
J. Fluid Mech. (2025), vol. 1017, A41, doi:10.1017/jfm.2025.10421

Orientation of flat bodies of revolution in shear
flows at low Reynolds number

Davide Di Giusto
1,2

, Laurence Bergougnoux
1

and Elisabeth Guazzelli
3

1Aix Marseille Université, CNRS, IUSTI, Marseille, France
2Dipartimento Politecnico di Ingegneria e Architettura, University of Udine, Italy
3Université Paris Cité, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, France
Corresponding author: Davide Di Giusto, digiusto.davide@spes.uniud.it

(Received 4 December 2024; revised 28 March 2025; accepted 28 April 2025)

We experimentally investigate the rotational dynamics of neutrally buoyant flat bodies of
revolution (spheroids, disks and rings with different cross-sectional shapes) in shear flows.
In the Stokes regime, the axis of revolution of these rigid particles moves in one of a family
of closed periodic Jeffery orbits. Inertia is able to lift the orbit degeneracy and induces drift
among several rotations towards limiting stable orbits. Furthermore, permanent alignment
can be achieved for disks and rings with triangular cross-sectional shapes, provided the
inertia is sufficiently high. The bifurcations between the different dynamics are compared
with those predicted by small-inertia asymptotic theories and numerical simulations.
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1. Introduction
In the absence of inertial and Brownian effects, the axis of revolution of an axisymmetric
rigid particle suspended in a simple shear flow rotates along one of an infinite family of
closed periodic orbits, known as Jeffery orbits. These orbits depend solely on the initial
orientation of the particle. This result was demonstrated by Jeffery (1922) for ellipsoids
of revolution (or spheroids) and extended to almost any body of revolution by Bretherton
(1962) as long as an effective aspect ratio re is used in the equation for the rotation rate in
lieu of the actual aspect ratio r . For a simple shear flow with a shear rate of γ̇ , the Jeffery
period of rotation of the body is given by TJ = 2π(re + 1/re)/γ̇ , where re �= r in general,
except for a spheroid for which re = r .

The question of whether particles of specific shapes can stop rotating and achieve a
permanent alignment was first raised by Bretherton (1962). Bretherton (1962) suggested
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that a slender dumbbell consisting of two asymmetrical beads connected by a long rigid
rod could stop rotating, but concluded that this body was too unrealistically thin to be
constructed. The issue was recently revivified by Singh, Koch & Stroock (2013) and
Borker, Stroock & Koch (2018). Singh et al. (2013) showed that rings with appropriate
asymmetric cross-sectional shapes (i.e. a thinner outer edge and thicker inner edge) could
align permanently. The asymmetry between the inner and outer portions of the ring cross-
section was shown to result in a torque capable of cancelling the torque attempting to rotate
the particle in the vorticity direction. Borker et al. (2018) further expanded this analysis by
considering rings with a cross-section having a blunt inner and sharper outer edge, such
as Y-, L-, T- and triangular-shaped cross-sections, which could align at smaller aspect
ratios (�1/10) than the minimum aspect ratio of 1/30 reported by Singh et al. (2013). The
question of whether such particles can be designed in practice and observed to align in the
Stokes regime remains open.

Inertia is capable of modifying the rotational dynamics of axisymmetric rigid particles.
Weak inertia is indeed capable of lifting the degeneracy of the infinitely many stable
Jeffery orbits and inducing drift among several rotations towards limiting stable orbits.
Prolate bodies are attracted towards the tumbling orbit, while oblate bodies are carried
towards the spinning or the tumbling orbit as demonstrated in theoretical (Subramanian &
Koch 2005, 2006; Einarsson et al. 2015a,b; Dabade, Marath & Subramanian 2016; Marath
& Subramanian 2017, 2018) and numerical (Rosén et al. 2015a) works but also experiments
(Di Giusto et al. 2024). In the latter case of oblate bodies, a bifurcation between stable
and unstable tumbling is predicted at an aspect ratio ≈ 0.14 by asymptotic theories
(Einarsson et al. 2015b; Dabade et al. 2016) and is shown to survive up to particle
Reynolds numbers of the order of 5 in simulations (Rosén et al. 2015a). However, this
bifurcation is unexpectedly not observed experimentally (Di Giusto et al. 2024). As inertia
is further increased, the period of rotation increases and a bifurcation towards a stable fixed
orientation is predicted (Ding & Aidun 2000). As demonstrated by Ding & Aidun (2000),
for an elliptical cylinder or an ellipsoid suspended in shear flow, the transition to stable
orientation occurs through a saddle-node bifurcation, resulting in a period of rotation that
varies as a power-law of the distance to the transition with an exponent of –1/2 when
approaching the transition. This later scaling law was validated in an experimental study
of an elliptical cylinder subjected to shear flow (Zettner & Yoda 2001). Further research
delved more deeply into the complete dynamical states of particles in shear flow with
inertia (Rosén et al. 2014, 2015a,b). In particular, it was demonstrated that the exponent
−1/2 in the scaling law is universal and independent of particle shape or any geometric
aspect ratio in the flow (Rosén et al. 2014).

The present work is an experimental investigation of the rotational dynamics of neutrally
buoyant flat bodies of revolution (oblate spheroids, disks, rings with different cross-
sectional shapes) in shear flows. The objective is to determine whether a bifurcation
towards stable orientation can be observed. The experimental methods are described
in § 2. Deep learning methods are used to infer the three-dimensional orientation of
the bodies. The experimental results are presented in § 3. The bifurcations between
the different dynamics are compared with those predicted by asymptotic theories and
numerical simulations. Concluding remarks are drawn in § 4.

