasonally, due to seasonal variations
in population contact patterns, such as school gatherings [5, 6, 11] and, potentially, seasonal
changes in climate conditions [2, 12–14].

Climate conditions have been shown to modulate the transmission of respiratory infectious
diseases such as influenza [15–18] and respiratory syncytial virus [19–21]. Laboratory experi-
ments have demonstrated that low relative humidity enhances the viability of the measles virus
[22, 23], suggesting that climate conditions could similarly affect measles transmission. However,
whether and to what extent climate conditions affect measles transmission remains under-
explored. It is challenging to examine such influences due to the likely nonlinear climate
modulation and the interactions with other contributing factors (e.g., vaccinations and popula-
tion migration). For instance, previous studies typically relied on statistical analyses (i.e., linear
models), which may yield conflicting conclusions [12–14].

In this study, we investigate the potential impact of climate conditions on measles transmis-
sion, utilizing a model–inference system and incidence data from China. China is a vast country
with diverse climate patterns across its 31 provincial-level administrative divisions (PLADs),
which affords the study of measles transmission in the same population but under varying
climate conditions. Since 2005, measles vaccination coverage in China has been relatively high
(>90% [24]), which helped to curb large epidemics in many municipalities. Nonetheless,
epidemics occurred every year in most Chinese PLADs during 2005–2008. From 2009 onward,
measles outbreaks in China becamemore sporadic [25], due to enhanced regional supplementary
immunization activities (SIAs) and the 2010 nationwide SIA [26]. Thus, here we used measles
incidence data at the PLAD level during 2005–2008, a period with more regular annual
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epidemics, to focus on examining mechanisms how climate condi-
tions influence measles transmission.

We examined three climate-forced models: 1) a sinusoidal
function [4], capturing the annual cycle of measles epidemics; 2)
a mechanistic absolute humidity (AH)-forced model [16], assum-
ing transmissibility decreases with specific humidity (ameasure of
AH); and 3) a mechanistic AH and temperature (AH/T)-forced
model [17], assuming a U-shaped relationship with specific
humidity and a negative relationship with temperature. Each of
these models was integrated into a susceptible–exposed–infec-
tious–recovered (SEIR) model, combined with an iterated filter
(IF2) [27], to form an SEIR–IF2 system. We fit each climate-
forced model to the PLAD-specific incidence data from 2005 to
2007 to estimate key epidemiological characteristics of measles
transmission and generate retrospective forecasts for the year
2008. We assessed the three models and the corresponding cli-
mate influences on measles transmission, based on model fit and
forecast accuracy.

Results

Measles incidence and seasonality

The average measles incidence rate was 8.83/100,000 population/
year from 2005 to 2008 in China. Notably, Beijing, Zhejiang,
Guangdong, and Tianjin, some of themost economically developed
PLADs, reported the highest incidence rates, exceeding 15/100,000
population/year (Figure 1a). In contrast, Guizhou andGuangxi had
the lowest rates, under 3/100,000 population/year. Such higher
incidence rates inmore developed PLADs could be partly attributed
to outbreaks among migrant workers. These populations tended to
experience higher infection rates than local residents, likely due to
lower vaccination coverage and thus higher susceptibility [28–
30]. Additionally, more developed PLADs, equipped with better-
resourced healthcare and reporting systems, may have higher
reporting rates, which partly resulted in higher reported incidence
rates.

During the study period, measles epidemics exhibited pro-
nounced seasonality in northern PLADs, typically surging
during winter months and peaking in spring (April and May,
Figure 1b). This pattern suggests that seasonal factors such as

climate conditions and seasonal fluctuations in human contact
patterns may affect measles epidemic dynamics. In comparison,
measles epidemics in several southern PLADs displayed less
defined seasonality; for example, Guizhou and Yunnan peaked
in winter, and Fujian and Guangdong experienced sustained
outbreaks throughout spring and summer.

