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Aspects of topoi

Peter Freyd

After a review of the work of Lawvere and Tierney, it is shown
that every topos may be exactly embedded in a product of topoi
each with 1 as a generator, and near-exactly embedded in a
power of the category of sets. Several metatheorems are then
derived. Natural numbers objects are shown to be characterized
by exactness properties, which yield the fact that some topoi can
not be exactly embedded in powers of the category of sets,

indeed that the "arithmetic" arising from a topos dominates the
exactness theory. Finally, several, necessarily non-elementary,
conditions are shown to imply exact embedding in powers of the

category of sets.

The development of elementary topoi by Lawvere and Tierney strikes
this writer as the most important event in the history of categorical
algebra since its creation. The theory of abelian categories served as the
"right" generalization for the category of abelian groups. So topoi serve
for - no less - the category of sets. For each the motivating examples
were categories of sheaves, abelian-valued sheaves for the first,
set-valued sheaves for the second. But topoi are far richer than abelian
categories (surely foreshadowed by the fact that abelian-valued sheaves are
Just the abelian-group objects in the category of set-valued sheaves).
Whereas abelian categories, nice as they are, appear in various contexts
only with the best of luck, topoi appear at the very foundation of

mathematics. The theory of topoi provides a method to "algebraicize" much
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of mathematics.

In this work, we explore the exact embedding theory of topoi. Again
the subject is richer than that for abelian categories. It is not the case
that every small topos can be exactly embedded in a power of the category
of sets or even a product of ultra-powers (Theorem 5.23). It is the case
that every topos can be exactly embedded in a product of well-pointed topoi
(Theorem 3.23) ("well-pointed" means "1 is a generator"), and
near-exactly embedded in a power of the category of sets (Theorem 3.24)
("near-exact" means "preserves finite limits, epimorphisms, and
coproducts"). We thus gain several metatheorems concerning the exactness

theory of topoi (Metatheorem 3.31).

The obstructions to the existence of exact functors lie in the
"arithmetic" of topoi (Proposition 5.33, Theorem 5.52). No set of
elementary conditions can imply exact embeddebility into a power of the
category of sets (Corollary 5.15), but rather simple, albeit
non-elementary, conditions do allow such (§5.6). The easiest to state: a
countably complete topos may be exactly embedded in a power of the category

of sets.

The most impressive use of the metatheorems is that certain exactness
conditions imply that something is a natural numbers object (Theorem 5..43).
A consequence is that a topos has a natural numbers object iff it has an
object A such that 1 + A4 = 4 (Theorem 5.44).

We begin with a review of the work of Lawvere and Tierney (through
Corollary 2.63). All the definitions and theorems are theirs, though same
of the proofs are new. Sections 4.1 and 5.1 and Propositions 5.21, 5.22
are surely also theirs. It is easy to underestimate their work: it is not
Just that they proved these things, it's that they dared believe them

provable.

1. Cartesian closed categories

A cartesian closed category is a finitely bicomplete category such
that for every pair of objects A4, B the set-valued functor (-x4, B) is
representable. This is the non-elementary (in the technical sense of

"elementary") definition. We shall throughout this work tend to give first
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a definition in terms of the representability of some functor and then show
how such can be replaced with an elementary definition - usually, indeed,

with an essentially algebraic definition.

The translation from representability to elementary is the
Mac Lane-notion of "universal element". For cartesian-closedness (forgive,

oh Muse, but "closure" is Just not right) we obtain the following:
For every A, B there is an object BA and a map BA XA +B
{the "evaluation map'") such that for any X X A + B there
exists a unique f : X —+ & such that
XxA
Bxa— B .
Holding A fixed, BA becomes a functor on B : given f : B -~>C ,

fA : BA - CA is the unique map such that
BA ? A _fffi» CA XA ——> C = BA X A —— B I, c .

Holding B fixed, EA becomes a contravariant functor on 4 : given

'
g: A ~4, 89 . BA > BA is the unique map such that

Axa B A oy s xn YL A g,

One can easily verify that
AL A o pE o A

that is, BA is a bifunctor.

Recall thét a group may be defined either as a semigroup satisfying a
couple of elementary conditions or as a model of a purely algebraic theory
(usually with three operators: multiplication, unit, and inversion). It
is important that groups may be defined either way: .there are times when
groups are best viewed as special kinds of semigroups, and there are times

when they thrive as models of an algebraic theory. So it is with lattices,
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and every elaboration of the notion of lattice; and so it is with

cartesian-closed categories.

To begin with, a category may be viewed as a model of a two-sorted
partial algebraic theory. The two sorts are "maps”" and "objects". We are
given two unary operators from maps to objects, "domain" and "codomain",
and one coming back, 'identity map"; and we are given a partial binary
operator from maps to maps, the domain of which is given by an equation in
the previous operators. Partial algebraic theories for which such is the
case, namely those such that the partial operators may be ordered and the
domain of each is given by equations on the previous, are better than Jjust
partial algebraic theories. We shall call them essentially algebraic. A
critical feature of essentially algebraic theories is that their models are

closed, in the nicest way, under direct limits.

Finite bicompleteness becomes algebraic. The terminal object (better
called the "terminator™) is a comnstant, 1 , together with a uninary

operation, t , from objects to maps, such that

domain(tA) =4,
codcmain(tA) =1,
tl = ll R
a-LiptBa-g .

The equations that stipulate domain and codomain are conventionally

absorbed in the notation, thus: t(4) =4+ 1.

For binary products we have four binary operations, one from objects

to objects denoted A, X A2 , two from objects to maps denoted

1
1 2 1 1 2 2
one from maps to maps denoted
1o
X .
Ay XAy~ B, X B,

A
and one unary operation from objects to maps: A — 4 x4 . The
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equations:
Fixf 3 p: . '
AlXA2¥*BlXB2—L’Bi=AlXAQ-—’L-)A‘L._’L')B‘I:"L=l’2’
A P
A—>axa—tsa=1, i=1,2,
P R VR (gp1)*(gp,)
= —_—— —_— R
175 By x5,

For equalizers we have partiasl binary operators from maps, one to objects,

one to maps. The domain of each operator is given by the equations

domain(f) = domain(g) , codomain(f) = codomain(g)

We may denote the pairs f, g in the domain by 4 _iﬁﬂ» B . The
object-valued operator is denoted E(f, g) , the map-valued operator is
denoted E(f, g) ~ 4 .