2. Experimental methods

2.1. Particles and fluids
This study considers oblate particles of various shapes, some of which are displayed in
figure 1. These include axisymmetric bodies such as spheroids, disks and rings, classified
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(a) (b)
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Figure 1. Typical particles used in the experiments: (a) side and (c) top views of the circular ring R02; (b) side
and (d) top views of the triangular ring TR012. (e) Illustration of the four different ring sections considered in
this study. The particle symmetry axis is drawn as a dash-dotted line for each case.

based on their particle aspect ratio r , defined as the ratio between their length 2� and their
diameter 2a. A variety of rings with differing cross-sectional shapes are manufactured,
including those with circular, triangular, L-shaped and T-shaped cross-sections. The shape
of these rings is contingent upon a third parameter, namely the radius of the inner hole,
which is denoted as b. Images of the particles are captured with a Hirox RH-2000 digital
microscope, which offers a resolution of more than 200 pixels per mm. Ten digital
measurements of the particle sizes are then performed using the software ImageJ, and
the statistical analysis of the results is reported in table 1.

Particles are digitally designed using Blender Community (2018) and fabricated by
three different rapid prototyping methods. The first batch (batch I) is constituted by disks
(D002, D003, D004) that have been laser cut from rigid Plexiglas sheets with a density
of 1160 kg m–3. Stereolithography is employed to manufacture the particles constituting
the second batch (batch II), which includes one ellipsoid (ELL06), all circular rings, the
less flat triangular rings (TR01, TR012, TR04), and the special L-shaped (RL01) and
T-shaped (RT01) rings. This method is based on the polymerisation of a UV-sensitive
resin over three-dimensional layers, resulting in the production of high-resolution objects
(with a resolution of 25 µm) with an estimated density of 1200 kg m–3. The third and final
batch (batch III) comprises the most slender triangular rings (TR003, TR005, TR008),
which were fabricated using a computer numerical control (CNC) three-dimensional (3-
D) milling machine on thin sheets of Plexiglas. All the selected materials possess a Young
modulus of a few gigaPascals, which is sufficient to resist deformation within the viscous
shear flow, even for the thinnest sections (TR003).

In our experiments, it is necessary to suspend a single particle at a time in a viscous shear
flow under neutrally buoyant conditions. To achieve this, citric acid and Ucon oil are mixed
with pure water to prepare the necessary density-matched fluid. A variable quantity of
Ucon oil is added to the solution to adjust its viscosity within the range of 0.02 �μ� 0.8
Pa s. Thereafter, the concentration of citric acid is incrementally increased until the density
of the fluid ρ f matches that of the considered particle ρp. The final density of the fluid
is determined by means of an Anton Paar densimeter, with an estimated uncertainty of 4
kg m–3. Rheological measurements are employed to ascertain the viscosity of the solution,
with an uncertainty below 0.01 Pa s.
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Name Shape r a (mm) � (mm) b (mm) κ Batch

D002 Disk 0.026 ± 0.005 4.790 ± 0.033 0.125 ± 0.025 – 0.355 ± 0.013 I
D003 Disk 0.032 ± 0.006 7.732 ± 0.031 0.250 ± 0.050 – 0.573 ± 0.021 I
D004 Disk 0.044 ± 0.009 5.699 ± 0.047 0.250 ± 0.050 – 0.422 ± 0.016 I
ELL06 Spheroid 0.561 ± 0.002 2.291 ± 0.009 1.286 ± 0.002 – 0.170 ± 0.006 II
R009 Circular ring 0.087 ± 0.012 8.220 ± 0.024 0.715 ± 0.099 – 0.609 ± 0.023 II
R01 Circular ring 0.132 ± 0.012 8.054 ± 0.074 1.064 ± 0.094 – 0.597 ± 0.023 II
R02 Circular ring 0.227 ± 0.008 4.999 ± 0.009 1.135 ± 0.039 – 0.370 ± 0.014 II
R05 Circular ring 0.452 ± 0.073 5.013 ± 0.015 2.267 ± 0.367 – 0.371 ± 0.014 II
TR003 Triangular ring 0.031 ± 0.004 8.130 ± 0.095 0.256 ± 0.029 6.244 ± 0.042 0.602 ± 0.023 III
TR005 Triangular ring 0.053 ± 0.002 6.478 ± 0.063 0.343 ± 0.015 5.563 ± 0.064 0.480 ± 0.018 III
TR008 Triangular ring 0.085 ± 0.003 10.122 ± 0.029 0.864 ± 0.034 2.262 ± 0.037 0.750 ± 0.028 III
TR01 Triangular ring 0.109 ± 0.006 9.685 ± 0.312 1.058 ± 0.049 2.820 ± 0.394 0.717 ± 0.035 II
TR012 Triangular ring 0.120 ± 0.007 7.947 ± 0.025 0.954 ± 0.059 2.787 ± 0.046 0.589 ± 0.022 II
TR04 Triangular ring 0.397 ± 0.002 7.760 ± 0.020 3.080 ± 0.010 3.630 ± 0.050 0.575 ± 0.021 II
RL01 L-shaped ring 0.097 ± 0.002 10.33 ± 0.05 1.01 ± 0.02 2.66 ± 0.06 0.77 ± 0.03 II
RT01 T-shaped ring 0.116 ± 0.004 5.152 ± 0.014 0.596 ± 0.018 1.349 ± 0.026 0.382 ± 0.014 II

Table 1. Characteristics of all the particles used in the experiments. The columns from left to right provide
the following information: code name, shape, mean aspect ratio r , radius a, half-length �, hole radius b,
confinement ratio κ and identification of the production method.
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Figure 2. Sketch of the experimental apparatus. The tank (1) is shown with its perforated lid (2), through
which the two cylinders are hanging on both ends. The first cylinder is free to rotate (3), being coupled to a
transmission shaft (4) through a rolling bearing. The second cylinder is fixed (5). Between them, a transparent
plastic belt made of Mylar is kept under tension (6). The two cameras are also depicted: one is oriented to
observe the flow-gradient (x, y) plane (7), while the other is focused on the flow-vorticity (x, z) plane (8). The
operative volume where the experiments are performed is also shown in blue (9).