Validation of SEIR–IF2 system

Prior to applying the SEIR–IF2 system tomeasles incidence data, its
ability to estimate underlying epidemiological variables and param-
eters was tested using synthetic incidence data. The SEIR–IF2
system demonstrated reasonable performance with synthetic data.
Profile likelihood analyses showed close alignment between par-
ameter values corresponding to high likelihoods and the true
parameter values used to generate the synthetic data (note the
latent and infectious periods showed minimal sensitivity, as we
used narrow prior ranges of 7–9 days and 4–6 days per estimates
from the literature [4, 5, 31] for these two parameters, respectively;
Supplementary Figures S1a, 2a, and 3a). The IF2 iteration results
further showed that IF2 effectively maximized the likelihood across
iterations, reproducing observed incidence time series during the
inference period, accurately forecasting incidence afterwards, and
estimating unobserved state variables (e.g., population susceptibil-
ity) and epidemiological parameters (Supplementary Figures S1b,
2b, and 3b).

Model inference and forecasting of measles epidemic dynamics

PLAD-specific measles incidence data during 2005–2007 were
assimilated into the validated SEIR–IF2 system to infer measles
epidemic dynamics. The parameter estimates converged by the
final iteration (Supplementary Figures S4 and S5), and the esti-
mated incidence closely matched the observations (Figures 2 and
Supplementary S6–S11), capturing the annual outbreak pattern
that surged during the winter and peaked in the spring. Following
the inference period, retrospective forecasts were generated for the
year 2008 using the state variable and parameter estimatesmade at
the end of 2007. Predicted incidence generally matched the obser-
vations even when the outbreak magnitude during the forecast
period differed from that during the inference period (e.g., in

Figure 1. (a) Measles incidence rates and (b) seasonality across PLADs in China, 2005–2008. Heatmap (b) shows the relative incidence, that is, relative to the peak incidence for each
PLAD. The boxes indicate the peak months of measles incidence. PLADs on the y-axis are arranged by latitude with higher to lower latitudes from top to bottom.
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Shandong, Figure 2d–f). For instance, the 95%prediction intervals
covered 100%, 75%, and 67% of the observed incidence in 2008
using the sinusoidal-, AH-, and AH/T models, respectively.

Comparison of the climate-forced models

The sinusoidal function demonstrated greater overall effectiveness
in capturingmeasles epidemic dynamics compared to the other two
models, based on the ranking of five metrics (see Table 1 for

summary statistics, and Supplementary Tables S1 and S2 for indi-
vidual models and PLADs; see metric definitions inMethods). This
is not unexpected, because the phase of the epidemic was treated as
a free parameter in the sinusoidal function, rather than determined
by climate conditions as in the AH and AH/T models. This flexi-
bility allowed for more accurate prediction of the epidemic peak
timing and improved the overall prediction accuracy (see the
relative root mean square error (RRMSE) during the forecast
period).

The AH/T model was able to better capture the measles spring
outbreaks in more PLADs in northern China (note we used the
conventional northern and southern division based on the Qin
Mountains–Huai River reference line), where pronounced epi-
demic seasonality was observed, compared to the other two models
(Figure 3). The sinusoidal function was able to better capture the
epidemic dynamics in the south. Southern PLADs experienced
more complex epidemic dynamics, as shown by erratic incidence
time series in Guizhou (Supplementary Figure S10c), Yunnan
(Supplementary Figure S10d), and Guangxi (Supplementary Figure
S9e), as well as prolonged outbreaks throughout spring and sum-
mer in Fujian (Supplementary Figure S8e) and Guangdong
(Supplementary Figure S9d). Additionally, in Guangdong, there
was a notable shift in the epidemic peak timing from June to August
during the inference period toMay during the forecast period. Such
variability, not necessarily related to climate conditions, may have

Figure 2. Example model inference and forecasting of measles epidemic dynamics using the sinusoidal function, the AHmodel, and the AH/T model, for (a, b, c) Beijing and (d, e, f)
Shandong. Each plot shows estimated incidence during 2005–2007 and predictions for 2008 (red line indicates mean estimate, dark and light gray areas indicate 50% and 95%
credible intervals, and vertical line indicates forecast start), compared to observed incidence (crosses).

Table 1. Performance comparison of the climate-forced models

Metric Sinusoidal function AH model AH/T model

AICinf prd 33.8% (1) 32.5% (1) 33.8% (1)

RRMSEfcast prd 41.2% (1) 29.4% (1) 29.4% (1)

rfcast prd 34.4% (1) 34.4% (1) 31.1% (1)

Coveragefcast prd 35.8% (1) 34.0% (1) 30.2% (1)

Peak time lagfcast prd 40.5% (1) 29.7% (1) 29.7% (1)

Note: Percentage value indicates the percentage of PLADs forwhich amodel yields the highest
accuracy under a specified metric (AIC: Akaike Information Criterion; RRMSE: Relative Root
Mean Square Error; r: correlation coefficient; coverage: proportion of observed incidence
falling within the 95% prediction intervals; peak time lag: difference between observed and
predicted peak timings). Number in parentheses indicates the ranking of the model
performance. The total percentages for each metric may not sum to 100% due to rounding
errors.
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reduced the prediction accuracies of the AH and AH/T models in
the southern PLADs.