We have a third partial operator from triples (%, f, g} of maps to

maps. The equations that define the domain are:

codomain(k) = domain(f) = domain(g) ,

codomain(f) = codomain(g) ,
hf = hg .

Given X —h+ A —I;g* B the value of this operator is denoted

X A, E(f, g) . The equations:

E(f, g)+A—f-»B=E(f,g)-»A—€->B,

x BB, g)sa=n,

k
X"L’ E(f, g) =X (X—’E(f’g)"AJ_. E'(f, g) .

We can make cartesian-closedness essentially algebraic by taking two
binary operators: one fram objects to objects denoted BA , one from

objects to maps denoted BA X A + B ; and a quaternary partial operator
from quadruples (X, 4, B, f) such that domain(f) = X x4 ,

codamain{f) = B , valued as a map X L B . e equations:
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X x A _EE;+ BA X A > B
x 4> &

o

(X, 4,8, xxa-LYN P xa+m .

Such is the nearest approximation to the previous elementary

definitions. It is usually more convenient to ask that BA is a bifunctor
covariant in the lower variable, contravariant in the upper, equipped with

natural transformations

: BA XA >B, et : B> (BXA)A

such that

e
Bxa LB | (pa x g AB, g

e* A
A ad, s G 4

The existence of elementary definitions should not, in itself, oblige
us to give elementary proofs. The great technical tour de force in Godel's
incompleteness proof, namely that primitive recursive functions (a
second-order notion if there ever was one) are all first-order definable
(indeed Gddel-recursive) does not oblige us, but allows us to stop worrying
about primitive recursive functions. Certainly it is worth knowing when
things are elementary - we shall use the elementary nature of topoi (for
example, Corollary 5.15, Theorem 5.23) and their essentially algebraic
nature (Theorem 3.21). First-order logic is surely an artifice, albeit
one of the most important inventions in human thought. But none of us
thinks in a first-order language. The predicates of natural dialectics
are order-insensitive (one moment's individuals are another's equivalence-
class) and our appreciation of mathematics depends on our ability to
interpret the words of mathematics. The interpretation itself is not

first-order.

The reduction of a subject to an elementary one - in other than the
formal method of set theory - usually marks &a great event in mathematics.
The elementary axioms of topoi are a testament to the ingenuity and insight
of human genius. I will refuse to belittle this triumph of mind over

matter by taking it as evidence that mind is matter.
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PROPOSITION 1.11 for cartesian-closed categories. The following
natural maps are isomorphisms:

0>0x4,

(4xC) + (BxC)

i}

[H n
=

N

- +

o

X

[}

—
p S
X
=]
~—

a
14
b
X
[sy]

BxC (BC
A°)7 .
Proof. Each is a result of the existence of an adjoint. For -X4 to

have a right-adjoint (—A) , it must be cocontinuous, hence it preserves

coproducts. Dually (—A] , having a left-adjoint, preserves limits. 4

is adjoint to itself on the right, hence carries colimits to limits.
Elementary proofs would go like this: for each X there exists
unique 0 X A > X Dbecause there exists unique 0 -» XA , hence 0 X A4 1is a
coterminator. u|
. A 0
Caution: O  need not be O . (Indeed 0" =1 .)

PROPOSITION 1.12 for cartesian-closed categories. If A4 -+ 0 exists
then A =0 .

Proof. The existence of A4 > 0 yields amap A >4 X 0 , and we

obtain
A+AX0>A= lA .
R
0
As always, 0 -+ A4 ~>0=1_ . a

0

A degenerate category is one with just one object and map. (Note that

finite bicompleteness implies non-empty.)
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PROPOSITION 1.13. A cartesian-closed category is degenerate iff

there exists 1 + 0 . (]

PROPOSITION 1.14. For any small R the category of set-valued

op
contravariant functors SA is cartestan-closed.
op
Proof. S has a generating set, the representable functors (herein
AP ACP
denoted HA ) For any T , =-xT : S - S is easily seen to preserve

colimits because such are constructable "object-wise" and -xTA : § -+ S
preserves colimits. Hence for any T, S, (-xT, S) carries colimits into
limits and the special adjoint functor theorem says that it is

representable.

We can, of course, construct S’T more directly. We know that

sT(a) = fﬂ

15 ST] = (HAXT, S) and we could use the latter as the definition
of ST(A) . The evaluation map ST x T+ S 1is easily constructed
object-wise: given (n, x) € (ST x TY(4) , that is, a transformation
n:H xT>S5 and an element =z € T(4) , define e(n, z) = nA(lA’ x) .
For the co-evaluation map S - (S x T)T , let z € S(4) and define

e*(x) € (8§ % T)T(A) as the transformation n x 1 : HA X T+ 8 X T where

n is such that n,{1,}) = x . All the equations are directly verifiable. D

H
A
Note that if A has finite products, then S ~ S(Ax-) , and hence

ST(A) is the set of transformations from T to S(4x-) .

op
If A is a monoid ¥ , S may be viewed as the discrete

representations of M and ST is the set of homomorphisms from M X T +to

S , where M 1is used to denote the "regular" representation.

If‘ M 1is a group, then a homomorphism f : ¥ X T + S 1is determined

by f(1, ) , x € T , and given any function g : T > S we may define

fla, x) = OIQ(OL—lx) . Thus ST is the set of all functions from T +to
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S . 0g is the function (og)(z) = a(g(a_lx)) . The forgetful functor

SM -~ S preserves exponentiation.

1.2 Heyting algebras.

A Heyting algebra is a cartesian-closed category in which for every

A, B, (4, B) y (B, A) has at mos£ one element. The latter condition
says, of course, that we are dealing with a partially ordered set. The
finite bicompleteness says that it is a lattice with O and 1 . The
cartesian-closedness says that there is an operation on the objects such
that
C

)

(4, BY) # ¢ iff (4xC, B) # ¢ .

