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Abstract
We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is
c1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree δ1(G)> d
then every vertex of G is contained in a copy of F in G?

We asymptotically determine c1(n, F) when F is the generalized triangle K (3)−
4 , and we give close to

optimal bounds in the case where F is the tetrahedron K (3)
4 (the complete 3-graph on 4 vertices).

This latter problem turns out to be a special instance of the following problem for graphs: Given an n-
vertex graph Gwithm> n2/4 edges, what is the largest t such that some vertex in Gmust be contained in t
triangles?We give upper bound constructions for this problem that we conjecture are asymptotically tight.
We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of
its truth in the general case.

2010 MSC Codes: Primary 05C35; Secondary 05C65, 05D99

1. Introduction
Let F be a graph with at least one edge. What is the maximum number of edges ex(n, F) an n-
vertex graph can have if it does not contain a copy of F as a subgraph? This is a classical question
in extremal graph theory. If F is a complete graph, then the exact answer is given by Turán’s
theorem [63], one of the cornerstones of extremal graph theory. For other graphs F, the value of
ex(n, F) is determined up to an o(n2) error term by the celebrated Erdős–Stone theorem [17].

Ever since Turán’s foundational result, there has been significant interest in obtaining simi-
lar ‘Turán-type’ results for r-uniform hypergraphs (r-graphs), with r� 3. The extremal theory of
hypergraphs has, however, turned out to be much harder, and even the fundamental question of
determining the maximum number of edges in a 3-graph with no copy of the tetrahedron K(3)

4
(the complete 3-graph on 4 vertices) remains open: it is the subject of a 70-year-old conjecture of
Turán, and of an Erdős $1000 prize.1 Most research efforts have focused on the case of 3-graphs,

1In fact, to earn this particular Erdős prize, it is sufficient to determine the limit limn→∞ ex(n,K(r)
t )/

(n
r
)
for any integers

t > r� 3.
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where a small number of exact and asymptotic results are now known; see [3, 4, 12, 20, 24], as well
as the surveys by Füredi [23], Sidorenko [61] and Keevash [34].

It is well known that the Turán problem for an r-graph F is essentially equivalent to identify-
ing the minimum vertex-degree required to guarantee the existence of a copy of F. More recently
[11, 44, 51], there has been interest in variants where one considers what minimum i-degree con-
dition is required to guarantee the existence of a copy of F. Given an i-set S⊆V(G) with i� r, its
neighbourhood in G is the collection

�(S)= �G(S) := {T ⊆V(G) \ S : S∪ T ∈ E(G)}
of (r − i)-sets T whose union with S makes an edge of G. The neighbourhood of S defines an
(r − i)-graph

GS := (V(G) \ S, �G(S)),
which is called the link graph of S. The degree of S in G is the size degG (S)= deg (S) := |�(S)| of
its neighbourhood. Theminimum i-degree δi(G) of G is the minimum of deg (S) over all i-subsets
S⊆V(G). In particular, the case i= r − 1 has received particular attention; δr−1(G) is known as
the minimum codegree of G, and a minimum codegree condition is the strongest single degree
condition one can impose on an r-graph. Determining what minimum codegree forces the exis-
tence of a copy of a fixed r-graph F is known as the codegree density problem [51]. A few results
on the codegree density for various small 3-graphs are known; see [18, 19, 36, 49].

In a different direction, there has been significant recent research activity devoted to general-
izing another foundational result in extremal graph theory. Let F be a graph whose order divides
n. What minimum degree condition is required to guarantee that a graph on n vertices contains
an F-tiling – a collection of n/v(F) vertex-disjoint copies of F? In the case of complete graphs,
this was answered by the celebrated Hajnal–Szemerédi theorem [27], which (under the guise of
equitable colourings) has applications to scheduling problems. For a general graph F, the Kühn–
Osthus theorem [40] determines the minimum degree threshold for F-tilings up to a constant
additive error.

There has been a growing interest in determining analogous tiling thresholds in r-graphs for
r� 3; see the surveys by Rödl and Ruciński [59] and Zhao [64] devoted to the subject. In an effort
to generalize Dirac’s theorem on Hamilton cycles to hypergraphs, Rödl, Ruciński and Szemerédi
[60] determined the minimum codegree threshold for the existence of a perfect matching in r-
graphs for r� 3. The paper also introduced the hugely influential absorption method, which has
been used as a key ingredient in many of the results in the area obtained since. Beyond perfect
matchings, codegree tiling thresholds have now been determined for a number of small 3-graphs,
including K(3)

4 [35, 45], K(3)−
4 [30, 43] and K(3)−−

4 (K(3)
4 with two edges removed) [10, 39]. In

addition, the codegree tiling thresholds for r-partite r-graphs have been studied recently [9, 25,
26, 29, 52]

For minimum vertex-degree tiling thresholds, fewer results are known. The vertex-degree
thresholds for perfect matchings were determined for 3-graphs by Han, Person and Schacht [28]
(asymptotically) and by Kühn, Osthus and Treglown [41] and Khan [38] (exactly). Han and Zhao
[32] determined the vertex-degree tiling threshold for K(3)−−

4 , while Han, Zang and Zhao [31]
asymptotically determined the vertex-degree tiling threshold for all complete 3-partite 3-graphs.

As a key part of their argument, Han, Zang and Zhao considered a certain 3-graph covering
problem and showed that it was distinct from the corresponding Turán-type existence problem.
This stands in contrast to the situation for ordinary graphs, where existence and covering thresh-
olds essentially coincide. Given an r-graph F, Falgas-Ravry and Zhao [21] introduced the notion
of an F-covering, which is intermediate between that of the existence of a single copy of F and the
existence of an F-tiling.
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We say that an r-graph G has an F-covering if every vertex in G is contained in a copy of F in
G. Equivalently, an F-covering of G is a collection C of copies F whose union covers all of V(G).
For every positive integer i� r − 1, the i-degree F-covering threshold is the function

ci(n, F) :=max{δi(G) : v(G)= n, G has no F-covering}. (1.1)
We further let the i-degree F-covering density be the limit2

ci(F) := lim
n→∞ ci(n, F)/

(
n− i
r − i

)
. (1.2)

Let K(r)
t denote the complete r-graph on t vertices and let K(r)−

t denote the r-graph obtained by
removing one edge from K(r)

t . A tight r-uniform t-cycle C(r)
t is an r-graph with a cyclic ordering of

its t vertices such that every r consecutive vertices form an edge under this ordering. Falgas-Ravry
and Zhao [21] determined c2(F), where F is K(3)

4 , K(3)−
4 , K(3)−

5 and C(3)
5 . Han, Lo and Sanhueza-

Matamala [29] determined cr−1(C(r)
t ) for all r� 3 and t > 2r2.

In this paper we investigate c1(n, F) and c1(F) for various 3-graphs F. We first consider K(3)−
4 .

Let fn(d) be the function

fn(d) :=
(
n− 2
2

)
+ d − d(d − 1)−

(
d
2

)
= 1

2
(n2 − 5n+ 6− 3d2 + 5d). (1.3)

Observe that for fixed n, fn(d) is a decreasing function of d over the interval [1, n− 2]. On the
other hand ((n− 1)/2)d is an increasing function of d, so there exists a unique d� = d�(n) such
that ((n− 1)/2)d� = f (n, d�), namely

d� = 1
6

(√
13n2 − 72n+ 108− n+ 6

)
=

√
13− 1
6

n+O(1).

Theorem 1.1. For all odd integer n,
n− 1
2

	d�
� c1
(
n,K(3)−

4

)
�

⌊
n− 1
2

d�

⌋
.

In particular,

c1(K(3)−
4 )=

√
13− 1
6

= 0.4342 . . . .

The upper and lower bounds on c1(n, F) in Theorem 1.1 differ by less than n/2. However, it
seems that much more work will be needed to determine c1(n, F) exactly. As a first step in this
direction, we prove the following stability theorem characterizing near-extremal configurations.
Let c� = (

√
13− 1)/6.