Estimated impacts of humidity and temperature on measles
transmission using the AH/T model

To examine climate conditions more conducive for measles trans-
mission, we further analyzed specific humidity levels (a measure
of AH) and temperatures when the AH/T model estimated R0 tð Þ
was above or below the annual mean (Figures 4 and S12). In
northern PLADs where measles outbreaks peaked in spring, the
AH/T model estimated higher-than-average R0 tð Þ during late
autumn, throughout winter, and for most of spring (orange, blue,
and green dots, respectively, Figure 4a), a prolonged time period
with low specific humidity. In contrast, moderate to high specific
humidity during the summer (along with high temperature,
Supplementary Figure S12a, b) resulted in lower-than-average
R0 tð Þ per the AH/T model, which was consistent with the absence
of summer outbreaks in the north. In southern PLADs such as
Fujian, Guangxi, and Guangdong, in addition to elevated R0 tð Þ
during the winter and spring driven by lower specific humidity as
in the north, the AH/T model identified a second period with
elevated R0 tð Þ during the summer when specific humidity was

very high, that is, a bimodal effect of specific humidity (Figure 4a).
This bimodal effect might partly account for the prolonged out-
breaks in Fujian and Guangdong (Supplementary Figures S8e and
S9d; Guangxi showed irregular outbreaks, Supplementary Figure
S9e) during the 2005–2007 inference period. Of note, while the
AH/T model did not outperform the sinusoidal function for
Fujian and Guangdong, the model fits were comparable (AIC
values were 1.5% and 4.4% lower for Fujian and Guangdong,
respectively, using the sinusoidal function compared with the
AH/T model).

The AH/T model also considered the temperature effect on
measles transmission. To assess the importance of modeling this
temperature effect, we ran the SEIR–IF2 system with a bimodal-
AH model, which used the same bimodal humidity component
in the AH/T model but without the temperature component.
Excluding the temperature component resulted in reduced pre-
diction accuracy, placing it last among the sinusoidal function,
the AH model (monotonic dependency), and the bimodal-AH
models (Supplementary Table S3). This finding suggests that
temperature is also a critical factor in modulating measles trans-
mission, in addition to the bimodal effect of humidity.

Aggregating the climate conditions across the eight northern
PLADs for which the AH/T model had the best performance

Figure 3. Best-performing models for each PLAD in China. Color indicates the best performing model or models when there are ties (see legend). The gray line indicates the Qin
Mountains–Huai River reference line that divides China into northern and southern regions. Bolded fonts indicate northern PLADs.
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(Figure 4a,b), theAH/Tmodel identified conducive specific humid-
ity levels for measles transmission at 0.0007 to 0.0058 kg/kg, and
conducive temperature at �14.1 to 18.6°C (calculated using the
95% confidence intervals of conditions with higher-than-average
R0 tð Þ in the eight PLADs). These relatively wide ranges are likely
due to the very high infectiousness of measles (i.e., climate condi-
tions may be less limiting for its transmission).

Examination of the impacts of non-climate-related factors on
measles epidemic dynamics

We further examined the non-climate-related factors based on state
variables and parameter estimates. Estimated mean population
susceptibility during 2005–2007 (Figures 5a and Supplementary
S13; similar estimates using the three climate-forced models) and
key epidemiological parameters (Supplementary Figures S14–S16;

Figure 4. (a) Specific humidity levels and (b) temperatures when R0 tð Þwere above the annual mean in the AH/Tmodel, across PLADs in China (diamonds indicatemeans, and short
vertical lines indicate climate condition ranges during the study period, regardless of R0 tð Þ levels). Color of the dots indicates season. PLADs on the y-axis are arranged by latitude
with higher latitudes in the top rows. Bolded fonts indicate northern PLADs, and red colors indicate PLADswhere the AH/Tmodel was the best-performingmodel or among the best-
performing models.