We switch notation: the objects are lower-case x, ¥, 3, ... , the
existence of a map from & to y 1is stated with x <y , the product of
x and y is denoted z Ay , the coproduct as z VvV y , the "Heyting
operation" as x +y . We recall that the following equations give us a

lattice with x =y defined as x =x A Yy

lAg = , Ovzx=x,
x Nx =x x Vx =x ,
x ANy =Y Az , xVYy=yvazx

xz A (yrz) = (gry) Az, z v (yvz) = (zvy) vz,

z A (yve) = x = (xAy) v .
Non-equationally, x * Yy is characterized by 2z = (x + y) <ff
2Agx =y . That is, x * y 1is the largest element whose intersection

with x 1is dominated by y .

PROPOSITION 1.21 for Heyting algebras.

0=0Azx,
(zAy) v (zAz) = = A (yvz) ,
x>*1=1,
x> (yrz) = (x> y) A (z > 2),
0O->x=1,

(xvy) » 3= (x> 2) A (y > 2),
x=1+x,

(x/\y)-)z:x—)(y-)z).
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Proof. Translate Proposition 1.11. 0

PROPOSITION 1.22 for Heyting algebras. We can characterize zx Y
with the following equations:

x*r*zx=1,

zAlz>ry)=xznrny,
Y

(x>y) A(x+2z).

y A (x+y)
xz~+ (y A z)

Proof. Given 2z < (x »y) , that is, 2z =2z A (x + y) , then
zAxz=2A(x+y)Axz=2z2Ax Ay <y . Conversely, given ZAX =y,
we note first that the fact that f(u) = & + u preserves intersections
implies that it preserves order, and % » (2 Ax) =z +y . On the other
hand x > (2 Azxz) = (z>x)A(x+3)=x+2 and 2 A (z > 2) =2z , that

is, 2 <=x+2z . Hence z=<zxzr+z=x>(xAz)sx~>y. a

We define the negation of an element, denoted 1z , as x > 0 . Note
that 2 = 1x 1ff 2z Ax =0, that is, 1 x is the largest element

disjoint from x .

A complement of & 1is an element y such that x Ay = 0 and
xVy=1. Ina Heyting algebra, if & has a complement it must be

T2 : because * Ay =0=>y =71z and
xvy=1l=2Tz=Tlxaralzavy)=Txrzx)v (NxAry)
=Tz Ay=>Tlx=y.
PROPOSITION 1.23 for Heyting algebras. =z =717 x; <f x <y then
Ty=Tdx; lex=11T1x,

Proof. The first two statements are immediate. (T x) =771 (N x) by
the first statement, 71 (71 1 x) <77 x by the second applied to the first.O

A boolean algebra is a Heyting algebra which satisfies the further

equation z="1T=a .

In a boolean algebra, negation is thus an order-reversing involution
and De Morgan's laws are easy consequences: 1{(zx Ay)=Tlzv 1y . (Note

that in any Heyting algebra
T@vy =(zvy)+0=(x+0)Aa(y>0)=1xATy.)

Hence xvilizx =17 (xvlzx)=1(xAx)=10=1 and every element
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has a complement. Conversely if for all x , x vV lx =1 then
Tz=1zAalzviIzg)=(NTzazx) v (TIlzAalz)=TTxzArx=x.

It is easy to verify that in a boolean algebra x >y = lx V ¥y

A complete lattice has a Heyting algebra structure, by the adjoint

functor theorem, iff f(n) = x A n preserves all conjunctions, that is,

if for any set {yi} x A \/yi = \/Cr A yi) . Such is usually called

1€l ?
a complete distributive lattice. The lattice of open sets in a topological

space is therefore a Heyting algebra. Consider the unit interval, and let:

1=+,
x =,
Tx =« ,
x Vv la=r>d,
Tz =z ,
F(xvlz)=0,

T (x v 1x)

1,
(xvdzx)# V3 (xv T2} .

In any space, negation yields the interior of the set-theoretic complement.

Double negation yields the interior of the closure.

Another ready example of a complete Heyting algebra is the lattice of
left-ideals in any monoid. For a non-complete example, take any linearly

ordered set with 0 and 1 but otherwise not complete and define

1 if z =y,
(x > y) =
y if y <x .
In any Heyting algebra, define z <>y = (x » y) A (y > x) . Then
zs(zx<y) iff z2Ax=2AYy , that is, x +> y is the largest element
vhich meets x and y in the same way. Ve can reverse things to obtain
the symmetric definition of Heyting algebras, namely the operations and

equations of a lattice together with a binary operator satisfying:

le—+gx=x=x+1 (1 is a unit),
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x>z =1 (x is an inverse of =z ),

(x> y)Az=(x Az ynz)Arz (almost distributive).

Then (= y)rc=(xrxAy)rc=(ly)Arx=y Az . Similarly
(x> y) Ay =x Ay . Hence if z =< (x <> y) then
zAhz=zA(zy)Az=z2AYyAcx

and

2Ay=zA(zeoy)Ay=zAxAry,
that is zAx =23 Ay.
Conversely, if z A x =23 Ay , then
(x> y)nz=(xAz—y A_z) Az=1Az=2,

that is, 2z = (z < y)

We may then define x +y as x <> x Ay and verify z = (x > y)

iff zAx=y.

<> is a symmetric binary operation with a unit and inverses. It is
not associative in general, for Tz =z +>0 and 1 1x = (x> 0) <0 .

Associativity implies that T lz=z + (0= 0) =z« 1==zx .

Conversely, in boolean algebras, <+ 1is ‘associative. An orthogonal
comment: <> 1is a loop operation only in a boolean algebra, for given &

if we can find y such that y < 0 =x then 2z =1y =111y ="11g

Given a congruence = on a Heyting algebra it is easy to see that the

set F = {zlx = 1)} has the properties:
1€F,
zx€F=xvyccF,
z,y €F=x Ay €F .

We call such a set a filter. We can recover the congruence from F : z

m
«

iff (x <> y) € F because if x =y then (x <> z) = (x <> y) and
(x «>y) € F 3 if (x +*>y) =1 then

sz A(zry)l=ynrlz—y)Zy.