Theorem 1.2. For every ε > 0, there exists δ > 0 and n0 ∈N such that the following holds: for every
n� n0, if H is a 3-graph on n+ 1 vertices with minimum vertex-degree at least (c� − δ)(n2/2) and
x ∈V(H) is not covered by a copy of K(3)−

4 in H, then the link graph Hx can be made bipartite by
removing at most εn2 edges.

Next we consider K(3)
4 .

2This limit can be shown to exist: see [21, footnote 1].
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Theorem 1.3.
19
27

= 0.7037 . . .� c1(K(3)
4 )� 19

27
+ 7.4× 10−9.

The upper bound was derived from the flag algebra method. We believe that the lower bound
is tight. As we show in Section 2.3, the problem of determining c1(K(3)

4 ) is equivalent to (a special
case of) a problem about triangle-degrees in graphs.

Given a graph G, the triangle-degree of a vertex x ∈V(G) is the number of triangles that
contains x. The well-studied Rademacher–Turán problem concerns the smallest average triangle-
degree for all graphs with a given edge density (the edge density ρ(G) is defined as e(G)/

(v(G)
2

)
).

This problem attracted significant attention (see [5, 14, 22, 46, 47]) until it was resolved asymp-
totically by Razborov [56] using the framework of his newly developed theory of flag algebras.
Different proofs expressed in the language of weighted graphs were later found by Nikiforov [53]
and by Reiher [58] (who generalized Razborov’s result to cliques of order 4 and of arbitrary order
t, respectively).

Let tmax(G) denote the maximum triangle-degree inG. (This is related to but different from the
well-studied book number, which is the maximum number of triangles containing a fixed edge of
G; see the discussion in Section 4 for details.) For ρ ∈ [0, 1], we define

τ (ρ) := lim inf
n→∞ min

{
tmax(G)/

(
n− 1
2

)
: v(G)= n, ρ(G)� ρ

}
, (1.4)

which is the asymptotically smallest maximum scaled triangle-degree in a graph with edge den-
sity ρ. We derive the following upper bounds for τ (ρ) and conjecture that they are tight. If
Conjecture 1.7 holds, then c1(K(3)

4 )= 19/27 (see Proposition 3.1).

Theorem 1.4. Suppose

ρ ∈
[
r − 1
r

,
r

r + 1

]
for some r ∈N.

Then

τ (ρ)�

⎧⎪⎪⎨
⎪⎪⎩

(r − 1)(r − 2)
r2

+ 3(r − 1)
r

(
ρ − r − 1

r

)
if
r − 1
r

� ρ � r
r + 1

− 1
3r(r + 1)

,

r(r − 1)
(r + 1)2

− 3(r − 1)
r + 1

(
r

r + 1
− ρ

)
if

r
r + 1

− 1
3r(r + 1)

� ρ � r
r + 1

.

The constructions underpinning Theorem 1.4 are very different from the extremal ones for the
Rademacher–Turán problem, and are discussed in more detail in Section 3.

Construction 1.5. (lower interval construction). Let

ρ ∈
[
r − 1
r

,
r

r + 1
− 1

3r(r + 1)

]
for some r ∈N.

Suppose n ∈N is divisible by 2r. Consider a balanced complete r-partite graph on [n] with parts
V1, . . . ,Vr. Add inside each Vi an arbitrary d-regular triangle-free graph Hi, where

d =
⌊(

ρ − r − 1
r

)
n
⌋
.
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Such triangle-free graphs exist since

d� 2
3(r + 1)

n
r

(by our upper bound on ρ), which is less than n/(2r) (so one could take Hi to be a balanced bipartite
graph, for example). The resulting graph is 	ρn
-regular. We let Gu

ρ,n denote the family of all graphs
that can be constructed in this way.

Construction 1.6. (upper interval construction). Let

ρ ∈
[

r
r + 1

− 1
3r(r + 1)

,
r

r + 1

]
for some r ∈N.

Suppose n ∈N is divisible by 2(r + 1). Consider a balanced complete (r + 1)-partite graph on [n]
with parts V1, . . . ,Vr+1. Equally divide each Vi into V ′

i and V ′′
i . Let φ : [r + 1]→ [r + 1] be any

bijection with the property that φ(i) �= i for all i ∈ [r + 1] (any permutation of [r + 1] with no fixed
point will do). Now for every i ∈ [r + 1], replace the complete bipartite graph between V ′

i and V ′′
φ(i)

with an arbitrary d-regular bipartite subgraph Hi, where

d =
⌈(

ρ − r
r + 1

+ 1
2(r + 1)

)
n
⌉
.

The resulting graph is 
ρn�-regular. We let Gd
ρ,n denote the family of all graphs that can be

constructed in this way.

Conjecture 1.7. The upper bounds on τ (ρ) given in Theorem 1.4 are tight for every ρ ∈ [0, 1].

We use flag algebra computations to show that the upper bounds from Conjecture 1.7 are not
far from optimal when ρ ∈ [1/2, 2/3] (see Theorem 3.6).

Following on a beautiful result of Bondy, Shen, Thomassé and Thomassen [7] on a tripartite
version ofMantel’s theorem, Baber, Johnson and Talbot [2] gave a tripartite analogue of Razborov’s
triangle-density result. In a similar spirit, we prove that Conjecture 1.7 holds for tripartite graphs.
Note that a tripartite graph on n vertices can have between 0 and n2/3 edges.

Theorem 1.8. Let G be a tripartite graph on n vertices. Then

tmax(G)�

⎧⎪⎪⎨
⎪⎪⎩

3
2

(
e(G)− n2

4

)
if
e(G)
n2

<
3
10

,

e(G)− 2
9
n2 if

3
10

� e(G)
n2

� 1
3
.

Structure of the paper. In Section 2 we prove Theorems 1.1–1.3 along with bounds for c1(C(3)
5 )

and c1(K(3)
t ) for t� 5. In Section 3 we prove Theorems 1.4 and 1.8, and give flag algebra bounds

on τ (ρ). We end the paper in Section 4 with a discussion of book numbers in graphs and a com-
parison of known results and conjectures on minimal triangle density, triangle-degree and book
number as functions of edge density.

Notation. We use standard graph and hypergraph theory notation throughout the paper. In addi-
tion, we use [n] to denote the set {1, 2, . . . , n} and S(r) to denote the collection of all r-subsets of a
set S. Where there is no risk of confusion, we identify hypergraphs with their edge-sets.

https://doi.org/10.1017/S0963548320000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000061


180 V. Falgas-Ravry, K. Markström and Y. Zhao

2. Covering in 3-graphs
2.1 Proof of Theorem 1.1
Recall that K(3)−

4 is the (unique up to isomorphism) 3-graph on 4 vertices spanning 3 edges, also
known as the generalized triangle. In this subsection we prove Theorem 1.1.

Proof of Theorem 1.1, lower bound. Let n be odd, and let d = 	d�
� (n− 1)/2. We construct a
3-graph H on n vertices as follows. Set aside a vertex v�, and let A � B be a bipartition of V(H) \
{v�} into two sets of equal size. LetG be an arbitrary d-regular bipartite graph with partitionA � B.
Now let H be the 3-graph whose 3-edges are the union of the triples {v�xy : xy ∈ E(G)} together
with all the triples of vertices from A∪ B inducing at most one edge in G.

Clearly, for every triple of vertices S⊆A∪ B, S∪ {v�} induces at most two edges of H and v�

is not contained in any copy of K(3)−
4 . Thus c1(n,K(3)−

4 )� δ1(H). This latter quantity is easily
calculated: the degree of v� in H is ((n− 1)/2)d. For any a ∈A, there are exactly d(d − 1) pairs
(a′, b) ∈A× B such that both a′b and ab lie in G, and exactly

(d
2
)
pairs (b, b′) ∈ B(2) such that both

ab and ab′ lie in G; such pairs are the only pairs from ((A \ {a})∪ B)(2) that do not form an edge
ofH with a. In addition, there are exactly d edges ofH containing the pair av�. Thus the degree of
a in H is

deg (a)=
(
n− 2
2

)
− d(d − 1)−

(
d
2

)
+ d = fn(d).