2.2. Shearing cell
A linear shearing cell apparatus is employed in the experiments, as illustrated in figure 2
and described in detail by Di Giusto et al. (2024). The apparatus comprises a small tank
(500 mm long, 40 mm wide and 90 mm deep) with transparent walls. A transparent
and flexible Mylar film is driven by an electric motor and pulled in tension by two
cylinders hanging at the extremities of the cell lid along its long side. During each
experiment, approximately 1.2 l of viscous fluid are poured into the tank at a controlled
room temperature of 23◦ ± 1◦. As the film continuously rotates at a constant velocity,
it shears the fluid confined between its inner surfaces, held at a distance L y of 27 mm.
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The sheared particles are inevitably confined between the two sides of the transparent belt,
with a confinement ratio κ = 2a/L y . Mean values of the confinement ratio are reported in
table 1.

The operative volume of the experiments extends for 140 mm in the flow direction x ,
30 mm in the vorticity/gravity direction z and 27 mm in the gradient direction y, with the
boundaries defined by the two inner surfaces of the transparent film. Two Allied Prosilica
GX1910 cameras are positioned to capture this region of the shear cell, as illustrated in
figure 2. Both cameras are equipped with a Nikon Micro-Nikkor 55 mm f 2.8 objective,
which enables the imaging of the shear cell with 1920 × 1080 pixels from a distance of
approximately half a metre. This produces undistorted images with a sufficient focal depth
and a resolution of approximately 20 pixels per mm over the considered particles. The
top camera is aligned with the vorticity axis z and images the flow-gradient (x, y) plane,
while the side camera is aligned with the gradient axis y and views the flow-vorticity (x,z)
plane. Planar (x, y) particle image velocimetry (PIV) measurements are recorded with
the top camera by shedding a laser beam at three different locations along the vorticity
axis z, corresponding to the upper, middle and lower sections of the operative volume. This
results in the observation of a constant shear rate γ̇ across the depth of the control volume.
A total of 40 PIV measurements is recorded using various viscous fluids, with shear rates
linearly varying between γ̇ = 3.18 ± 0.1 s−1 at μ = 0.02 Pa s and γ̇ = 3.63 ± 0.01 s−1 at
μ = 0.8 Pa s.

As fluid and particle densities are always matched to prevent sedimentation effects
(ρp � ρ f ), and the fluid is sheared at the highest rate γ̇ possible, the particle Reynolds
number Rep = ρ f a2γ̇ /μ is controlled through the fluid viscosity μ. Hence, inertial effects
are produced by reducing the Ucon oil concentration during the preparation of the fluid
as it reduces the viscosity μ. This implies that fluid and particle inertia effects are
indiscernible (Rep = St , with the Stokes number St = ρpa2γ̇ /μ).

2.3. Measurements

2.3.1. Particle tracking
The experiments are prepared by filling the cell with the selected fluid and initiating the
shearing motion of the transparent plastic belt. Subsequently, one particle from those
presented in table 1 is selected and positioned at the centre of the operative volume, as
close as possible to the zero velocity streamline. In this procedure, the initial orientation
of the particle is not precisely controllable and the result is essentially random. At this
moment, the video recording by the two cameras is activated and synchronised by a
luminous signal, signifying the initiation of the experiment. The frame acquisition is
conducted at a rate of 7.5 fps until the particle exits the camera field of view. Experiments
are typically repeated between 5 and 10 times for a given particle at each particle Reynolds
number, as reported in table 2. This methodology is adequate to measure multiple particle
rotations, but does not permit the observation of transverse migration over extended time
scales. For this reason, inertial lift measurements are not attempted in this work.

A Python script was developed in-house to track the particle across both top and
side camera fields during the recordings of the experiments. The script implements a
standard version of the Watershed method calling the high-level functions provided in
the OpenCV library (Bradski 2000). In detail, the image is binarised by thresholding to
separate between the background and the particle by simple morphological operations.
Then, the watershed algorithm is applied to find an accurate estimation of the particle
centre in the image plane. This operation is particularly challenging for slender rings,
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Particle Rep, nruns , �trun/T

D002 0.218, 3, 1.16 0.805, 5, 1.17 1.056, 5, 1.45 3.162, 5, – 4.835, 5, –
D003 0.525, 5, 1.01 0.688, 5, 0.89 2.060, 5, –
D004 0.077, 5, 1.47 1.119, 5, 0.91

ELL06 0.031, 5, 5.40 0.474, 11, 6.62 0.731, 5, 6.17 1.029, 6, 8.14

R009 0.098, 5, 2.45 0.869, 5, 1.87
R01 0.150, 5, 3.47 0.389, 5, 4.55 3.067, 5, 2.35
R02 0.058, 5, 4.90 0.150, 5, 6.24 1.181, 5, 4.88
R05 0.058, 5, 4.29 0.151, 5, 6.79 1.188, 5, 2.66

TR003 0.360, 5, 1.30 0.867, 5, – 1.245, 5, –
TR005 0.131, 5, 2.35 1.394, 5, – 1.757, 5, –
TR008 0.149, 5, 2.05 1.069, 5, 1.81 4.898, 5, –
TR01 0.217, 5, 3.11 0.561, 5, 2.69 4.266, 5, –
TR012 0.146, 5, 2.79 0.379, 5, 3.11 2.986, 5, 1.61
TR04 0.084, 5, 3.31 2.097, 5, 3.20

RL01 0.155, 5, 4.17 1.113, 5, 1.85
RT01 0.154, 5, 3.44 1.108, 5, 3.70

Table 2. For each particle type used in the experiments (first column), the particle Reynolds number, Rep , the
number of runs, nruns , and the mean duration of the shearing normalised by the (experimentally measured)
mean period of rotation, �trun/T , are provided. In the case of aligning particles, the mean duration of the
shearing is not calculated.

since they offer the lowest surface to the camera field of view. Consequently, each frame
is cropped to a 4a × 4a image, which displays the particle under consideration.