Moreover:

https://doi.org/10.1017/50004972700044828 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044828

Aspects of topoi 13

PROPOSITION 1.24 for Heyting algebras. If F <is a filter then the
relation = defined by z= =y iff {(x <> y) € F is a congruence.

Proof. = is clearly reflexive and symmetric. For transitivity
suppose (x +>y), (y <> 3) € F . It suffices to show that
(x <> y) A (y <> 2z) < (x> 2z) . (This is the only use of the fact that F
is closed under intersection.) And for that inequality we need only show

e y)r(y—=z)rac=(x+y) A (y <~ 2)Az,an easy matter.

For x = y=a Az =yAz it suffices to show

(x «+y) = (xzAz)+ (y Az), that is,

(x> y)r(xnrz)=(x—=y)A(ynrz),

an easy matter. For x Ty =x Vv a3 =y v z we must show
(@ y)Alxva)=(x+y)a (yva), which because of distributivity
is again an easy matter.
Finally for x S y = (z +> z) = (y <> 2z) it suffices to show

x+ry = {(y <> z)+ (x < 3) , that is,

(z>y)a (e z2)=(zey) Ay 2)
Using the third defining equation of <> , the left-hand side is
(z+—=y)ra (x> y) Ax+>r (x+y) A z] and the right-hand side is

(x> y)Al(x = y) Ay <> (z+>y) A z], clearly equal since

(x> y)hx=(xry)ry. o

1.3 Adjoint functors arising from cartesian-closed categories.

PROPOSITION 1.31. et A be a cartesian-closed category and A' C A
a full reflective subcategory, R : A +~ A' the reflector. Then R

preserves products iff for all B € A' , B e in A’ .
Proof. Suppose R(A x () = RA xRC , all A, C . We wish to show for

B €A , that for any C ¢ A, (RC, BA) = (c, BA) . (We are invoking the
"Kelly view" of full reflective subcategories, namely that A' consists of
all those objects X such that (RY, X) = (¥, X) . This can be seen by
letting Y = X . We obtain from (RX, X) »» (X, X) amap RY + X such
that X » BX » X =1 . From (RX, X)»» (X, X) we obtain

RX X »RX =1 . The Kelly view is that every full reflective subcategory
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is definable by stipulating a class of maps ( and then looking at all X
such that (f, X) 4is an isomorphism for all f € C )

To return:

(rc, B*) = (Roxa, B) = (R(RCxA), B =
(RcxRA, B) = (R(cx4), B) = (cx4, B) = (¢, BY) .

Conversely, if for all B € A’ , B’q € A’ , then we wish to show that
R(AxC) 1is, as defined in A' , a product of RA, RC .

It suffices, then, to show that A'(RAXRC, -) = A' (R(AxC), -} , that
is, for all B € A' , (RAxRC, B) = (R(AxC), B) . But
(r(axc), B) = (axC, B) and

1

(RaxkC, B) = (R4, B°C) = (4, BC) = (axc, B) = (rc, &)

(14

= (c, BA) =~ (4xc, B) . O

For any category A and B ¢ A, A/B denotes the category whose
objects are A-maps of the form 4 - B , and whose maps are triangles
A=A
Y/

B

ZB : A/B + A denotes the forgetful functor. Note that A/l » A is
an isomorphism. The naive construction of colimits in A/B works, that
is, given colimits in A .‘ The naive construction of equalizers in A/B
works; and it is the purest of tautologies that the A/B-product of 4 + B
and A' - B is their A-pullback. Note that the terminator of A/B is

1

B—— B .
PROPOSITION 1.32. ZB : A/B+ A preserves and reflects colimits,
equalizers, pullbacks and monomorphisms. nj

If A has finite products, we can define XB : A~ A/B by
4 +— (ax £ B) .

PROPOSITION 1.33. ZB is the left-adjoint of XB . O

The next proposition says for A cartesian-closed, that XB has a

right-adjoint. First, note the necessity of cartesian-closedness: if XB
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has a right-adjoint HB , then

(-xB, A) = (ZB(xB(-)), A] > (xB(-), xB(4)) = (-, ]'[B(XB(A))] ,

that is, given HB we can construct AB as HB(XB(A))

PROPOSITION 1.34. For cartesian-closed A, xB : A > A/B has a
right-adjoint.

Proof. Given LA-—f; B) € A/B define HB(A-—f; B) by the pullback
IIB(A—L»B) Ny
P

where 1 -+ BB corresponds to B-—l» B . For any C € A we obtain a

pullback in the category of sets
B
(c, (4 > B)) » (c, A7)

(c, )

(¢, 1)—— (c, B%) .

Three of these sets are naturally equivalent to other things and we obtain

a pullback
(c, My(a > B)) + (cxB, A)

l l(CXB, £)

1— (cxB, B) ,

where the bottom map sends 1 to C x B—E> B . Viewing (C, HB(A > B)]
as a subset of (CxB, A) , we note that it can be described as

fg:cxBra)cxB-dra-Lsp=cxp-Espl, vnich is precisely the

description of

a/B(c x 82 B, a-L B) = a/B(xB(C), a-L5B) . D
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We note here, in anticipation of the next chapter's development, that

for any Bl—Ji* 32 we can define f# : A/B2 > A/Bl by pulling back along

il Zf : A/B1 - A/B2 by composing with f . On the other hand Bl-—fé B,

can be viewed as an object in A/B2 , and we could consider

I : (A/B)/(B, +B.) >~ A/B,_ ,
f PR R 2
(B,=58,)

x(B) » B,) : A/B, (A/192]/(Bl > By) .
But (A/B2)/(Bl > 32) is isomorphic to A/Bl , and the isomorphism reveals

Z(Bl»Be) as Zf R X(Bl - Be) as f# .  Therefore f# has a right

adjoint, each f , iff A/B 1is cartesian-closed, each B .

1.4 Modal operators in Heyting algebras.

In any partially-ordered set, viewed as a category, the full
reflective subcategories are in one-to-one correspondence with the

order-preserving inflationary idempotents, that is, the functions f such
that

zsy= flx) = fly) ,
x = flz) ,
@) = flx)

Clearly, the reflector of a full reflective subcategory is such.