By symmetry, the degree of any vertex in B is also fn(d). Thus

δ1(H)=min
(
n− 1
2

d, fn(d)
)

= n− 1
2

d

because d� d�. Since H has no K(3)−
4 -covering, it follows that

c1(n,K(3)−
4 )� n− 1

2
	d�
.

Proof of Theorem 1.1, upper bound. Suppose H is a 3-graph on n vertices with δ1(H)=
((n− 1)/2)d and no copy of K(3)−

4 covering a vertex x (here n is not necessarily odd). We shall
show that δ1(H)� ((n− 1)/2)d�. Note that the link graph Hx of x is triangle-free. Furthermore,
v1v2v3 /∈ E(H) for any triple v1v2v3 spanning two edges in Hx. Let F(v) denote the collection
of pairs v2v3 such that vv2v3 induces two edges in Hx. We know that vv2v3 /∈ E(H) for every
v2v3 ∈ F(v). Observe that F(v) consists of all pairs v2v3, where either v2, v3 ∈ �(x, v) or v2v3 ∈Hx
and exactly one of v2, v3 is in �(x, v).

Counting non-edges of H over all v ∈V \ {x}, we thus have
∑

v∈V\{x}

((
n− 1
2

)
− deg (v)

)

�
∑

v∈V\{x}
n− 2− deg (x, v)+ |F(v)|

�
∑

v∈V\{x}

(
n− 2− deg (x, v)+

(
deg (x, v)

2

)
+

∑
v2∈�(x,v)

( deg (x, v2)− 1)
)

= (n− 1)(n− 2)+
∑

v∈V\{x}

1
2
(3( deg (x, v))2 − 5 deg (x, v))
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� (n− 1)(n− 2)+ n− 1
2

(3d2 − 5d)

= (n− 1)
(
n− 2+ 3d2 − 5d

2

)
.

where in the last line we used Jensen’s inequality and our minimum degree assumption deg (x)�
((n− 1)/2)d. By averaging, there exists a vertex v ∈ v ∈V \ {x} with

deg (v)�
(
n− 1
2

)
− n+ 2− 3d2 − 5d

2
= fn(d).

Applying ourminimumdegree assumption deg (v)� ((n− 1)/2)d yields ((n− 1)/2)d� fn(d) and
hence d� d�. Thus δ1(H)� ((n− 1)/2)d� as claimed.

2.2 Proof of Theorem 1.2
Our proof will make use of a consequence of Karamata’s inequality. Let an � an−1 � · · ·� a1 and
bn � bn−1 � · · ·� b1 be real numbers. We say that a= (an, . . . , a1) majorizes b= (bn, . . . , b1) if∑

i�k ai �
∑

i�k bi for all 1� k� n, with equality attained in the case k= 1. Karamata’s inequality
states that, if amajorizes b and f is a convex function, then

∑
i f (ai)�

∑
i f (bi).

Lemma 2.1. Suppose f : R→R is a convex function. Let a1 � a2 � · · ·� an be real numbers such
that

∑
i ai = ān, and let η > 0. Set B := {i : ai � (1− η)ā}. Then

∑
i

f (ai)� |B| · f ((1− η)ā)+ (n− |B|) · f
((

1+ η|B|
n− |B|

)
ā
)
. (2.1)

Proof. Since η > 0, our assumption on
∑

i ai tells us that [n] \ B �= ∅. If B = ∅, then the claimed
inequality is just Jensen’s inequality. So assume B is non-empty and set |B| = βn for some β > 0.

Let a′
1, a

′
2, . . . , a′

n be given by

a′
i =

⎧⎪⎨
⎪⎩
(1− η)ā if i ∈ [βn],(
1+ ηβ

1− β

)
ā if i ∈ [n] \ [βn].

Observe that
∑

i a′
i =

∑
i ai = ān. Setting

x= 1
|B|

∑
i∈B

ai and y= 1
n− |B|

∑
i∈[n]\B

ai,

we have

x� (1− η)ā<

(
1+ ηβ

1− β

)
ā� ā− βx

1− β
= y.

It follows readily that the n-tuple (an, an−1, an−2, . . . , a1) majorizes (a′
n, a′

n−1, a
′
n−2, . . . , a

′
1).

Applying Karamata’s inequality to the convex function f , we obtain
∑
i

f (ai)�
∑
i

f (a′
i)= βn · f ((1− η)ā)+ (1− β)n · f

((
1+ ηβ

1− β

)
ā
)
.

Another ingredient in the proof of Theorem 1.2 is a classical result of Andrásfai, Erdős and Sós.
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Theorem 2.2. (Andrásfai, Erdős and Sós [1]). Let G be a triangle-free graph on n vertices with
minimum degree δ(G)> 2n/5. Then G is bipartite.

With these two preparatory results in hand, the proof of Theorem 1.2 is straightforward. We
first use Lemma 2.1 to show that the overwhelming majority of vertices in the link graph Hx have
degree much larger than 2n/5, whereupon we deduce from the Andrásfai–Erdős–Sós theorem
that Hx is almost bipartite.

Proof of Theorem 1.2. Recall

c� =
√
13− 1
6

= 0.43 . . . >
2
5
.

Fix ε > 0. Without loss of generality, assume that ε < 1/3(c� − 2/5). Pick

0< η <
1
3c�

(
c� − 2

5

)
and δ > 0

such that

δ <
1
3

(
c� − 2

5

)
<

c�
6

and
(
1+ 6c�
2c2�η2

)
δ <

ε

2
(2.2)

both hold.
Let H be a 3-graph with

v(H)= n+ 1, δ1(H)� (c� − δ)
n2

2
.

Suppose x is a vertex in H not covered by any copy of K(3)−
4 . Without loss of generality, assume

V(H)= [n]∪ {x}. By the vertex-degree assumption, e(Hx)= cn2 for some c� c� − δ. Let

B = {y ∈V(H) : deg(xy)� c(1− η)n}
be the collection of vertices inH whose codegree with x is smaller than average by a multiplicative
factor of (1− η). Set |B| = βn.

Since x is not covered by a copy of K(3)−
4 in H, the following hold:

(i) Hx is triangle-free,
(ii) for every triple of vertices {y1, y2, y3} inducing two edges inHx, the 3-edge y1y2y3 is missing

from E(H).

Property (i) implies that for every y ∈ [n], the neighbourhood �(xy) is an independent set in Hx,
while property (ii) implies that for every z, z′ ∈Hxy and every w ∈Hxz, the 3-edges zz′y and zwy
are both missing from E(H). In particular, for every y ∈ [n] we have

(1− c� + δ)
n2

2
>

(
n
2

)
− e(Hy)�

(|Hxy|
2

)
+

∑
z∈Hxy

(|Hxz| − 1).

Summing this inequality over all y ∈ [n] and using the fact that
∑
y∈[n]

∑
z∈Hxy

(|Hxz| − 1)= 2
∑
y∈[n]

(|Hxy|
2

)
,
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we get

(1− c� + δ)
n3

2
>

∑
y∈[n]

3
(|Hxy|

2

)
. (2.3)

Since the function f (t)= (t
2
)
is convex and

∑
y∈[n] |Hxy| = 2|Hx| = cn2, we can apply Lemma 2.1

to bound from below the right-hand side of (2.3) by

3
(

βn
(
c(1− η)n

2

)
+ (1− β)n

( cn2−βn·c(1−η)n
(1−β)n
2

))

= 3c2

2

(
β(1− η)2 + (1− β(1− η))2

1− β

)
n3 +O(n2).