2.3.2. Orientation measurements with convolutional neural network
The measurement of the orientation of both axisymmetric and asymmetrical particles
represents a significant challenge. Cylindrical and ellipsoidal shapes present simple
geometrical relations that can be exploited to regress their orientation from their axes-
aligned bounding boxes (Di Giusto et al. 2024). However, this method is not readily
generalisable to asymmetric particle shapes. Consequently, we have developed a new
data-driven approach, which is sketched in figure 3.

As previously outlined in § 2.1, the particle fabrication methods necessitate the
generation of a digital model of each object in the format of a ‘.stl’ file, see panel (a)
of figure 3. It is thus possible to create a synthetic dataset of virtual images of oriented
particles that closely resemble the frames recorded during the experiments, as illustrated
in panel (b) of figure 3. Further details regarding the dataset preparation can be found
in Appendix A. The labelled data can then be used to train a deep learning model, see
panel (c) of figure 3, and to measure the particle orientation from pairs of perpendicular
views, as detailed in Appendix B. Concurrently, the ‘.stl’ file is used to reproduce a
physical copy of the considered particles through rapid prototyping, see panel (d) of
figure 3, as described in § 2.1. The rotational dynamics of the aforementioned object are
then recorded during the experiments, see panel (e) of figure 3, using the set-up described
in § 2.2.

Two additional operations are conducted during the post-processing of the experimental
recordings. First, the Watershed algorithm is applied to track each particle across the
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Figure 3. Sketch of the convolutional neural network. The operative process is as follows: a given particle
geometry, represented by a ‘.stl’ file in panel (a), is used as the basis for the generation of a synthetic data set in
Blender in panel (b). This data set is then used to train a deep learning model, with the objective of estimating
the particle orientation given two perpendicular projections in panel (c). A physical particle corresponding to
the ‘.stl’ file is also created through rapid prototyping in panel (d) and employed in the experiments in panel
(e). Subsequently, the Watershed method in panel ( f ) is applied to the recorded data from the experiments
prior to the deep learning model inference operation in panel (g), which estimates the time-evolution of the
three-dimensional particle orientation vector n in the given experiment.

camera frames, as described in § 2.3.1. Subsequently, the deep learning model can infer
the three-dimensional particle orientation from each couple of perpendicular frames and
estimate the rotational dynamics of the considered particles, see panels ( f ) and (g) of
figure 3.

Among all deep learning architectures, convolutional neural networks (CNNs) are
particularly adept at extracting features from visual inputs (Szegedy et al. 2015), as
evidenced by their successful application to a range of tasks, including face recognition
(Taigman et al. 2014), real-time object detection (Redmon et al. 2016) and autonomous
driving (Bojarski et al. 2016). CNNs were directly inspired by the hierarchical functioning
of neurons in the visual cortex of simple mammals (Hubel & Wiesel 1959, 1968). This
resulted in the implementation of a simple convolution down sampling architecture into
a first neural network for visual pattern recognition (Fukushima 1980). Subsequently,
LeCun et al. (1998) stacked convolutional and pooling layers with a fully connected neural
network to build the LeNet-5 architecture, one of the first CNNs, and successfully applied
it to handwritten digit recognition.

In this study, we adapt the LeNet-5 architecture to quantify the three-dimensional
orientation of axisymmetric and asymmetric particles from each pair of perpendicular
frames of the video recording of the experiments, as sketched in figure 3. The image pairs
are initially processed separately, with each frame of a pair allocated to a dedicated branch
comprising three consecutive two-dimensional convolutional layers. These layers have
kernel sizes of 5 × 5 pixels, the first layer containing 8 feature maps and the second 16.
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Circular ring, r = 0.23, req = 0.27, Rep = 0.06

Figure 4. Evolution of the components of the orientation vector n, displayed as vertically aligned panels,
against the dimensionless time t γ̇ for the circular ring R02 with aspect ratio r = 0.23 at a small Rep
= 0.06. See Supplementary movie 1 for animations and the Jupyter Notebook (https://www.cambridge.org/
S0022112025104217/JFM-Notebooks/files/figure_4/Figure_4.ipynb) of the figure including the data.

Each convolutional layer is followed by a two-dimensional max-pooling operation with a
pool size of 2 × 2 pixels. Subsequently, the two streams are concatenated, and three fully
connected layers with 256 features each are applied to ascertain the orientation vector of
the particle, represented by n. In accordance with Krizhevsky, Sutskever & Hinton (2012),
the Rectified Linear Unit (ReLU) was selected as the activation function for all layers
except the final one. In this case, a linear mapping was employed to determine the three
components of n, which were then normalised by their Euclidean norm to ensure the
consistency of the orientation. The parameters of the CNN are trained over synthetic
images of axisymmetrical and asymmetrical particles generated following the procedure
described in Appendix A. The network is trained to infer the particle orientation from its
two perpendicular views by minimising a loss function given by the Euclidean norm of
the difference between the true particle orientation vector, ntrue, and the predicted particle
orientation vector, npred . An additional penalisation is determined whenever a negative
value of the n3 component is observed. The optimisation is performed through the Adam
algorithm. Further details about the training procedure can be found in Appendix B.

CNNs have been successfully applied to estimate fluid motion (Cai et al. 2019)
or to detect submicron particles (Newby et al. 2018). However, to the best of our
knowledge, this is the first time that such a method has been proposed to measure the
orientation of macroscopic axisymmetric and asymmetric particles. Convolutional neural
networks (CNNs) are found to provide a satisfactory compromise between simplicity
and effectiveness. However, other neural architectures may prove to be more effective.
Consequently, a benchmark consisting of a comprehensive set of experimental videos is
provided, accompanied by the spheroid ELL06 ‘.stl’ file and training data.