Conversely, given such f then Image(f) is reflective as follows:

Given y € Im(f) then x =y = f(x) = fly) =y and
flz) sy=2z=flz) <y .

As a corollary of Proposition 1.31 we obtain

PROPOSITION 1.41. [Let H be a Heyting algebra with a unary operator
denoted x such that

81
-

=
x =

x

1A

x lor zAx=2),
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zA(xVvy)).

zrsy=~z=<y for =

(=

=’(y+x)=(y+x) . O

]
81

Then vxy(x/\y=3:'/\y) iff ¥

XY

>

We shall say that z is a closure operator if

g8
81

z<z (or xAx=2x),
TAy=z Ay .

Note that the last equation implies x =y = z < 5 .

By the above remarks, the image of a closure operator is a reflective

sub-Heyting-algebra with the property that x = = (y »x) =(y > =) .

PROPOSITIOK 1.42 for Heyting algebras. 171 x s a closure
operator. In particular Tl (z Ay) =TTz ATy,

Proof. We have already noted in Proposition 1.23 that x =717 x and
T3 Vx=T1TTx. From x <y =1y <1 x we easily obtain that
x<y=17Tx =711y . By Proposition 1.4l it suffices to show that if
x=T1Tx then y x =717 (y *x) . For purposes of clarity, let
z=1lax . Then x ="T171Tgx yields « =1z . We use only this last

equation from now on.
x=T1z=(z~>0),
y—>x=y->(z—>0)=(y/\z)-)O:j(y/\z),
—I_I(y-)x)=_|—|_](y/\z)=j(y/\2)=y".’12 a
(We have proved that the defining equation of a Heyting algebra implies the
equation 11 (x Ay) =712 A1 1y . There is, therefore, an entirely
equational proof. My attempts to find one (essentially by translating the
proof herein) have yielded only the most unbelievably long expressions I've

ever seen.) The image of double negation is easily seen to be a boolean

algebra.

1.5 Scattered comments.

Besides topoi and Heyting algebras important examples of cartesian-
closed categories are the categories of small categories and various

modifications of categories of topological spaces, which modifications
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exist precisely to gain cartesian-closedness. The chief such modifications
are k-spaces and Spanier's quasi-topological spaces.

For any category A define the pre-ordered set A’ with A-objects
as elements and A < B iff A(A, B) # @ . Define P(A) to be the
skeleton of A' . P 1is a reflection from the category of categories to
the category of posets. P clearly preserves products and hence the

category of posets is cartesian-closed.

Moreover, if A is cartesian-closed then P(A) is, and A + P(A)

preserves X, + and exponentiation.

Let M Dbe a monoid, SM its category of representations. The
Heyting algebra chu) changes wildly depending on ¥ . For M a single
point, P@fﬁ = pP(8) = {0, 1} . For M a group, Pﬂfﬁ is a set (and can
be described in terms of sets of subgroups of ¥ ). For M the natural

numbers P(SM) is huge but does satisfy a transfinite descending chain

condition, a fact which requires a long proof and can be found - together

with a description of P(Skg - in a paper by (of all people) me ([2],
225-229), in a section entitled "When does petty imply lucid?".

For M almost anything else, P(SM) fails the transfinite chain

condition.

2. The fundamentals of topoi

Let A be any category with pullbacks. Given A € A define Sub(4)
to be the set of subobjects of A (so assume that A is well-powered).

We can make Sub into a contravariant functor by pulling back.

A topos is a cartesian-closed category for which Sub is
representable; that is, there is an object £ and a natural equivalence
(-, ) > Sub . Recall that any n : (-, A) + T is determined by knowing
QA(IA) € TA , hence there exists ' » @ such that if we define

n: (4, 2) > sub(4) by n(f) = (Sub(f))(Q'» Q) then n is an

isomorphism; +that is, for every A' » 4 there exists a unique 4 > Q

A > A
such that there exists A' » ' such that + + is a pullback. The
Q'+ Q
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representability of Sub is thus revealed as an elementary condition. But

we can do better. Note that in particular for any A there exists a

A — 2

unique A +  such that there exists A4 > Q' such that + ¥ is a
Q' — Q
pullback. Given any A4 + ' +then for A+ =4 + Q' > Q it is the case
R
that . ¥ ¥+ 1is a pullback. The uniqueness condition then says that

Q—Q
(A, ') has precisely one element. In other words ' is a terminator.

Thus we could define a topos as a cartesian-closed category together with

an object £ and a map 1 %4+ Q such that for any A' » A there exists
Al— 4
unique A -+ £ such that + ¥+ is a pullback. (We needn't quantify
1 —Q
t
A' + 1 bvecause 1 1is a terminator.) Of course, this elementary condition
impliee well-poweredness.

op
PROPOSITION 2.11. For amy small A, S*  4s a topos.

op

Proof. We showed in Proposition 1.1l that SA is cartesian-closed.
For the §l-condition we again assume the result to discover the proof. If
Q exists, then Q(4) = (4, 2) = sub{H,) . A subfunctorof H, is called

an A-crible, alternatively described as a collection of maps C into A4
such that B+ A4 € C* B' > B~ A € C . Defining $(4) as the set of
A-cribles, we make § into a contravariant functor, again by "pulling
back": given A' * A and an A-crible C define C' as the set of maps
B -+ A' such that B+ 4' -4 € C .

Any 1 =+ 2 is a choice for each 4 of an element in 4 . Define
t : 1 +8 to correspond to the maximal crible, each A4 . (The maximal

A-crible is the set of all maps into A4 ).

Given T' €T define T + Q by sending x € TA to the A-crible of

7' — T
all maps B Lo 4 suen that (Tf)(xz) € T'(B) and verify that + ¥
11—
t
is a pullback. The uniqueness of T +  can be directly verified. 0
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PROPOSITION 2.12 for topoi. Every monomorphism is an equalizer.