Inserting this inequality back into (2.3), dividing through by n3 and using c� c� − δ yields

1− c� + δ � 3(c� − δ)2
(

β(1− η)2 + (1− β(1− η))2

1− β

)
+O(n−1)

= 3(c� − δ)2
(
1+ η2β + η2β2

1− β

)
+O(n−1) (2.4)

> (3c2� − 6δc�)(1+ η2β)+O(n−1)

� 3c2� − 6δc� + 2c2�η
2β +O(n−1), (2.5)

where the last inequality holds because our choice of δ in (2.2) ensures δ < c�/6. Note that c�
satisfies 1− c� = 3c2�. Rearranging terms in inequality (2.5) gives

(1+ 6c�)δ > 2c2�η
2β +O(n−1).

By the second part of (2.2) and the assumption that n is sufficiently large, we have

β <

(
1+ 6c�
2c2�η2

)
δ +O(n−1)<

ε

2
+O(n−1)< ε

and |B| = βn< εn. Remove fromHx all vertices from B. By the definitions of δ, η, ε, the resulting
triangle-free graph G has at most n vertices and minimum degree at least

c(1− η)n− εn� (c� − δ)(1− η)n− εn> (c� − ηc� − δ − ε)n>
2
5
n.

By Theorem 2.2, G is bipartite. Since we removed only at most εn vertices from Hx to obtain G, it
follows that Hx can be made bipartite by removing at most εn2 edges, as claimed. This concludes
the proof of Theorem 1.2.

2.3 Proof of Theorem 1.3
Given an r-graph G, write tG(x) for the number of copies of K(r)

r+1 in G that cover x.

Proposition 2.3. There exists an r-graph H on n+ 1 vertices with minimum vertex-degree δ1(H)�
α
(n−1
r−1

)
and no K(r)

r+1-covering if and only if there exists an (r − 1)-graph G on n vertices with at least
α
(n−1
r−1

)
edges such that, for every vertex x ∈V(G),

tG(x)− degG (x)� (1− α)
(
n− 1
r − 1

)
.
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Proof. In one direction, let H be an r-graph on n+ 1 vertices with minimum degree α
(n−1
r−1

)
. Suppose

v� is not covered by any K(r)
r+1 in H. By the minimum degree condition on v�, the (r − 1)-uniform

link graph G=Hv� contains at least α
(n−1
r−1

)
edges. Also, every copy of K(r−1)

r in the (r − 1)-graph
G must be a non-edge in the r-graph H, else together with v� it would make a copy of K(r)

r+1 in H
covering v�. The minimum degree condition in H then implies that, for every vertex x in the n-vertex
(r − 1)-graph G,

α

(
n− 1
r − 1

)
� degH (x)�

(
n− 1
r − 1

)
+ degG (x)− tG(x),

implying tG(x)− degG (x)� (1− α)
(n−1

2
)
as desired.

In the other direction, let G be an (r − 1)-graph on n vertices with at least α
(n−1
r−1

)
edges such

that tG(x)− degG (x)� (1− α)
(n−1
r−1

)
for all x ∈V(G). We add a new vertex v� to G and define an

r-graph H on V(G) � {v�} by setting the link graph of v� to be equal to G and adding in as edges all r-
sets from V(G)(r) that do not induce a copy of K(r−1)

r in G. This yields an r-graph on n+ 1 vertices in
which v� is not covered by a copy of K(r)

r+1, degH (v�)= e(G)� α
(n−1
r−1

)
, and for every x ∈V(H) \ {v�},

degH (x)=
(
n− 1
r − 1

)
− tG(x)+ degG (x)� α

(
n− 1
r − 1

)
,

so δ1(H)� α
(n−1
r−1

)
as desired.

Corollary 2.4. For any r ∈N, the 1-degree covering density c1(K(r)
r+1) is the least α > 0 such that, if

G is an (r − 1)-graph on n vertices with at least α
( n
r−1

)
edges, then there is a vertex x ∈G contained

in tG(x)� (1− α + o(1))
(n−1
r−1

)
copies of K(r−1)

r in G.

Proof of Theorem 1.3, lower bound. Suppose 3|n and partition [n] into three sets V1,V2,V3 of
size n/3. Further partition each Vi into two sets Vi,1 and Vi,2 of size n/6. Now let G be the 2-graph
on [n] obtained by putting in all edges of the form ViVj, with 1� i< j� 3 and adding for each i ∈
[3] an arbitrary n/27-regular bipartite graph with partition Vi,1 �Vi,2. An easy calculation shows
that G is both regular and triangle-degree regular, with every vertex x satisfying deg (x)= 19n/27
and t(x)= 4n2/27. We thus have

t(x)− deg (x)= 8
27

(
n− 1
2

)
+O(n).

It follows from Proposition 2.3 that there exists a 3-graph H on n+ 1 vertices with minimum
degree (

19
27

+O
(
1
n

))(
n− 1
2

)

and no K4-covering, establishing the desired lower bound on c1(K(3)
4 ).

Proof of Theorem 1.3, upper bound. Set

α = 19
27

+ 7.4× 10−9.

By Proposition 2.3, it is enough to show that if G is an n-vertex graph with tmax � (1− α +
o(1))

(n−1
2

)
, then e(G)� (α + o(1))

(n−1
2

)
. This is done in Proposition 3.8 in the next section via

a simple flag algebra calculation.
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2.4 The graph C(3)
5

Theorem 2.5.

0.55 . . . = 5
9
� c1(C(3)

5 )� 2− √
2= 0.58 . . . .

Proof of Theorem 2.5, lower bound. We construct a 3-graph on [3n+ 1] as follows. Set aside
v� = 3n+ 1, and partition the remaining vertices into an n-set A and a 2n-set B. Let H be the 3-
graph on [3n+ 1] obtained by setting the link graph of v� to be the union of a clique on A and
a clique on B, and adding all triples of the form AAB or ABB. Every path of length 3 in the link
graph of v� gives rise to an independent set in H, hence there is no copy of the strong 5-cycle C5
covering v� in H. The degree of v� in H is(

n
2

)
+

(
2n
2

)
= 5

9

(
3n
2

)
− 2n

3
,

and the degrees in the rest of the graph are all at least

min
(
(|A| − 1)|B| +

(|B|
2

)
, (|B| − 1)|A| +

(|A|
2

))
= n(2n− 1)+

(
n
2

)
= 5

9

(
3n
2

)
− 2n

3
.

Thus

c1(3n+ 1, C5)�
5
9

(
3n
2

)
− 2n

3
,

as desired.

Proof of Theorem 2.5, upper bound. Mubayi and Rödl [50, Theorem 1.9] proved π(C(3)
5 )� 2−√

2. An easy modification of their proof shows that α = 2− √
2 is in fact an upper bound for the

covering threshold. Indeed, let H be a 3-graph on n vertices with δ1(H)� α
(n−1

2
) + c(2n− 1), for

some c� 10. Let x be an arbitrary vertex in V(H). By averaging, there exists y ∈V(H) such that
deg (xy)� αn. Form the multigraph G=Hx ∪Hy as in [50, proof of Theorem 1.9, p. 151]. Then
[50, Claim, p. 151] shows that if there is no copy of C(3)

5 covering the pair xy, then G satisfies the
conditions of [50, Lemma 6.2, p. 149], and one can conclude as Mubayi and Rödl do that one
of x and y has degree at most α

(n−1
2

) + c(2n− 1)− n in H, contradicting our minimum degree
assumption.

2.5 The graphs K(3)
t , t� 5

Proposition 2.6. For all t� 4,

c1(K(3)
t+1)�

−1+
√
3− 2c1(K(3)

t )

1− c1(K(3)
t )

.

Proof. Let ε > 0 and n be sufficiently large. Suppose that H is a 3-graph on n vertices with δ1(H)�
α(n2/2) for some α > 0 satisfying

1+ 2
α

− 2
α2 = c1(K(3)

t )+ ε.