Figure 5. (a) Estimated mean population susceptibility ( S%) during 2005–2007 from the sinusoidal function across PLADs in China. (b) Spearman’s rank correlation between S%
from the sinusoidal function and migrant worker influx rate, 2005–2007. (c) Spearman’s rank correlation between incidence rate and migrant worker influx rate, 2005–2007.
(d) Spearman’s rank correlation between migrant worker influx rate and per-capita gross regional product (GRP), 2005–2007. In (b), (c), and (d), standardized variables are
presented. Regression lines are included solely for visual guidance.
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similar estimates using the three models) aligned with previously
reported ranges (Supplementary Table S4). Specifically, the mean
population susceptibility was 12.3% (calculated across the three
models) in Beijing, 12.2% in Tianjin, 11.8% in Jiangsu, and 7.5% in
Zhejiang, in line with serological data [26, 32–34]. Estimated latent
period (1σ, 8.1 days for Beijing and 7.5 days for Shandong; calculated
across the three models for each PLAD), infectious period ( 1γ , 5.1
and 4.3 days for the two locations), mixing exponent (m, 0.93 and
0.90), amplitude of school term-time forcing (Asch, 0.05 and 0.07),
and reporting rate (ρ , 58.2% and 72.7%) were comparable to
previous modeling results [4].

As noted before, higher population susceptibility of migrant
workers likely contributed to the higher reported incidence rates
in their host PLADs [28–30]. To test this, we examined the esti-
mated mean population susceptibility and incidence rate with
migration statistics across PLADs. Indeed, both quantities were
positively correlated with themigrant worker influx rate (calculated
as the ratio of the annual influx of migrant workers to the total
population; Spearman’s rank correlation test, ρS%, sin = 0:60,
PS%, sin = 0:001, Figure 5b; similar estimates for the AH and AH/T
models; ρinc = 0:52, Pinc = 0:006, Figure 5c). That is, despite the
higher local immunization rates in host PLADs such as Beijing,
Shanghai, and Tianjin (Supplementary Figure S18), estimated
population susceptibilities were likely higher due to a large-scale
influx of under-vaccinated migrant workers, which increased the
overall population susceptibilities in these PLADs. Additionally,
the migrant worker influx rate was positively correlated with per-
capita Gross Regional Product (GRP; ρ= 0:82 , P = 1:8 × 10�6 ,
Figure 5d), indicating that developed PLADs tended to be host
PLADs for migrant workers. Taken together, these findings suggest
that under-vaccination among migrant workers and their mass
migration may increase population susceptibility in more devel-
oped PLADs of China, contributing to the higher incidence rates
and persistent transmission therein.

Intensified mixing in schools was a key driver of measles trans-
mission in the pre-vaccination era [5]. To reduce transmission
risks, China has implemented routine childhood measles vaccin-
ation since 1978 [35]. Although detailed data to directly examine
the effectiveness of routine vaccination in preventing school out-
breaks were unavailable, we examined its impact using a school
term-time forcing function included in our models (see Eq. 7 in
Methods). We found that PLADs with higher childhood immun-
ization rates had lower estimated amplitudes of school term-
time forcing (Spearman’s rank correlation test, ρsin = �0:30,
Psin = 0:130, similar estimates for the AH and AH/T models). This
finding suggests that schools were less likely to be the main sources
of measles infection in PLADs with higher childhood immuniza-
tion rates.

Discussion

In this study, we investigated the climate influences on measles
transmission through mechanistic modeling. Analyzing incidence
data spanning 27 PLADs in China using three climate-forced
models, we found that the mechanistic AH/T model was able to
better capture the spring outbreaks in northern PLADs, where
pronounced epidemic seasonality was observed. Additionally, the
bimodal effect of humidity might partly account for the seasonality
of summer outbreaks observed in certain southern PLADs. These
findings suggest the bimodal effect of humidity, in conjunctionwith
temperature, in modulating measles transmission. Analysis of

inference results and demographic patterns also showed positive
correlations of population susceptibility and incidence rate with
migrant worker influx, as well as an inverse relationship between
childhood immunization rate and the amplitude of school term-
time forcing. These findings suggest substantial influences of
migrant workers due to their high population susceptibility on
sustaining measles transmission and the effectiveness of routine
childhood measles vaccination in reducing the risk of school
outbreaks.