A' > A
Proof. Given A'» A let + ¥ be a pullback. Then A' is the
1 +Q

equalizer of 4 X 1—E+ 4 >0 and A x1—E+1+Q . But 4x1=4. O
COROLLARY 2.13 for topoi. If A » B <s both mono and epi, it is
i80.
Proof. It can be the equalizer only of f, f : B+ C . 0
In any finitely bicomplete category we define the "regular image" of
A £ B as the equalizer of the cokernel-pair, that is, the equalizer of
a-L B
x, y : B>C vhere fl lx is a pushout. It is a routine exercise to

B——C

verify that the regular image is the smallest regular subobject through
which f factors ("regular" is equal to "appears as an equalizer").

Because all subobjects are regular in a topos, the regular image is the

smallest subobject allowing a factorization of A—L B . We shall call it
the image of f , denoted Im(f)

PROPOSITION 2.14 for topoi. A4 + Im(f) <s epi.

If A+ (C» B=Ff then there exiets unique Im(f) = C such that

_m()

A\)i/’B.
A—‘ﬁ*B

Given + v there exists unique Im(f) » Im(g) such that

C— D

A~ Im(f) * B
+ + +
c +Im(g) > D.
Proof. By construction, Im(f) = B iff f is epic. Hence, for the
first statement it suffices to show Im(4 » Im(f)} = Im(f) ; but the
minimality of Im(f) does just that.
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The other two statements are immediate from the characterization of
Im(f) as the smallest subobject through which f factorizes, together
with Corollary 2.13. O

Sub{(l) is a Heyting algebra. It is clearly a lattice (because images

allow us to construct unions of subobjects) and for any U< 1 ,

(a, Up) = (AXB, U) has at most one element, hence the map P >1-isa
monomorphism. The subobjects of 1 , in fact, form a full reflective
subcategory (the reflector constructed by taking images: X —> Im(X ~ 1) ).
op

The subobjects of 1 in S may be seen to correspond to
collections of A-objects with the property that if 4 is in the
collection and there exists B * A4 then B 1is in the collection. Hence
if A is strongly connected (for example, a monoid) them 1 has only the

two subobjects it always must. If A dis ¢ =+ ¢ =+ se¢ + + then the

op
subobjects of 1 1in SA form the linearly ordered set one bit longer
than A .
op
Returning to 8 in S , suppose A is a monoid M . We may view
op

SA as the left~-representations of M , that is, sets X together with
M x X+ X such that lex =2z , o(B°x) = (0B)*x . Then § is the set of

left-ideals in M . The action of M on & is not multiplication but

division: a*A = {B|Ba € A} . 1 240 is the unit ideal. If M is a

group then £ =1 + 1 ; and, for monoids, conversely.

2.2 The representability of partial maps.

A partial map from A to B 1is a map from a subobject of 4 to B .
Formally, we consider pairs (A' »> 4, A' + B) , define
(A" » A, A" = BY={(A"» A, A" » B) if there exists an isomorphism

A" + A" such that

y
=
-\\\\\::::

A'l— 4
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and define Par(A, B) as the set of equivalence classes. Fixing B ,

Par(-, B) 1is a contravariant functor, by pulling back.

A relation from A to B is a subobject of A4 X B . Calling the set

of such Rel(4, B) and fixing B, Rel(-, B) becomes a contravariant

functor, again by pulling back. Rel(-, B) is representable, namely by
af .

Every map from A to B can be viewed as a partial-map and we obtain
a transformation (-, B) > Par(-, B) . BEvery partial-map (4' » 4, A' -+ B)
yields a relation, A'» 4 X B (its "graph") and we obtain a

transformation Par{(-, B) » Rel(-, B) . Both transformations are monic.
The transformation (-, B) * Rel(-, B) must come from a monomorphism

B +~ QB , the singleton map. B ~+ QB may be computed to correspond to

5 -2+ BxB
B x B > { where ¥ ¥ is a pullback.
1 —t-_) 2

We shall show that Par(-, B) is representable. First:

PROPOSITION 2.21 for topoi (unique existentiation). Given ¢ ~+ 4

QL g
there existe @Q» A such that ¥ ¥ 18 a pullback and for any X » A
C—r A
X -1, X
such that + ¥ is a pullback, there exists X > Q@+ A =X+ 4.
c—* A

Proof. Define (-, A) * Rel(-, C) by sending X + A to the pullback

¥

B>

(R to be viewed as a subobject of X X ¢ ). This transformation is

O«

>

od ¢
induced by a map A4 > QC (which can be computed as 4 * ﬂA — Q )

Qr 4 (x,) = (x,4)
Define g by the pullback ¥ + . For any X, ¥ + is a
c+a (x,0) + (X,QC)
pullback. Viewing (X, @) as a subset of (X, 4) we see that fe(x, Q)
X' > x
iff in pullback + ¥, X' CXX(C as arelation fram X + C s

¢ +4
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describes a map from X to € , that is, X' - X is an isomorphism. 0
C > A
Given a relation from A to B described by + let @~ A be
B

as described above. We obtain a partial-map, (@>» 4, @ -~ C + B) in
Par(4, B) . This operation, Rel(-, B) * Par(-, B) is natural by the
above lemma. Moreover Par(-, B) + Rel(-, B) > Par(-~, B) is the identity.
The idempotent transformation Rel(-, B) + Par(-, B) = Rel(-, B) must come
from an idempotent af -4, o , and we define of - B, B~ o as a
splitting of g¢g . [5 e QB can be defined as the equalizer of 1 and
B ~ e B .
g .} Clearly (-, Q")+ (-, B), (-, B)~> (-, Q7)) splits (-, g) and:

PROPOSITION 2.22 for topoi. Par(-, B) <s representable. O

QB—g-* QB corresponds to a map B X QB + Q (not the evaluation map)

which corresponds to a subobject of B X QB which can be computed to be

{
B —i‘f—)-* B x QB where 8 1is the singleton map. In a telling sense

B+B is a generalization of 1+ Q , to wit:

PROPOSITION 2.23. For any partial map (A' » A, A' > B) there

A' + A
exists unique A + B such that ¥ ¥ <& a pullback.
B =+ B

Proof. The transformation n : (-, B) > Par(-, B) is determined by

ng(1y) ¢ Par(B, B) . Let (B' >~ B, B' > B) represent ng(lp) . Then the

fact that N 1is an equivalence says that for any (A' » A4, A' > B) there

A » 4
is unique A + B such that there is A' =+ B' such that + ¥ is a
B' +B
pullback and A' > B' + B=A4A > B . In particular, for any A * B there
: a—2 4
exists unique 4 + B such that there exists A + B' such that + ¥
B'— B

is a pullback and A > B' > B=4 +B . If B' + B were other than an

isomorphism, then we would obtain a contradiction. O
Note that Sub(4) = Par(4, 1) and 1=9 .