Let v� be an arbitrary vertex. By averaging, there exists a vertex x ∈V \ {v�} and an αn-set V ′ such
that V ′ ⊆ �(x, v�). Observe that

e(Hx[V ′])� e(Hx)− |V ′|(n− |V ′|)−
(
n− |V ′|

2

)
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and an analogous bound holds for e(Hv�[V ′]). Thus

e(Hx[V ′]∩Hv�[V ′])� e(Hx)+ e(Hv�)− 2|V ′|(n− |V ′|)− 2
(
n− |V ′|

2

)
−

(|V ′|
2

)

� (α2 + 2α − 2)
n2

2
+O(n). (2.6)

On the other hand, for any y ∈V ′, we have

|�(y)∩ (V ′ ∪ {x, v�})(2)|� deg (y)− (|V ′| + 1)(n− |V ′| − 2)−
(
n− |V ′| − 2

2

)

� (α2 + α − 1)
n2

2
+O(n). (2.7)

Note that
min (α2 + 2α − 2, α2 + α − 1)= α2 + 2α − 2= (c1(K(3)

t )+ ε)α2. (2.8)
Let H′ be the 3-graph obtained by taking H[V ′] and adding a new vertex z whose link graph consists
precisely of those pairs yy′ ∈ E(Hx[V ′]∩Hv�[V ′]). By (2.6), (2.7) and (2.8),

δ1(H′)�
(
c1(Kt)+ ε

2

)(
v(H′)
2

)
.

Thus provided αn= v(H′) is sufficiently large, there must be a set S⊆V ′ such that S∪ {z} induces
a copy of K(3)

t in H′ covering z. But then by construction of H′, this implies that S∪ {x, v�} induces
a copy of K(3)

t+1 covering v� in H. It follows that α � c1(K(3)
t+1), and hence (since ε > 0 was arbitrary)

that

c1(K(3)
t+1)�

−1+
√
3− 2c1(K(3)

t )

1− c1(K(3)
t )

.

Proposition 2.7. Suppose there exists a 3-graph H on [N] such that

(i) every vertex of H has degree at most d,
(ii) every t-set of vertices from V(H) spans at least one edge.

Then we have

c1(K(3)
t+1)�min

(
1− 1

N
, 1− 2d

N2

)
.

Proof. We construct a 3-graph G on [Nn+ 1] as follows. Set aside v� =Nn+ 1, and partition the
remaining vertices into n-sets V1,V2, . . . ,VN. Now let the link graph of v� in G be the complete
N-partite graph on [Nn] with partition �N

i=1Vi. To make up the remainder of the edges of G, add in
all triples v1v2v3 from [Nn](3) with vj ∈Vij for j= 1, 2, 3 and i1i2i3 /∈ E(H).

Clearly

degG (v�)=
(
nN
2

)
−N

(
n
2

)
=

(
1− 1

N

)(
nN
2

)
+O(n),

and every other vertex x ∈ [nN] with x ∈Vi has degree

degG (x)= n(N − 1)+
(
nN − 1

2

)
− degH (i)n2 �

(
1− 2d

N2

)(
nN
2

)
+O(n).
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Thus

δ1(G)�min
(
1− 1

N
, 1− 2d

N2

)(
nN
2

)
+O(n).

Furthermore, every complete graph Gv�[T] on |T| = t vertices in the link graph of v� in G meets t
different parts Vi1 , . . . ,Vit from our partition of [nN]. By assumption, i1i2, . . . , it spans at least one
edge of H, whence we have that at least one of the triples from T(3) is missing from E(G). In particular,
{v�} ∪ T does not span a copy of K(3)

t+1 in G, and G fails to have a K(3)
t+1-cover. The proposition follows.

A natural family of 3-graphs for applications of Proposition 2.7 are Steiner triple systems (STS),
where each pair of vertices is contained in a unique edge. Let αt denote the minimum of the
independence number over all STS of order t. The unique (up to isomorphism) STS of orders 3
and 7 are the 3-edge K(3)

3 and the Fano plane S7 respectively, which give α3 = 2, α7 = 4. The affine
plane of order 9, S9, is the unique up to isomorphism STS of order 9 and has α(S9)= α9 = 4. It is
further known that α13 = 6, α15 = 6 [48], and α19 = 7 [8] (see also the monograph of Kaski and
Östergård [33]).

Proposition 2.8.

0.8888 . . . = 8
9
� c1(K(3)

6 )� 0.947962 . . . ,

0.9333 . . . = 14
15

� c1(K(3)
8 )� 0.98793 . . . ,

0.9473 . . . = 18
19

� c1(K(3)
9 )� 0.99404 . . . .

Proof of Proposition 2.8, lower bound. Apply Proposition 2.7 to STS of orders 9, 15 and 19 with
minimum independence numbers, and observe that an STS of order t is a d = (t − 1)/2-regular
3-graph, so that

min
(
1− 1

t
, 1− 2d

t2

)
= 1− 1

t
.

Proof of Proposition 2.8, upper bound. Repeatedly apply Proposition 2.6 with our upper bound
c1(K4)� 19/27+ 7.4× 10−9 from Theorem 1.3.

Remark. The lower bounds on the covering densities in Proposition 2.8 above are strictly stronger
than the bounds one gets from the conjectured values of the corresponding Turán densities.

In each case they are about 5× 10−2 below our upper bounds. Note that if one applies
Proposition 2.7 to the unique STS on 3-vertices, one gets a lower bound of 2/3 for c1(K(3)

4 ). We
obtained an improvement of this bound in Theorem 1.3 by almost 5× 10−2 by adding a few edges
in the link graph of v� and deleting a few triples meeting the corresponding pairs. It seems nat-
ural to believe that a similar (albeit significantly more intricate) process would similarly improve
the lower bounds in Proposition 2.8. If we had to guess, we would thus say that the true value of
c1(K(3)

t ) for t = 6, 8, 9 probably lies closer to the upper bounds we give.

For completeness, we give (very weak) bounds on c1(K(3)
5 ), which show c1(K(3)

4 )< c1(K(3)
5 )<

c1(K(3)
6 ).
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Proposition 2.9.
3
4
� c1(K(3)

5 )� 0.8842 . . . .

Proof of Proposition 2.9, lower bound. Consider a partition of [2n] into n-sets, [2n]=V1 �V2.
Let G be the 3-graph on [2n] whose edge-set consists of all triples meeting both V1 and V2. It is
easily checked that G is K(3)

5 -free and has minimum degree(
2n− 1

2

)
−

(
n− 1
2

)
= 3

4

(
2n− 1

2

)
+O(n),

giving us the required lower bound.

Proof of Proposition 2.9, upper bound. Apply Proposition 2.6 with our upper bound

c1
(
K(3)
4

)
� 19

27
+ 7.4× 10−9

from Theorem 1.3.

3. Triangle-degree in graphs
In this section we investigate the problem of minimizing the maximum triangle-degree τ (ρ)n2/2
in a 2-graph with a given edge density ρ. We give upper bound constructions for τ (ρ), which we
conjecture are best possible. We show that our conjecture holds for tripartite graphs and use flag
algebra computations to bound below τ (ρ) for general graphs with 1/2< ρ � 2/3.

3.1 Proof of Theorem 1.4
Proposition 3.1. Conjecture 1.7 implies c1(K(3)

4 )= 19/27.

Proof. Suppose ρ = c1(K(3)
4 ). By Proposition 2.3, there exists a sequence (Gn)n∈N of 2-graphs with

v(Gn)→ ∞, ρ(Gn)� ρ + o(1) and tmax(Gn)� (1− ρ + o(1))
(v(Gn)−1

2
)
. In particular, this implies

that τ (ρ)� 1− ρ. If Conjecture 1.7 is true, then since 19/27 ∈ (2/3, 3/4) we have

τ

(
19
27

)
= 8

27
and τ

(
19
27

+ ε

)
>

8
27

for sufficiently small ε > 0. Hence ρ � 19/27. Together with the lower bound from Theorem 1.3, we
conclude that c1(K(3)

4 )= 19/27.

We now give constructions for two families of graphs used in the proof of Theorem 1.4.