The AH/Tmodel provides amore accurate representation of the
mechanisms that both the bimodal effect of specific humidity and
temperature modulate measles transmission. The AH/Tmodel was
originally developed to capture the biannual epidemics or less
defined seasonality of influenza in subtropical and tropical regions
[17, 36]. In our study, it also accurately predicted the spring
outbreaks ofmeasles in temperate northern PLADs inChina, where
it estimated elevated R0 tð Þ from late autumn to spring driven by
low humidity. In subtropical southern PLADs such as Fujian and
Guangdong, the model identified a second period of elevated R0 tð Þ
during the summer, when very high humidity occurred (Figure 4a),
which might in part explain the summer outbreaks in these south-
ern PLADs (Supplementary Figures S8e and S9d). Additionally, the
reduced prediction accuracy observed after excluding the tempera-
ture component from the AH/T model underscores the role of
temperature in modulating measles transmission (Supplementary
Table S3).

Unexpectedly, the AH/T model did not perform as well in the
subtropical southern PLADs.More irregular measles outbreaks were
observed in southern PLADs such as Guizhou (Supplementary
Figure S10c), Yunnan (Supplementary Figure S10d), and Guangxi
(Supplementary Figure S9e), potentially due to non-climate-related
factors; for instance, mountainous terrain and more limited eco-
nomic development may impede access to medical clinics [37, 38]
and in turn case reporting, which could affect accuracy of the
surveillance systems and obscure the underlying epidemic
dynamics. In Guangdong, another southern PLAD, the epidemic
peak timing shifted from summer during the 2005–2007 inference
period to spring during the 2008 forecast period. The reasons for
this delayed epidemic peak timing and the shift are not clear and
likely include factors other than climate conditions (see discussion
below).

Beyond climate influences, worker migration may affect the
measles epidemic dynamics in China by altering population sus-
ceptibility in migrant worker host PLADs. During the study period,
migrant workers accounted for a substantial proportion of China’s
population (5.7% [39]), and much higher proportions in host
PLADs (e.g., 29.5% in Beijing [39]). These populations tended to
be under-vaccinated due to limited healthcare access in their home
regions and typically moved to economically developed PLADs
shortly after the Chinese New Year holiday in February to seek
employment. This large-scale seasonal migration could rapidly
alter population susceptibility in host PLADs, contributing to the
spring outbreaks therein. This finding is consistent with epidemio-
logical studies in Beijing [28, 29] and Shanghai [30]—two of the
most developed PLADs in China – which reported a notable rise in
measles incidence primarily among migrant worker populations
with lower vaccination coverage during our study period. Our
previous modeling work [3, 31] also pointed to the role of worker
migration, particularly around the Chinese New Year period when
travel was most intense, in sustaining measles transmission. Fur-
thermore, potential seasonal migration of ‘left-behind children’ –
that is, children of migrant workers who were left in their
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hometowns [40, 41] – could complicate measles epidemic dynam-
ics. During school summer breaks, some of these children traveled
to urban centers for family reunions [42]. This summer migration
may in part explain the measles outbreaks in Guangdong (a PLAD
ranked #1 in the number of migrant workers [39]) between June
and August. Future work could further incorporate these factors to
improve the accuracy in estimating population susceptibility and
key epidemiological parameters.

Our study has several limitations. One is that, for simplicity,
our SEIR model did not account for age-structured social mixing
patterns. Additionally, our results on the impact of migrant
workers, based on the correlation of estimated population sus-
ceptibility and migrant worker influx rate, were preliminary.
Work to explicitly model worker migration incorporating migra-
tion and population mobility data is underway in our team and
should provide stronger, causal support to the impact of worker
migration on measles epidemic dynamics in China. Our study
also has several strengths. By examining three climate-forced
models against incidence data across 27 Chinese PLADs with
diverse climate conditions and measles epidemic dynamics, our
results indicate that: 1) both humidity and temperature modulate
measles transmission; 2) higher population susceptibility of
migrant workers contributes to sustained measles transmission;
and 3) routine childhood measles vaccination reduces the risk of
school outbreaks. These findings suggest that improving vaccin-
ation coverage among migrant workers and maintaining high
childhood vaccination coverage including among migrant chil-
dren are crucial to curb measles transmission, particularly in
large cities with substantial migrant worker populations. By
testing several mechanistic models that incorporate different
effects of humidity and temperature, either alone or in combin-
ation, we were able to examine their roles separately. Our findings
support a role of both humidity and temperature in modulating
measles transmission.