2.3.3. Data analysis
Once trained, the neural network is capable of reconstructing the time evolution of the
particle orientation vector n during each experiment in a few seconds. A typical result
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with the circular ring R02 is displayed in figure 4. Despite the presence of occasional
noise, the periodic nature of the three components, namely n1, n2 and n3, can be discerned
against the dimensionless time t γ̇ . Subsequently, other significant quantities can be
determined. The Fourier transform of the signals can be calculated, thereby providing the
period, T . Furthermore, a minimum difference threshold criterion is established on the
two highest peaks of the power spectrum of the particle polar angles, with the objective
of distinguishing between rotational and aligned dynamical states. The components of the
reconstructed vector n can be used to determine the azimuthal angle, φ, and polar angle, θ ,
of the orientation. This is achieved by calculating the following expressions:

n1 = sin(φ) sin(θ), (2.1)

n2 = cos(φ) sin(θ), (2.2)

n3 = cos(θ). (2.3)

The distinction between rotational and aligned dynamical states based on the power
spectrum is always visually verified by examining the components of the vector n. It is
acknowledged that the data may contain some errant points due to minor imprecisions in
particle tracking or 3-D orientation estimation. However, the methods used to calculate
the period of rotation and to determine the aligned dynamical states are based on Fourier
analysis, which results in robustness to these small inaccuracies. Further details can be
found in Di Giusto et al. (2024).

3. Experimental results

3.1. Period of rotation
Figure 5 depicts the dimensionless period of rotation, T γ̇ /2π , of the flat bodies of
revolution as a function of particle aspect ratio, r . The data are obtained by averaging over
all available experiments for small particle Reynolds number, Rep � 0.5. The measured
period of these particles consistently falls below the Jeffery curve, indicating that the
period is consistently smaller than that of the corresponding spheroid at the same r .
As previously stated in § 1, an equivalent aspect ratio, req , can be determined for any body
of revolution to recover the Jeffery period. To be more precise, req can be calculated from
the equation T γ̇ = 2π(req + 1/req), where T represents the measured period of rotation.
When the ring has a circular-shaped cross-section, i.e. when the ring is a circular torus,
Singh et al. (2013) proposed that the effective aspect ratio at the leading order is given
by req = 0.903r

√
ln 1/r . This theoretical prediction is in excellent agreement with the

present measurements for rings with circular-shaped cross-section, and even for rings with
triangular-shaped and L-shaped cross-section. The period of the other bodies (rings with
T-shaped cross-section, oblate ellipsoids and disks) appears to be more closely in agree-
ment with the empirical correlation proposed by Harris & Pittman (1975), namely req =
1.14 r/r0.156. It is important to highlight that all these particles have always been observed
to rotate for Rep � 0.5. It is possible that the rings may lack the requisite flatness to permit
long-term alignment at low Reynolds numbers, as postulated by Borker et al. (2018).

The influence of inertia on the period of rotation is addressed in figure 6, where the
experimentally measured period of rotation, T , is plotted against the particle Reynolds
number, Rep. The period is normalised by the Jeffery period, TJ = 2π(req + 1/req)/γ̇ ,
using the equivalent aspect ratio req inferred from the data of figure 5 at low Rep. For
Rep < 0.8, inertia has a negligible effect on the period of rotation, which remains equal
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Singh et al. (2013)
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Figure 5. Period of rotation, T , of the flat bodies of revolution against the particle aspect ratio r . The
period is made dimensionless using the shear rate γ̇ and normalised by a factor 2π . The experimental
values are displayed as coloured circles (rings with circular-shaped cross-section), triangles (rings with
triangular-shaped cross-section) and squares (disks). The special rings with L- and T-shaped cross-section
as well as the oblate ellipsoid are displayed with the letters L, T and O. Each point is the average over all
the available experiments for small particle Reynolds numbers (Rep � 0.5). The theory of Jeffery (1922),
the semi-empirical correlation of Singh et al. (2013) and the empirical expression of Harris & Pittman
(1975) are displayed as a solid black line, a dashed blue line and a dash-dotted pink line, respectively. See
the Supplementary material for the directory of the figure including the data and the Jupyter Notebook
(https://www.cambridge.org/S0022112025104217/JFM-Notebooks/files/figure_5/Figure_5.ipynb).

to the Jeffery period, TJ . As Rep � 1, the period exhibits a noticeable increase and, in the
case of flat disks and rings with triangular cross-sections, may even reach infinity.

3.2. Dynamics
Having previously examined the influence of inertia on the period in figure 6, we now
turn our attention to the effect of inertia on the global dynamics of the flat bodies.
Figures 7, 8 and 9 display the three components of n in the flow (n1), gradient (n2)
and vorticity (n3) directions against the dimensionless time, t γ̇ . To facilitate clarity of
presentation, we have chosen to focus the discussion on a subset of four runs for a typical
circular ring (i.e. a ring with circular-shaped cross-section), triangular ring (i.e. a ring
with triangular-shaped cross-section) and disk at small Rep � 1 and at larger Rep � 1. We
also compare our results with the theory of Jeffery (1922) and the asymptotic theories of
Einarsson et al. (2015b) and Dabade et al. (2016). It is important to stress that, although
the theories consider an unbounded system, there is some degree of confinement in the
experiments (κ ≈ 0.2−0.7) which may influence the dynamical behaviours as outlined by
Rosén et al. (2015a). Moreover, the asymptotic theories of Einarsson et al. (2015b) and
Dabade et al. (2016) are strictly valid only for Rep � 1. It is therefore not possible to
expect these theories to accurately describe the dynamics at Rep � 1, as also discussed by
Rosén et al. (2015a).
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TJ/T