Given a map B + B' we can define Par{-, B) > Par(-, B') by
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composition and obtain a map 5 + 5' . Alternatively, from the above
L. B ~+B
proposition, there exists a unique map B * B' such that + ¥ is a
B")B'

pullback, and B is revealed as a covariant functor, B - 5 as a natural

transformation.

2.3. The fundamental theorem of topoi

A logical-morphism of topoi is a functor that preserves finite limits,

colimits, § , and exponentiation.

THEOREM 2.31 for topoi. For any topos T and B ¢T , T/B is a
topos.

For f : B, > B, the functor f# : T/Bl -> T/32 defined by pulling

2

back along f , has a left-adjoint Zf and a right-adjoint Hf N f# i8

bi-continuous and a logical morphism.

Proof. We noted at the end of 1.3 that the second sentence follows

from the first.
The @ condition is easy:

Subp (4 + B) = Sub (4) = T(zz(4 » B), Q) = T/B(4 ~ B, QxB ~ B) .

T

Given 4-L> B , ¢ -2+ B wve wish to construct (C - B)(A+B)

T/B . Let B~ gA in T correspond to k : AXB » B , the unique map such

.00, yxp P
is a pullback and let n 9 be a pullback. Then

B~ B

that

o«
i X

)(A"B)

P+B is (¢ + B as follows:

h

Given X —™ B ,

T/B(X + B, P+ B) +T(X, P)
+ ¥
1 T(x, B)

is a pullback, by definition of T/B . By definition of P =+ B ,
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(x, P) » (x, ") = Par(xx4, C)
¥ + ¥
(x, B) ~ (x, &) = Par(x4, B)

is a pullback. Then

¥

T/B(Xx ~ B, P~ B) ParT(XXA, C)

¥ ¥
] — ParT(XXA, B)

is a pullback where 1 - Par(Xx4, B) corresponds to

X x A X1, B x A —39-5 . The element in Par(Xx4, B) is therefore the

result of pulling back:

o > XX4

¥ +hx1

A > Bx4

4 Yk

B> B
Q@+X

and that is the same as the pullback + ¥ , that is, the product, in T/B

A + B

of X+ B and A » B ; that is, T/B(X - B, P + B) is the set of
T_partial maps from X X A to C such that when composed with C + B
yield just what they should.

That f# preserves exponentiation is reducible, as discussed at the

end of 1.3, to seeing that XB : T - T/B preserves exponentiation. We

wish to compare (—, xB(CA)} and (-, XB(C)XB(A)) .
(D > B, xB(c")] o (EB(D + B), c“l] = (0, ) = (oxa, C) ,

@ + B, x2(c)®4)) = (0 + B) x xB(4), xB(C)) = [ZB((D ~ B) x xB(4)), C]

It suffices to show D X 4 = ZB((D > B) x xB(4))

P + AXB
(D » B) x xB(A) is the pullback + Y¥p which can be directly
D+ B
AXD > AxB
verified as p+ ¥p . Hence EB((D + B) x xB(A)) = A xD . f#

D - B
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preserves limits and colimits because it has both a left and right
adjoint. (m}

COROLLARY 2.32 for topoi. Pullbacks of epimorphisms are

epimorphisms,

Proof. Given A4 L B, B, vweview C > B as an object in
T/B . f#(C -+ B) is the pullback. Because f# preserves epimorphisms

and terminal objects, f#(C + B) + f#(B + B) is an epimorphism. O

COROLLARY 2.33 for topoi. Given A —t=> B + ¢ there exists

A, + A, =

1 2 A
AN Ir.

B+C
Proof. View B+ B+ C and C - B + (C as objects in T/B+C and

apply f# to obtain 4, » 4, 4,+ 4 in T/ . 0

1

Given a filter F (as defined in 1.2) on the Heyting algebra Sub(l)
we obtain a Serre-class of maps in the topos, namely those maps f : A »+ B
such that there exists U € F, (Vc 1) sothat T > T/U sends f to an
isomorphism. The result of inverting all such maps is a topos T/F which

may be also constructed by T/F(4, B) = 1im(AxU, B) . The most insightful

—

way to construct T/F is to take the direct limit of the topoi T/U ,

U € F. Using the fact that all the induced maps T/U~> T/V for VcU
are logical morphisms and that topoi are essentially algebraic, T/F is
easily believed to be a topos. Finally, one must note that

SubT/ F(1) = (SubT(l))/F . Strangely enough, we shall not use this

construction.
Rl - A R2 + B R - Rl
Given relations + , ¥ let + ¥+ Dbe a pullback and
B c R2 + B

define the composition R, o R, as Im(R » AXC) .

PROPOSITION 2.34 for topoi. Compoeition of relations is

associative,
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Proof. Given X > AxB , Y + AxB and B' » B let

X' _)BI yl +Bl
¥ vy o, 4 ¥+ Dbe pullbacks. Corollary 2.32 says that if
X - B Y +B

Im(X ~ AXxB) = Im(Y > AxB) then Im(X' > AxB') = Im(Y' + AxB') . That
fact, together with the associativity of pullbacks provides the proof. Let

R6 *'Rh hd Rl > A

¥ ¥ ¥
RS *-Rz + B
¥ ¥
R

3¢
¥
D

be such that all squares are pullbacks. Im(Rh *-AXC) = Rl ° R2 and hence

In(Rg ~ AxD) = (R, ° R,) ° Ry . Equally In(Rg + AxD) = R o (R, © R3) .0

Given a topos T we obtain a category of relations Rel(T) and an
embedding 7T - Rel(T) . In particular Rel is a bifunctor from T +to
sets, contravariant on the first variable, covariant on the second. Given

f : A~ B the transformation Rel(-, f) : Rel(-, A) * Rel(-, B) yields a
transformation (—, QA) - [-, QB) which must be induced by a map from QA
to QB to be called Ef . The transformation (-, -) = Rel(-, =) is

natural and we obtain

A+ QA
L P
B > QB

Rel(4, B) is of course, a Heyting algebra. Rel(-, B) is a
Heyting-algebra-valued functor, but Rel(4, -) is not. Bf preserves

unions but not intersections. We will use the fact that it preserves

order.