Methods and materials

Study data

Incidence data in China were sourced from the Data Centre of
China Public Health Science [43]. Demographic data, including
birth and death rates, the sizes of total and migrant worker popu-
lations, the numbers of primary-school students and primary
schools, and per-capita GRP were obtained from the National
Bureau of Statistics of China [44], the China Population and
Employment Statistics Yearbook [39], the China City Statistical
Yearbook [45], and the Tabulation on the 2010 Population Census
of the People’s Republic of China [46]. Climate data, including
specific humidity and temperature, were obtained from the Inte-
grated Surface Dataset maintained by the National Oceanic and
Atmospheric Administration [47]. The data show minimal climate
variability among cities within the same PLAD (Supplementary
Figure S17; Sichuan shows slightly higher variability).

Immunization rate for two doses of measles vaccine was
calculated as VC 2 tð Þ×VE2 + VC 1 tð Þ�VC 2 tð Þð Þ×VE1 , where
VC i tð Þ is the vaccination coverage for the i-th dose in year t, and
VE i is the vaccine effectiveness for the i-th dose. VE1 and VE2

were assumed to be 85% and 95%, respectively [31]. Of the
31 PLADs, two (Beijing [4] andGuizhou [48]) reported vaccination
coverages for both doses, and eight [49–56] reported coverage for
only one dose; further, data were available only for certain years
between 2005 and 2014. To estimate missing vaccination coverage

for the other dose (i.e., VC 1 tð Þor VC 2 tð Þ) for the eight PLADs, we
first estimated the series completion rates (ϕ tð Þ = VC 2 tð Þ

VC 1 tð Þ), based on

logistic functions fitted to data from Beijing and Guizhou (with
both VC 1 tð Þand VC 2 tð Þ for certain years) between 2005 and 2014
(ϕBeijing tð Þ= 1

1 + e�0:1631t + 322:5 , ϕGuizhou tð Þ= 1
1+ e�0:1394t + 276:9 , midpoints

≤1990). Given that the series completion rate is likely related to
economic development and healthcare access, we estimated these
rates for the eight PLADs using a linear regression model based on
their per-capita GRP rankings for each year (note that Beijing and
Guizhou ranked 2nd and 31st, respectively, during 2005–2014),
and computed the missing vaccination coverages accordingly.
Subsequently, for years with reported and estimated vaccination
coverage data, immunization rates combining both doses were
computed for Beijing, Guizhou, and the eight PLADs. Missing
immunization rates between 2005 and 2014 were then estimated
using the logistic functions with the same mathematical form as
above. For the PLADs without publicly available vaccination cover-
age data, immunization rates were imputed using a linear regres-
sion model based on per-capita GRP rankings for each year.
Immunization rate estimates from 2005 to 2008 were used asmodel
inputs (Supplementary Figure S18).

As noted in the Introduction, due to high vaccination coverage
[24], measles outbreaks were more sporadic at the city level from
2005 to 2008. As such, PLAD-level measles incidence data from
2005 to 2008 were used. The data were divided into two parts: an
inference period from 2005 to 2007 and a forecast period in 2008.
Among the 31 PLADs in mainland China, 27 were included in this
study. Hainan, Tibet, Qinghai, and Xinjiang were excluded due to
their incidence time series showing no clear temporal patterns
(Supplementary Figure S19).

Basic SEIR model

The transmission dynamics of measles were simulated using a
stochastic SEIR model with a daily time step. The basic form of
the model is governed by the following differential equations:

dS

dt
= �β tð ÞSIm

N
+ λ tð ÞN 1� ξ tð Þð Þ�μ tð ÞS�α tð Þ (1)

dE

dt
=
β tð ÞSIm

N
�σE�μ tð ÞE + α tð Þ (2)

dI

dt
= σE� γI �μ tð ÞI (3)

Here, S, E, I, and N are the susceptible, exposed, infectious, and
total population sizes, respectively, with R=N�S�E� I repre-
senting those recovered and/or immunized. β tð Þ is the time-
varying transmission rate, 1