Figure 6. Inverse of the experimentally measured period of rotation T normalised by the Jeffery period, TJ =
2π(req + 1/req )/γ̇ , against the particle Reynolds number, Rep . The data symbols are identical to those in
figure 5. Each point is the average over at least three experiments. The Jeffery period is calculated at the lowest
particle Reynolds number for each particle, corresponding to the dotted black line within this normalisation.
See the Supplementary material for the directory of the figure including the data and the Jupyter Notebook
(https://www.cambridge.org/S0022112025104217/JFM-Notebooks/files/figure_6/Figure_6.ipynb).
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Rep = 0.06 Rep = 0.06 Rep = 0.15 Rep = 1.19
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0
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n3

0 50 0 100 0 25

Circular ring, r = 0.45, req = 0.33

Figure 7. Evolution of the components of the orientation vector n, displayed as vertically aligned panels,
against the dimensionless time t γ̇ for the circular ring R05 with aspect ratio r = 0.45 at Rep = 0.06,
Rep = 0.06, Rep = 0.15 and Rep = 1.19 (from left to right). The two cases at Rep = 0.06 correspond to
different initial orientations, leading to different Jeffery orbits. Comparison with the model of Jeffery (1922)
and of Einarsson et al. (2015b) are also given as black solid lines and black dashed lines, respectively.
See Supplementary movies 2–4 for animations and the Jupyter Notebook (https://www.cambridge.org/
S0022112025104217/JFM-Notebooks/files/figure_7/Figure_7.ipynb) of the figure including the data.
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Figure 8. Evolution of the components of the orientation vector n, displayed as vertically aligned panels,
against the dimensionless time t γ̇ for the triangular ring TR008 with aspect ratio r = 0.09 at Rep = 0.15,
Rep = 1.07, Rep = 4.90 and Rep = 4.90 (from left to right). The two cases at Rep = 4.90 demonstrate
the systematic alignment of the particle in the plane of shear. Comparison with the model of Einarsson
et al. (2015b) is also given as black dashed lines. See Supplementary movies 5–7 for animations and the
Jupyter Notebook (https://www.cambridge.org/S0022112025104217/JFM-Notebooks/files/figure_8/Figure_8.
ipynb) of the figure including the data.

We start by examining the influence of inertia on the dynamics of the circular ring with
aspect ratio r = 0.45. At very small Rep = 0.06, the ring approximately follows a Jeffery
orbit with no significant drift between the successive rotations. At larger Rep = 0.15 and
Rep = 1.19, the ring appears to remain in the tumbling orbit in the plane of shear during
several periods of rotation. At Rep = 0.15, the ring dynamics are well described by the
asymptotic theory of Einarsson et al. (2015b) and a slow drift toward the spinning orbit
may be discernable. At Rep = 1.19, the ring is predicted to drift into a spinning orbit, but
in the experiments, the ring remains in a tumbling orbit. As observed in experiments on
oblate spheroids and disks (Di Giusto et al. 2024), the bifurcation towards a single stable
spinning orbit above a critical aspect ratio of approximately 0.14, predicted by asymptotic
theory of Einarsson et al. (2015b) as well as by the numerical simulations of Rosén et al.
(2015a) at Rep = 1−5, does not appear to be clearly observed for a circular ring. However,
since inertial effects also depend on the detailed particle geometry, there is no fundamental
reason why the critical aspect ratio for rings should be the same as that of spheroids, even
with the same equivalent aspect ratio. As previously noted, these theories are strictly valid
for Rep � 1. It may be that discerning a clear bifurcation towards the spinning orbit in
the experiments may necessitate a considerably longer observational timeframe, i.e. over
more than 10 rotational periods, which is challenging to achieve experimentally.

We then consider the triangular ring with aspect ratio r = 0.09 in figure 8. At small
Rep = 0.15, a drifting behaviour is observed in agreement with the asymptotic theory of
Einarsson et al. (2015b). For larger Rep = 1.07, the asymptotic theories predict a slightly
faster drift, which is expected since these theories are strictly valid only for Rep � 1.
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Figure 9. Evolution of the components of the orientation vector n, displayed as vertically aligned
panels, against the dimensionless time t γ̇ for the disk D003 with aspect ratio r = 0.03 at Rep =
0.52, Rep = 0.52, Rep = 2.06 and Rep = 2.06 (from left to right). Comparison with the model of
Einarsson et al. (2015b) is also given as black dashed lines. The two cases at Rep = 0.52 correspond
to different initial orientations, resulting in an inertial drift towards the spinning (first column) and
tumbling (second column) limiting cycles. The two cases at Rep = 2.06 correspond to different initial
orientations, determining an alignment of the particle in the plane of shear (third column) or in the
vorticity direction (fourth column). See Supplementary movies 8–9 for animations and the Jupyter Notebook
(https://www.cambridge.org/S0022112025104217/JFM-Notebooks/files/figure_9/Figure_9.ipynb) of the figure
including the data.

It is noteworthy that the period of rotation is observed to increase from Rep = 0.15 to
Rep = 1.07. For even larger Rep = 4.09, a permanent alignment in the plane of shear is
observed.

Finally, we turn to the discussion of the disk D003 with aspect ratio r = 0.03 in figure 9.
For the smallest Rep = 0.52, the particle experiences a drift towards either a spinning or
a tumbling orbit, contingent upon its initial orientation. The theory of Einarsson et al.
(2015a) successfully predicts the existence of these two limiting orbits. For larger
Rep = 2.06, alignments with orientation either in the plane of shear or in the vorticity
direction are observed.