Construction 3.2. (lower interval construction). Let

ρ ∈
[
r − 1
r

,
r

r + 1
− 1

3r(r + 1)

]
for some r ∈N.

Suppose n ∈N is divisible by 2r. Consider a balanced complete r-partite graph on [n] with parts
V1, . . . ,Vr. Add inside each Vi an arbitrary d-regular triangle-free graph Hi, where

d =
⌊(

ρ − r − 1
r

)
n
⌋
.
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Such triangle-free graphs exist since

d� 2
3(r + 1)

n
r

(by our upper bound on ρ), which is less than n/(2r) (so one could take Hi to be a balanced bipartite
graph, for example). The resulting graph is 	ρn
-regular. We let Gu

ρ,n denote the family of all graphs
that can be constructed in this way.

Construction 3.3. (upper interval construction). Let

ρ ∈
[

r
r + 1

− 1
3r(r + 1)

,
r

r + 1

]
for some r ∈N.

Suppose n ∈N is divisible by 2(r + 1). Consider a balanced complete (r + 1)-partite graph on [n]
with parts V1, . . . ,Vr+1. Equally divide each Vi into V ′

i and V ′′
i . Let φ : [r + 1]→ [r + 1] be any

bijection with the property that φ(i) �= i for all i ∈ [r + 1] (any permutation of [r + 1] with no fixed
point will do). Now, for every i ∈ [r + 1], replace the complete bipartite graph between V ′

i and V ′′
φ(i)

with an arbitrary d-regular bipartite subgraph Hi, where

d =
⌈(

ρ − r
r + 1

+ 1
2(r + 1)

)
n
⌉
.

The resulting graph is 
ρn�-regular. We let Gd
ρ,n denote the family of all graphs that can be

constructed in this way.

Remark. The choices of the graphs Hi in both Construction 3.2 and 3.3 give rise to very different
graphs (lying at edit distance 
(n2) from each other). In particular, if Conjecture 1.7 is correct
then the problem of minimizing the maximum triangle-degree is not stable. This stands in some
contrast to the Rademacher–Turán problem for triangles, for which Pikhurko and Razborov [54]
obtained a stability result, establishing that there is an asymptotically unique way of minimizing
the number of triangles for a given edge density. This instability is observed even at the level of
subgraph frequencies; for example, in the first construction we could take as Hi a subgraph of a
blow-up of the five-cycle instead of a bipartite graph, provided

ρ � r − 1
r

+ 2
5r
.

In particular, this suggests that Conjecture 1.7 may be harder to resolve than the Rademacher–
Turán problem for triangles, and might not amenable to standard flag algebraic approaches due
to the instability of the extremal examples.

Proof of Theorem 1.4. Assume that

ρ ∈
[
r − 1
r

,
r

r + 1

]
for some r ∈N.

When r = 1, a ρn-regular bipartite graph on n vertices (we may use Gu
ρ,n and Gd

ρ,n as well) shows
that τ (ρ)= 0. So we may assume that r� 2.

First assume that

ρ ∈
[
r − 1
r

,
r

r + 1
− 1

3r(r + 1)

]
.

https://doi.org/10.1017/S0963548320000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000061


190 V. Falgas-Ravry, K. Markström and Y. Zhao

Consider an arbitrary graph G of Gu
ρ,n, for some n divisible by 2r. Pick a vertex x ∈Vi. Let us

compute the triangle-degree of x. There are at most (n− |Vi|)d pairs (y, x′) with x′ ∈Vi \ {x},
y ∈ [n] \Vi and xx′y forming a triangle in G. Further, there are at most

1
2

∑
j�=i

|Vj|d

pairs (y, y′) with y, y′ ∈Vj �=Vi and xyy′ forming a triangle in G. Finally, there are at most

1
2

∑
j : j�=i

∑
k : k�=i,j

|Vj| |Vk|

pairs (y, z) with y ∈Vj, z ∈Vk, Vi,Vj,Vk all distinct and xyz forming a triangle in G. Since each
part Vi is triangle-free by construction, there are no other triangles in G containing x, and the
triangle-degree of x is thus at most

tG(x)= r − 1
r

n
⌊(

ρ − r − 1
r

)
n
⌋

+ r − 1
2r

n
⌊(

ρ − r − 1
r

)
n
⌋

+ (r − 1)(r − 2)
2r2

n2

=
(
(r − 1)(r − 2)

r2
+ 3(r − 1)

r

(
ρ − r − 1

r

))
n2

2
+O(n).

This gives the claimed upper bound on τ (ρ) for

ρ ∈
[
r − 1
r

,
r

r + 1
− 1

3r(r + 1)

]
.

Next, assume that

ρ ∈
[

r
r + 1

− 1
3r(r + 1)

,
r

r + 1

]
.

Consider an arbitrary graph G of Gd
ρ,n, for some n divisible by 2(r + 1). Pick a vertex x ∈V ′

i (the
case when x ∈V ′′

i is analogous). When computing the triangle-degree of x, it is more convenient
to count the number of triangles containing x in the balanced complete (r + 1)-partite graph from
which an edge was deleted when constructing G. Observe that every triangle has lost at most one
edge.

First of all, we have lost

(|V ′′
φ(i)| − d)

(
r − 1
r + 1

)
n

triangles of the form xyz with y ∈V ′′
φ(i). Secondly, for every

y ∈ [n] \ (Vi ∪V ′′
φ(i) ∪V ′

φ−1(i)),

there are n/(2(r + 1))− d vertices

z ∈ [n] \ (Vi ∪V ′′
φ(i) ∪V ′

φ−1(i))

such that the edge yz was lost. This results in

r − 1
r + 1

n
2

(
n

2(r + 1)
− d

)
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lost triangles xyz. In total there are(
n

2(r + 1)
− d

)(
r − 1
r + 1

)
n+ n

2

(
r − 1
r + 1

)(
n

2(r + 1)
− d

)

= 3
(
r − 1
r + 1

)(
r

r + 1
− ρ

)
n2

2
+O(n)

lost triangles for x. Subtracting this quantity from the triangle-degree of x in the original complete
balanced (r + 1)-partite graph, we get

tG(x)=
(
r(r − 1)
(r + 1)2

− 3
(
r − 1
r + 1

)(
r

r + 1
− ρ

))
n2

2
+O(n).

This gives the claimed upper bound on τ (ρ) for

ρ ∈
[

r
r + 1

− 1
3r(r + 1)

,
r

r + 1

]
.

3.2 Proof of Theorem 1.8
For this range of e(G), Conjecture 1.7 states that, for any n-vertex graph G,

tmax(G)�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if e(G)� n2

4
,

3
2

(
e(G)− n2

4

)
+O(n) if

n2

4
� e(G)� 11

36
n2,

e(G)− 2
9
n2 +O(n) if

11
36

n2 � e(G)� 1
3
n2.

Remark. Since 3/10< 11/36 and since for e(G)< (11/36)n2 we have

e(G)− 2
9
n2 >

3
2

(
e(G)− n2

4

)
,

Theorem 1.8 implies that Conjecture 1.7 holds true for all tripartite graphs.

Proof of Theorem 1.8. Let G be an n-vertex tripartite graph with partition A � B � C. Since
tmax(G) is non-negative, we only need to consider the case when e(G)> n2/4. Assume without
loss of generality that

|A|� |B|� |C|.
Suppose |A| = xn and |B| = yn (and so |C| = (1− x− y)n). Then x� y� (1− x)/2� 0, and in
particular x� 1/3. Since

|B| |C|�
(
1− x
2

)2
,

we have

e(G)� |A|(n− |A|)+ |B| |C|�
(
x(1− x)+

(
1− x
2

)2)
n2.

The function of x on the right-hand side has derivative 3/2(1/3− x)n2 � 0 for x� 1/3, and attains
the value n2/4 at x= 2/3. Since e(G)> n2/4, we must have x< 2/3.
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Write α for the edge density of G between parts B and C, β for the edge density between parts
A and C, and γ for the edge density between parts A and B. So we have

e(G)
n2

= γ xy+ βx(1− x− y)+ αy(1− x− y).