σ and 1
γ are the latent and infectious

periods, respectively, and m indicates the degree of inhomogen-
eous mixing [5]. λ tð Þ and μ tð Þ are the birth and death rates,
respectively. ξ tð Þ is the immunization rate of routine vaccination
in infants. α tð Þ represents travel-related case importations, which
was modeled as a Poisson distribution (the mean rate was set to
0.01/day to allow case reintroduction and prevent epidemic
extinction, and it increased to 0.1/day during the Chinese New
Year and National Day holidays to account for increased travel
activities [4]). Transition rates (between model state variables,
namely, S, E, I, and R) were drawn from Poisson distributions
with mean rates determined by Eqs. 1–3 to simulate stochastic
transmission dynamics.
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Climate-forced model

Three climate-forced models, namely the sinusoidal function [4],
the AH model [16], and the AH/T model [17], were used to model
seasonal changes in the daily basic reproductive number (R0 tð Þ) of
measles. The sinusoidal function models R0 tð Þ independent of
climate data [4]:

R0,sin tð Þ =R0 1 +Acos
2π

365:25
t�φð Þ

� �� �
(4)

Here, R0 is the annual mean of R0,sin tð Þ, and A and φ are the
amplitude and phase of the sinusoidal function, respectively.

The AH model, initially developed for modeling influenza epi-
demics in temperate regions, models R0 tð Þ as an exponentially
decreasing function of specific humidity [16]:

R0,AH tð Þ= R0,max,AH�R0,min,AHð Þe�180q tð Þ +R0,min,AH (5)

Here, R0,min,AH and R0,max,AH are theminimumandmaximumvalues
of R0,AH tð Þ, respectively, and q tð Þ is the daily specific humidity.

The AH/T model, initially developed for modeling influenza
epidemics in tropical and subtropical regions, models R0 tð Þ as a
convex quasi-quadratic function of specific humidity multiplying
an inverse power function of temperature [17]:

R0,AH=T tð Þ= f g1 q tð Þð Þ,g2 q tð Þð Þ� � Tc

T tð Þ
� �n

, (6)

where
gi q tð Þð Þ= aiq tð Þ2 + biq tð Þ+ ci

Here f is the quasi-quadratic function, and g is the quadratic
function. ai , bi , and ci are calculated from three specific points:
ðqmin , R0,min,AH=T +R0,diff ,AH=T ), (qmax , R0,min,AH=T +R0,diff ,AH=T ),
and (qmid, R0,min,AH=T). R0,min,AH=T and R0,min,AH=T +R0,diff ,AH=T are
the minimum and maximum values of the quasi-quadratic func-
tion, respectively. qmin and qmax are the upper and lower limits of
the specific humidity permitted in the model, respectively, and qmid
is the specific humidity within the range of ( qmin , qmax ) where
R0,min,AH=Tis estimated. T tð Þ is the daily temperature, and Tc is the
cutoff temperature. n modifies the degree of the impact of tem-
perature on R0,AH=T tð Þ.

The three climate-related functions are further modified to
account for the increased contact rates among children during
school terms [57]:

R0 tð Þ = ηsch 1 +AschTerm tð Þð ÞR0,clim tð Þ, (7)

where
ηsch =

365:25
1 +Aschð ÞD+ + 1�Aschð ÞD�

Here, Asch is the amplitude of school term-time forcing. Term tð Þ is
set to +1 during school terms and � 1 during winter and summer
breaks. D+ and D� are the number of days in school terms and
breaks, respectively. ηsch is a normalization factor that ensures the
school term-time forcing, 1 +AschTerm tð Þ, averages to 1 over the
course of 1 year. R0,clim tð Þ is the climate-related component of
R0 tð Þ, that is, R0, sin tð Þ, R0,AH tð Þ or R0,AH=T tð Þ depending on the
climate forcing.

R0 tð Þ relates to β tð Þ in Eqs. 1–2 of the basic SEIRmodel through
the following expression:

R0 tð Þ= β tð Þ
γ

(8)

SEIR–IF2 system

The climate-forced SEIR model, in conjunction with IF2 [27],
forms the SEIR-IF2 system to estimate unobserved model state
variables and parameters during 2005–2007. IF2, a data assimila-
tion technique, uses an iterated, perturbed Bayes map to itera-
tively refine these estimates based on real-world observations.
Within this system, each iteration of IF2 consists of parameter
perturbations and a particle filter (PF) [58] to assimilate measles
incidence time series. The resulting parameters from one iteration
serve as initial parameters for the subsequent iteration. This
iterative process is designed to converge on state variables and
parameters that maximize the likelihood of reproducing the entire
incidence time series. In this study, the SEIR-IF2 system under-
went 50 IF2 iterations to maximize information extraction from
the 3-year dataset. Compared to a single-pass PF, equivalent to IF2
with one iteration (Supplementary Figure S1b, iteration number =
1), IF2 showed improved accuracy in estimating stable variables
and parameters.