3.3. Bifurcations
A summary of the dynamical behaviours exhibited by the circular and triangular rings as
well as the disks can be found in the bifurcation map displayed in figure 10 which follows
that proposed by Rosén et al. (2015a). The Rep versus req map shows whether the observed
dynamics is rotational or aligning. Empty data symbols represent rotational dynamics and
full data symbols represent aligning dynamics. The map depicts various bifurcation limits.
It should be noted that the map provides a comprehensive representation of both oblate and
prolate sides for the sake of completeness.
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Figure 10. Particle Reynolds number, Rep , against the equivalent particle aspect ratio, req . The experiments
are displayed as coloured circles (rings with circular-shaped cross-section), triangles (rings with triangular-
shaped cross-section) and squares (disks), which are empty (or full) when rotational (or aligning) dynamics
is observed. Each point is the average over at least three experiments. The equivalent particle aspect ratio is
calculated at the lowest particle Reynolds number for each particle. The bifurcations between stable tumbling
and stable fixed orientation in the slender oblate and prolate limits derived by Rosén et al. (2015a) are shown
as black solid lines, while the bifurcation between stable and unstable tumbling given by Einarsson et al.
(2015b) and Dabade et al. (2016), and extended to the small inertial regime by Rosén et al. (2015a), is drawn
as a brown dashed line. The limits between tumbling and stable orientation given by the lattice Boltzmann
as well as the steady-state simulations of Rosén et al. (2015a) are also displayed as solid cyan octagons.
See the Supplementary material for the directory of the figure including the data and the Jupyter Notebook
(https://www.cambridge.org/S0022112025104217/JFM-Notebooks/files/figure_10/Figure_10.ipynb).

The predicted bifurcation from stable to unstable tumbling is indicated by the brown
dashed line. This bifurcation was predicted to occur at a critical aspect ratio of 0.137 in
the asymptotic theories (Einarsson et al. 2015b; Dabade et al. 2016). This bifurcation limit
was extended in the time-resolved lattice Boltzmann simulations of Rosén et al. (2015a)
and shown to survive up to Rep = 5, even with a confinement of κ = 0.2. This bifurcation
was unexpectedly not observed in the previous experiments of Di Giusto et al. (2024)
having similar confinement and is still not clearly observed in the present experiments.
As previously mentioned in § 3.2, it is possible that the transition from a tumbling to a
spinning orbit may require a significantly longer observational timeframe.

The bifurcation from tumbling in the flow-shear plane to a stable fixed orientation
is given by the solid lines in the oblate and prolate asymptotic limits as predicted by
the asymptotic theory (Rosén et al. 2015a). Bifurcations to a fixed point, as observed
in the lattice Boltzmann as well as steady-state simulations, are also indicated by solid
cyan octagons. The agreement between the predictions of the asymptotic theory and
the simulations is only qualitative, as the theory is only valid for Rep � 1. The present
experimental bifurcation limit for disks and rings appears to be in good agreement with
the numerical simulations carried out for spheroids. This further suggests that the Rep
versus req bifurcation map is the most appropriate description for these systems beyond
spheroids.
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Figure 11. Dimensionless period, T γ̇ , versus the distance to the bifurcation to a fixed orientation, Rep,c −
Rep . The dashed line is the best fit of the experimental data to the scaling law (Rep,c − Rep)

−1/2 using the
critical particle Reynolds number predicted by the asymptotic theory, Rep,c = 15 req (Rosén et al. 2015a).
The data symbols are identical to those in figure 5. See the Supplementary material for the directory of
the figure including the data and the Jupyter Notebook (https://www.cambridge.org/S0022112025104217/
JFM-Notebooks/files/figure_11/Figure_11.ipynb).

We now examine the critical behaviour of the period below the bifurcation, as illustrated
in figure 11. The period, which has been normalised by the shear rate, T γ̇ , is plotted
against the distance to the bifurcation towards a fixed orientation, Rep,c − Rep. It tends to
infinity as (Rep,c − Rep)

−1/2 using the critical particle Reynolds number predicted by the
asymptotic theory (Rosén et al. 2015a), Rep,c = 15 req (as req → 0), which is indicated in
figure 10. This result is in agreement with the prediction of Ding & Aidun (2000) and the
experiments of Zettner & Yoda (2001). The fitting of the data yields a prefactor of 67 ± 13.
The experimental data deviate from this scaling law when the distance from the threshold
becomes too large, i.e. Rep,c − Rep � 3, as can be expected from a critical behaviour.

Figure 12 compares the behaviour of the alignment angle in the flow-shear plane, φa ,
with the aspect ratio, req , above the bifurcation with the prediction of the asymptotic theory
(Rosén et al. 2015a). This theory predicts that the flat body aligns in the flow-shear plane
at the azimuthal angle φa = π/2 + req + (30 req)1/2(Rep,c − Rep)

1/2/15 with Rep,c =
15 req as req → 0. The theoretical predictions have been calculated using the experimental,
req , and experimental distance to the bifurcation, Rep,c − Rep. The experimental data
qualitatively follow the predictions. It is clear that as the flatness increases, the orientation
angle becomes more perpendicular to the flow direction.

4. Concluding remarks
The rotational dynamics of neutrally buoyant flat bodies of revolution (spheroids, disks
and rings with different cross-sectional shapes) have been examined in shear flows.
A custom-built shearing cell and deep learning methods have been used to obtain direct
measurements of the orientation and period of rotation of these bodies.

At low particle Reynolds numbers, these bodies rotate with the Jeffery period, exhibiting
an equivalent aspect ratio that is in good agreement with the predictions of Singh et al.
(2013) for rings with circular or triangular cross-sections, and with the correlations of
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Figure 12. Alignment angle in the flow shear plane, φa , versus the equivalent aspect ratio, req . Comparison
with the prediction of the asymptotic theory, φa = π/2 + req + (30 req )1/2(Rep,c − Rep)

1/2/15 with
Rep,c = 15 req as req → 0 (Rosén et al. 2015a). See the Supplementary material for the directory of
the figure including the data and the Jupyter Notebook (https://www.cambridge.org/S0022112025104217/
JFM-Notebooks/files/figure_12/Figure_12.ipynb).

Harris & Pittman (1975) for rings with L- and T-shaped cross-sections, oblate ellipsoids
and disks. In contrast to the expectations set forth by Borker et al. (2018), no permanent
alignment has been observed for flat rings with triangular cross-sections in the Stokes
regime, even for the lowest aspect ratio of r ≈ 0.03.