Since x� y� 1− x− y, if α + β + γ = S� 2 then e(G)/n2 is maximized by letting γ =min (S, 1),
β = S− γ and α = 0, i.e. by makingG bipartite. But a bipartite graph contains at most n2/4 edges,
contradicting our lower bound on e(G). Thus we assume α + β + γ = 2+ s for some s with 0<

s� 1. Further, if x, s are fixed with x� y� 1− x− y, then e(G)/n2 is maximized by letting γ = 1,
β = 1, α = s and y= (1− x)/2. In other words, we have

e(G)
n2

� f1(x, s) := x− x2 + s
4
(1− x)2. (3.1)

Since
∂

∂x
f1(x, s)= 1− 2x− s

2
(1− x)=

(
2− s
2

)
−

(
4− s
2

)
x,

when s is fixed, f1(x, s) attains a maximum at

x� = 2− s
4− s

∈
[
1
3
,
1
2

]
(as 0� s� 1).

Consequently,

e(G)
n2

� f1(x, s)� f1(x�, s)= 1
4− s

. (3.2)

On the other hand, we can give a lower bound on tmax(G)/n2 as follows. Select vertices a ∈A,
b ∈ B and c ∈ C uniformly at random. By the union bound,

P(abc induces a triangle)� P(ab ∈ E(G))− P(bc /∈ E(G))− P(ac /∈ E(G))

= α + β + γ − 2

= s.

In particular, G must contain at least sxy(1− x− y)n3 triangles. By averaging over all vertices
c ∈ C, we have

tmax(G)
n2

� sxy(1− x− y)n3

|C|n2 = sxy.

Since x� y� 1− x− y, for fixed s and x, sxy is minimized by setting y= (1− x)/2. Thus

tmax(G)
n2

� f2(x, s) := sx(1− x)
2

. (3.3)

Having done this preparatory work, we can now prove the theorem by using the following claim.

Claim 3.4.

tmax(G)�

⎧⎪⎪⎨
⎪⎪⎩
e(G)− 2

9
n2 if s� 2

3
,

3
2

(
e(G)− n2

4

)
if s<

2
3
.
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To see why Claim 3.4 implies Theorem 1.8, first assume e(G)� (3/10)n2. By (3.2), we have
s� 2/3. Then Claim 3.4 gives that tmax(G)� e(G)− (2/9)n2. Now assume e(G)< (3/10)n2. If we
still have s� 2/3, then by Claim 3.4,

tmax(G)� e(G)− 2
9
n2 >

3
2

(
e(G)− n2

4

)

because e(G)< (11/36)n2. Otherwise s< 2/3 and Claim 3.4 implies that

tmax(G)�
3
2

(
e(G)− n2

4

)
,

as desired.

Proof of Claim 3.4, case s� 2/3. By inequalities (3.1) and (3.3), we have

e(G)
n2

− tmax(G)
n2

� f1(x, s)− f2(x, s)= x− x2 + s
4
(1− x)2 − s

2
x(1− x).

It is an easy exercise in calculus to show that as a function of x ∈ (0, 1), the right-hand side is
maximized at

x� = 2− 2s
4− 3s

� 1
3

(as s� 2/3), and is decreasing in [x�,+∞). Under our assumption x� 1/3, we thus have

f1(x, s)− f2(x, s)� f1
(
1
3
, s

)
− f2

(
1
3
, s

)
= 2

9
.

This implies that tmax(G)� e(G)− (2/9)n2.

Proof of Claim 3.4, case 0< s< 2/3. By inequalities (3.1) and (3.3) we have

3
2
e(G)
n2

− 3
8

− tmax(G)
n2

� 3
2
f1(x, s)− 3

8
− f2(x, s)

= 3
2

(
x(1− x)− 1

4

)
+ s

8
(1− x)(3− 7x). (3.4)

If x ∈ [3/7, 1], then both terms on the right-hand side are non-positive. Assume now that x ∈
[1/3, 3/7). Then, for such values of x, the right-hand side is an increasing function of s. Applying
our assumption on s, its value is at most

3
2
f1

(
x,

2
3

)
− 3

8
− f2

(
x,

2
3

)
= −1

8
+ 2

3
x− 11

12
x2.

The discriminant of this quadratic is
4
9

− 4 · 1
8

· 11
12

= − 1
72

< 0,

so the expression above is (strictly) non-positive. We deduce that the right-hand side of (3.4) is
non-positive for every value of x ∈ [0, 1]. This yields

tmax(G)�
3
2

(
e(G)− 1

4
n2

)
.
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3.3 Flag algebra bounds
In this section we will employ Razborov’s [55] flag algebra framework, and more specifically his
semidefinite method, to obtain bounds for some of the problems we study. The semidefinite
method has become a fairly standard tool in extremal combinatorics; see e.g. [57] for a survey of
some of the early applications. As the method is well established and we have only obtained non-
sharp bounds using it, we give only minimal details here, without expounding on the underlying
theoretical machinery.

We have used Flagmatic to perform our flag algebra computations; this is an open source pro-
gram written by Emil Vaughan and later developed further by Jakub Sliacan [62], who currently
maintains a Flagmatic page on GitHub [62]. We have used Vaughan’s Flagmatic 2.0 in this paper.
We refer readers to [20] and to the Flagmatic 2.0 section on the web page [62] for a description
of the inner workings of Flagmatic and download links for the program. Our calculations involve
the use of flag inequalities given as ‘axioms’. The use of such ‘axioms’ first appeared in [18], where
an edge-maximization problem was solved subject to a codegree constraint. We refer readers
interested in the details to either Section 3 in that paper or to the Flagmatic 2.0 web page [62].

Let T1 denote the ([1], ∅)-flag consisting of a triangle with one vertex labelled 1. Let ρ denote
the (∅, ∅)-flag consisting of a single 2-edge (this flag corresponds to the edge density). Let f (ρ)
denote the upper bound on τ (ρ) given in Theorem 1.4.

The function f (ρ) is piecewise linear, continuous and strictly increasing in the interval (1/2, 1].
In particular, it has a piecewise linear inverse. Over any subinterval I ⊆ [1/2, 1] on which is f is
linear, we can use a semidefinite method to obtain an upper bound on howmuch τ (ρ) can deviate
from f (ρ) on I by giving an upper bound for the following problem.

Problem 3.5. Maximize ρ − f−1(y) over y ∈ f (I) subject to the constraint T1 � y.

Note that the constraint we have given corresponds to requiring that all but o(1) of the ver-
tices have triangle-degree at most y(n2/2)+ o(n) (which is slightly weaker than is required for
τ ). A standard flag algebra computation will give us an upper bound εI > 0 on the solution to
Problem 3.5. If f (x)= ax+ b over the interval I, then this tells us that f (x− εI)= a(x− εI)+ b is
a lower bound for τ (x) on the interval I − εI := {x ∈ I : x� sup I − εI}, that is, f (ρ) is at most aεI
away from the true value of τ (ρ) on I − ε. Using this technique, we obtain the following.

Theorem 3.6.

τ (ρ)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (ρ)− 0.0010705 if ρ ∈ [1/2, 29/54],
f (ρ)− 0.0044863 if ρ ∈ [29/54, 31/54],
f (ρ)− 0.0106917 if ρ ∈ [31/54, 11/18],
f (ρ)− 0.0106917 if ρ ∈ [11/18, 17/27],
f (ρ)− 0.0058198 if ρ ∈ [17/27, 35/54],
f (ρ)− 0.0002057 if ρ ∈ [35/54, 2/3],
f (ρ)− 0.00123143 if ρ ∈ [2/3, 25/36],
f (ρ)− 0.00534603 if ρ ∈ [25/36, 13/18],
f (ρ)− 0.00534583 if ρ ∈ [13/18, 53/72],
f (ρ)− 0.00189005 if ρ ∈ [53/72, 3/4].