In each IF2 iteration, the PF estimated the unobserved state
variables and parameters (xt) of the climate-forced SEIR
model given the observations (zt). xt encompasses model state
variables (St, Et, It), common parameters ( 1σ,

1
γ, m, Asch, ρ), and

specific parameters for the three climate-forced models: (R0, A,
φ) for the sinusoidal function, (R0,min,AH, R0,max,AH) for the AH
model, and (R0,min,AH=T, R0,diff ,AH=T, n) for the AH/T model. zt
represents observed incidence. Other parameters were treated as
constants (see parameter values in Supplementary Table S5).
Specifically, the PF calculates the posterior distribution of xt
given observations z1:t , expressed as p xt jz1:tð Þ , in a recursive
manner [58]:

p xt jz1:tð Þ = ηp zt jxt ,z1:t�1ð Þp xt jz1:t�1ð Þ (9)

= ηp zt jxtð Þ
Z

p xt jxt�1ð Þp xt�1jz1:t�1ð Þdxt�1

Here, p xt jxt�1ð Þ is themodel prior computed by the climate-forced
SEIRmodel. p zt jxtð Þis the observationmodel; here, it was modeled
using a normal distribution N zt ,OEVtð Þwith the observation error
variance ( OEVt) adjusted according to the magnitude of zt. η is a
normalization constant.

To account for model stochasticity, 20 independent runs were
performed. The estimates from these runs were then combined
according to Rubin’s rule [59].

Initialization of the SEIR–IF2 system

The SEIR–IF2 system was initialized with 10,000 particles, col-
lectively representing particle approximated initial state vari-
ables and parameters (x0). Among the model state variables and
parameters, prior ranges of susceptible population (S0), report-
ing rate (ρ0 ), and mixing exponent (m0 ) were estimated from
incidence, birth, and total population data using a time series
susceptible–infected–recovered (TSIR) model [5] and the R
package tsiR (v0.4.3) [60]. This model offers a more informed
approach for setting initial conditions compared to random
sampling from a broad range. Prior ranges for other model
state variables and parameters were informed by estimates
in the literature [1, 4, 17, 61], and are listed in Supplementary
Table S6.
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Incidence forecasting

We generated predictions of measles incidence in year 2008, using
state variable and parameter estimatesmade at the end of 2007 from
the SEIR–IF2 system.

Validation of SEIR–IF2 system

The SEIR–IF2 system was validated using synthetic incidence data.
The synthetic incidence data were generated using each of the
climate-forced stochastic SEIR models and climate data in Beijing
(see prescribed parameter values in Supplementary Figures S1–S3;
mean of 10,000 simulations used). The procedures of model infer-
ence and forecasting described in the above sub-sections were then
applied to the synthetic data. The estimated state variables and
parameters were compared to the prescribed true values to assess
the effectiveness of the SEIR–IF2 system.

Performance comparison of climate-forced models

The performance of the climate-forced models was assessed using
five metrics. For the inference period, the Akaike Information
Criterion (AIC) [62] was used. For the forecast period, four metrics
were used: 1) relative rootmean square error (RRMSE) between the
predicted and observed incidence; 2) correlation coefficient (r)
between the predicted and observed incidence; 3) coverage, calcu-
lated as the proportion of observed incidence falling within the 95%
prediction intervals; and 4) peak time lag, calculated as the observed
peak timing minus the predicted peak timing. We determined the
best performing model or models (in case of ties) for each PLAD,
based on the overall ranking across the five metrics. The ranking
method awarded votes tomodels with the highest accuracy per each
metric (e.g., lowest RRMSE or highest r) and those within a toler-
ance threshold of the highest accuracy. The tolerance thresholds for
the five metrics were set at 5%, 0.05, 0.05, 0.5, and 5%, respectively.
The model or models receiving the highest number of votes were
deemed the best. Sensitivity analyses that adjusted the thresholds to
0.6 and 1.4 times of the values listed above gave consistent rankings
and confirmed the robustness of the ranking method.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S095026882510054X.
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contact the Data-center of China Public Health Science (https://www.phscien
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