When inertia is augmented, the rings are observed to migrate across Jeffery orbits
towards two attracting limiting orbits, namely the spinning orbit or the tumbling orbit,
contingent upon their initial orientation, as previously observed for oblate spheroids and
disks (Di Giusto et al. 2024). This is consistent with the theories of Einarsson et al. (2015b)
and Dabade et al. (2016). However, as previously seen for oblate spheroids and disks
(Di Giusto et al. 2024), a clear bifurcation between stable and unstable tumbling is not
observed in contrast to the predictions of the asymptotic theories (Einarsson et al. 2015b;
Dabade et al. 2016) and simulations (Rosén et al. 2015a). This unexpected result may be
attributed to the fact that the transition from a tumbling to a spinning orbit may necessitate
a considerably longer observational timeframe than that which can be practically achieved
in laboratory experiments. Also, an influence of the confinement ratio cannot be entirely
ruled out, and further investigation will be necessary to clarify this phenomenon. Overall,
there is a need for a more thorough explanation of the discrepancy between experiments
and the predictions of theory and simulations.

As the inertia is further increased, the period of rotation increases. For Rep ≈ O(1),
a sharp bifurcation to permanent alignment (with orientation either in the flow-shear
plane or along the vorticity direction) is even observed for flat rings of triangular cross-
sectional shape and flat disks. Below this bifurcation, the period is observed to approach
infinity as a power law of the distance to the transition with an exponent of −1/2, in
agreement with previous numerical predictions (Ding & Aidun 2000; Rosén et al. 2014,
2015a) and experimental observations (Zettner & Yoda 2001). Above this bifurcation, flat
rings of triangular cross-sectional shape and flat disks align in the flow-shear plane at an
orientation azimuthal angle that becomes more perpendicular to the flow direction with
increasing flatness, in qualitative agreement with the prediction of the asymptotic theory
(Rosén et al. 2015a).
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Appendix A. Data set generation
Although not available in the literature, labelled datasets of oriented axisymmetric
particles can be conveniently generated through virtual modelling and rendering practices
described here. During fabrication, each particle is modelled as a mesh of connected
triangles in Blender Community (2018). This software also offers a powerful framework to
render objects in 3-D scenes, conveniently managed through Python scripting. Therefore,
a virtual scene with two perpendicular cameras is configured in Blender, recreating the
disposition of the experimental set-up. Under ideal lighting conditions, the ‘.stl’ file
corresponding to the given particle is placed in the centre of the camera fields, with a
square field of view of size 4a × 4a at a resolution of 100 × 100 pixels. A Python script
then iterates over 80 × 40 randomly sampled values of azimuth φ and polar θ angles,
uniformly distributed to cover the entire range of the polar coordinates (np.random.uniform
function of the numpy Python package). At each iteration, the particle is oriented
according to the current polar coordinates and randomly shifted around the origin of the
scene before the two cameras render one image each, corresponding to the top and side
views of the experimental set-up, and labelled with the three components of the current
particle orientation vector n. This procedure results in a synthetic data set of 3200 pairs
of perpendicular images of a given particle labelled with its orientation. The data set
encompasses the full range of possible orientations and is applicable to cases where the
particle is not perfectly centred in the camera field. See the Supplementary material for
the Python script and the Blender scene files.

Appendix B. Training
The model deployed in this study adapts the LeNet-5 architecture (LeCun et al. 1998)
to a two-stream format, which is necessary to jointly process the videos synchronously
recorded by the top and side cameras. It is advantageous to develop a separate model
for each particle, but fine-tuning among the same shapes (disc, spheroid, circular ring
and triangular ring) speeds-up the convergence during training. Each neural network is
trained using small-batching for approximately 100 epochs until a residual error of less
than 10 % over the training data is achieved. The chosen optimiser is ‘Adam’ with a
default learning rate of 0.001. The training procedure takes a limited amount of time, of
the order of a few minutes. An 80 –20 % splitting between train and test sets is applied to
each particle synthetic dataset. As displayed in figure 13(a), both train and test residual
error curves converge during the training, highlighting the good generalisation of the
model over the unseen test data, very important for the accurate reconstruction of the
experimental orbits. The histogram of the final errors over train and test sets is also
displayed in figure 13(b), confirming the quality of the final predictions. These results are
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Figure 13. Evaluation of the model performance during training on the ELL06 synthetic particle dataset.
(a) Train and test loss curves against the number of epochs. (b) Histogram of the final norm-2 between
true and estimated values of the particle orientation vector n for both train and test sets. See the
Supplementary material for the directory of the figure including the data and the Jupyter Notebook
(https://www.cambridge.org/S0022112025104217/JFM-Notebooks/files/figure_13/Figure_13.ipynb).

obtained by applying a L2 regularisation to the weights of the convolutional layers during
the training to prevent the model from overfitting over the train set. The regularisation
weight is set to 0.001. The inference of an experiment is completed in less than a second.
The resolution of the experimental frames is adjusted by nearest interpolation to match that
of the synthetic images, over which the models are trained. We examine the sensitivity
to the resolution of the synthetic images, but find no significant improvement when the
resolution is increased by a factor of 4 or 16. The influence of the size of the dataset on
the accuracy of the measurement was evaluated, with the finding that a higher number
of images typically leads to smoother predictions. Finally, the possibility of using only
one camera for the measurements was tested with encouraging results. This opens up
interesting measurement perspectives for particularly challenging experimental scenarios.
Overall, we have proposed an original method for measuring the orientation of fore–
aft axisymmetric and asymmetric particles suspended in viscous shear flows using deep
learning. The method is highly generalisable to any scene that can be reproduced in the
proposed context, and therefore has applications beyond the field of fluid mechanics. For
this reason, all scripts and a sample of the training data are available at the repository
https://github.com/ddg93/LeRing_JFM.
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