Proof. The theorem follows from standard algebra computations using the method outlined
above. Running the script theorem38.sage, which is found in the auxiliary files of this arXiv
submission on Flagmatic 2.0, yields the bounds claimed above. (The resulting computation
certificates are somewhat large, but the computation itself can easily be run on a modern laptop
computer.)
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We also ‘zoom in’ on the value ρ = ρ� at which τ (ρ) becomes greater than 1− ρ, and which
we conjecture is equal to 19/27. This is done by giving an upper bound for the following variant
of Problem 3.5.

Problem 3.7. Maximize 1− x− ρ subject to the constraint T1 � x.

Suppose for some fixed x we perform a flag algebra calculation and get a non-positive upper
bound for the solution to Problem 3.7. This implies that any n-vertex graph with at least
(1− x)(n2/2)+ o(n2) edges must have a positive proportion of its vertices having triangle-degree
greater than x(n2/2)+ o(n2). In particular, we must have ρ� � x. Using this technique, we obtain
the following bounds on ρ�.

Proposition 3.8.

ρ� �
19
27

+ 7.4× 10−9.

Proof. The theorem follows from standard algebra computations using the method outlined above.
Running the script theorem310.sage, which is found in the auxiliary files of this arXiv submission
on Flagmatic 2.0, yields the bounds claimed above. (This is a much smaller computation than the
one required for Theorem 3.6.)

4. Concluding remarks
In earlier sections we showed that

c1(K(3−)
4 )=

√
13− 1
6

,
19
27

� c1(K(3)
4 )� 19

27
+ 7.4× 10−9 and

5
9
� c1(C(3)

5 )� 2− √
2.

We conjecture that c1(K(3)
4 )= 19/27 and c1(C(3)

5 )= 5/9.

4.1 Book numbers of graphs
In Section 3 we investigated the following question. Let G be a graph on n vertices with m>

ex(n,K(2)
3 ) edges. What is the largest t such that G must have some vertex contained in at least t

triangles? A different but equally natural question is to ask: What is the largest b such that Gmust
have some edge contained in at least b triangles? This is in fact a well-studied problem in graph
theory.

Definition Let G be a 2-graph, and xy ∈ E(G). The book size of xy in G is bk(xy)= bkG(xy) :=
|�(x)∩ �(y)|, the number of triangles in G containing the edge xy. The book number of G is

bk(G) :=max{bk(xy) : xy ∈ E(G)}.
The study of book numbers in graphs was initiated by Erdős in 1962 [14], and has attracted

considerable attention in extremal graph theory and Ramsey theory. Set
β(n,m) :=min{bk(G) : v(G)= n, e(G)=m}

and

β(x) := inf
n

{
bk(G)/n : v(G)= n, e(G)� x

(
n
2

)}
.

Erdős conjectured that

β(n, ex(n,K(2)
3 )+ 1)>

n
6
.
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This was proved by Edwards [13] and independently by Khadžiivanov and Nikiforov [37].
Bollobás and Nikiforov [6] determined β(n,m) exactly for infinitely many m with n2/4<m<

n2/3.
A construction giving the best known lower bound on β(n,m) was given by Erdős, Faudree

and Györi [15], generalizing an earlier construction due to Erdős, Faudree and Rousseau [16].

Construction 4.1. (Erdős, Faudree and Györi [15]). Suppose n= r1 · r2 · r3 · · · rk−1 · rkt, where
r1, r2, . . . , rk, t are strictly positive integers satisfying (ri−1 − 1)2 < ri for every i ∈ [k]. Set

V = {(i1, i2, . . . , ik, ik+1) : ij ∈ [rj] for all j ∈ [k], ik+1 ∈ [t]}.
Define a graph G on V by joining pairs of vectors from V by an edge if and only if they differ in each
of the first k coordinates.

This construction gives rise to a d-regular graph with book number b, where

d =
k∏

i=1

(
ri − 1
ri

)
n and b=

k∏
i=1

(
ri − 2
ri

)
n.

Erdős, Faudree and Györi conjectured that this gives the correct behaviour for the minimum value
of the book number in graphs subject to a minimum degree condition.

Conjecture 4.2. (Erdős, Faudree and Györi [15]). Let x ∈Q with 1/2< x< 1. Let

x=
k∏

i=1

ri − 1
ri

with 3� r1 and (ri−1 − 1)2 < ri for 2� i� k be the (unique) ‘greedy representation’ of x. Set

b(x)=
k∏

i=1

ri − 2
ri

.

Then every graph on n vertices with minimum degree d� xn has book number at least b(x)n.

We believe that the minimum degree condition in Conjecture 4.2 can be replaced by a size
condition, and this belief seemed to be borne out by flag algebra computations we ran for this
problem.

Conjecture 4.3. Let x ∈Q∩ (1/2, 1) and b(x) be as above. Then β(x)= b(x), that is, any graph on
n vertices with at least x(n2/2) edges has book number at least b(x)n.

4.2 Maximal triangle-degree, book number and triangle density
In Sections 3 and 4.1 we discussed the maximum triangle-degree of a vertex and the book num-
ber (i.e. maximum triangle-degree of an edge) in graphs, giving conjectures on their minimum
value for a given edge density or minimum degree condition. Here we compare the conjectured
behaviour of these two triangle-related extremal quantities with each other and with the minimal
triangle density in graphs G with ρ

(n
2
)
edges for 1/2� ρ � 2/3.

Razborov [56] showed that such a graph G contains at least κ(ρ)
(n
3
) + o(n3) triangles, where

κ(ρ)= 1
18

(1− √
2(2− 3ρ))(2+ √

2(2− 3ρ))2.

In addition, Lo [42] showed that if the minimum degree of G is at least ρn, then it contains at least
λ(ρ)

(n
3
) + o(n3) triangles, where

λ(ρ)= 3ρ(1− ρ)(2ρ − 1).
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Figure 1. The functions ρ · β ′(ρ), τ ′(ρ), λ(ρ), κ(ρ) (from top to bottom).

Conjecture 1.7 implies that every n-vertex graph with edge density ρ contains a vertex with
triangle-degree at least τ ′(ρ)

(n
2
) + o(n2), where

τ ′(ρ)=

⎧⎪⎪⎨
⎪⎪⎩

3
2

(
ρ − 1

2

)
if
1
2
� ρ � 11

18
,

ρ − 4
9

if
11
18

� ρ � 2
3
.

Finally, let β ′(x) denote the function obtained by extending the function b(x) from Conjecture 4.2
from the rationals in (1/2, 2/3] to a monotonically increasing left-continuous function on the
whole interval. This last function unfortunately does not have a nice closed form, but we can plot
an approximation of it (or rather, ρβ ′(ρ)) along the other three in Figure 1, allowing for a visual
comparison of the four functions κ , λ, τ ′ and ρβ ′ in the interval ρ ∈ (1/2, 2/3].

Clearly, by averaging we have that κ(ρ) is the smallest of the functions in Figure 1. Assume now
that Conjecture 1.7 is true. Then Constructions 3.2 and 3.3 provide ρn-regular graphs G of order
n with tmax(G)= τ (ρ)n2/2+ o(n). Averaging the triangle-degree over all vertices, this would give
that λ(ρ)� τ (ρ).

Further assuming Conjecture 4.2 is true, Construction 4.1 gives a ρn-regular graphG of order n
with book number βn that is triangle-degree regular with tmax(G)= ρβ(ρ)

(n
2
) + o(n2). This would

imply that τ (ρ)� ρβ(ρ), and all together

κ(ρ)� λ(ρ)� τ (ρ)� ρβ(ρ). (4.1)

In Figure 1 we have plotted the four functions κ(ρ), λ(ρ), τ ′(ρ) and ρβ ′(ρ) in the interval
[1/2, 2/3]. As the plot shows, the inequalities in (4.1) with τ ′ and β ′ taking the place of τ and
β all hold in [1/2, 2/3] with equality if and only if ρ = 1/2 (for the first two inequalities) or 2/3
(for all three).
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