2.4 The propositional calculus of a topos

PROPOSITION 2.41 for topoi. For every B , the subobjects of B
form a Heyting algebra and the operations of same are preserved by pulling
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back.

Proof. The subobjects of B are the subobjects of the terminator in
T/B . 0

We can therefore view Sub as a Heyting-algebra-valued functor.

Necessarily, the object which represents Sub must be a Heyting algebra in
T . That is, there exist maps 1 —E*-Q , 1 £, Q ., QxQ LU, »

O —2 , X =@ vwhich satisfy the equations of a Heyting algebra
(t =1, f=0) , vhich maps yield the Heyting algebra structure on each

00— 1
Sub(B) . 1-—f; @ can be computed as the unique map such that + +f
11—
t
A lmgxn .
is a pullback; X — Q as the map such that + ¥n is a
1 —E 4 g
pullback. Let
1t
QVQ=Im(Q+Q ‘(——]-»tl Qm]
Qv — QxQ -
Then + Yu 1is a pullback. Finally, define QX —— Q@ to be the
1 — Q
t
o -4 axq
unique map such that + +++ 1is a pullback. One may directly verify
17 Q

the equations of the symmetric definition of Heyting algebras for these

maps so defined.

Note that for each B , QB becomes a Heyting algebra in T . There
are two Heyting algebras for B : Sub(B) which lives in the category of

sets, QB which lives in T .

1 .
A boolean topos is one in which § is boolean.  — 2 is the
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1-Log

unique map such that + +¥1 is a pullback. Hence T 1is boolean if
l—t—>ﬂ

L 1 A
Q—Q—0 = 1Q . Note that every Sub(B) is thus forced to be
boolean, and given B' » B there exists a camplement B" » B such that
0 -+ B
¥ ¥ is a pullback, B'+B" + B is epi. In any topos, such implies
B"_’B

that B'+B" » B is an iso, Just by showing that B'+B" > B is mono, an
easy matter using Corollary 2.33. Products of boolean topoi are easily

seen to be boolean.
I
PROPOSITION 2.42 for topoi. T ie boolean iff 1 +1 -Yl»q is an
isomorphism.

1
Proof. Clearly if 1 + 1 works as § then N > Q can be none

other than the twist map on 1+ 1 , and 171 =1,

Conversely for T boolean, the complement of 1 £, Q is 1 -f» Q

and the remarks above yield 1 +1 = Q , 0O
AP . . .
PROPOSITION 2.43. S ig boolean iff A <s a groupoid.
op
Proof. If A 1is a groupoid them S is a product of categories of

the form SG , G a group. We observed earlier that £ in SG is
1+1.

Conversely, suppose A4 = B in A does not have a left inverse, that

is, there is no B *+ 4 such that B+ 4 + B = lB . A~+B generates a
B-crible, neither empty nor everything: that is Q(B) has more than 2
elements. But if 1 +1 =0 then Q(B) = (1+1)(B) =1+ 1 . u]

By a cloaure operation on B we mean a closure operation as defined
in 1.4 on Sub(B) , that is an intersection-preserving inflationary
idempotent Sub(B) + Sub(B) . A global closure operation is a choice for
each B of a closure operation that makes Sub =+ Sub natural.

Necessarily such must be induced by amap J :  + 2 , and j itself is a

https://doi.org/10.1017/50004972700044828 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044828

30 Peter Freyd

closure operation in the internal sense, that is, j2 =4 .
(1.5 o Q@ — Q
g —2L Q"5 0=1 and JxJ+ ¥ . Rather mysteriously:
0 — Q
n
PROPOSITION 2.44 for topoi.

Q.<_1L‘7._)_>ng_n+g_-_l

iff
1 thg dig=1-tgq.
Proof. First a less algebraic proof:
Given J : @ > Q consider (B, Q) -(—B’-J—)-* (B, Q) . 1f
¢ . B' —— B
1 -5 a-4rq= 1 L, 2 then for + ¥ & pullback, the result of
1 — 0
t
applying (B, j) yields
B' - B
¥ ¥
Q' > Q
S
1 -8
. B' + B
and there exists 1 > Q' suchthat 1 - Q' +Q=1——§ , hence + ¥
1 +Q
is a pullback and (B, j) is inflationary.
Uy——m—— Q
More directly, let + +d, j)» be a pullback. Because
L 9
’

(1, j) is monie, U+ 1 is. If l—t-*Q —‘L>Q=l—t—>9 then there

exists 1> U suchthat 1+ 0U+R=1-0Q and U>1 is an

t
1 — Q
isomorphism; that is +{, J) is a pullback. Hence
1<z e
3
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1-5% @
K1,5)
l QxQ
¥n
l—t* Q

is a pullback and the uniqueness condition on §£ implies the result.

17
As shown in Proposition 1.42, § —— Q@ 1is a closure operation.

31

O

Another example arises as follows: let U < 1 and define for each B ,
Sub(B) + Sub(B) by (B' + B) — (B'u(Bxy)) . (Notice that BxU + Bxl - B

is a monomorphism.) Clearly this operation is inflationary and idempotent.

To see that it is intersection-preserving consider B', B" © B . Then

(B'u(BxU)) n (B"u(BxU)) = (B'nB") u (B'n(BxU)} u {(BxU)nB") u (BxV)

>

by distributivity. The middle two terms are contained in B X U , hence we

obtain
(B'u(Bx1)) n (B"u(BxU)) = (B'nB") u (BxU) .
Bxy -+ B
The operation is natural because ¥ ¥ 1is a pullback.
u »1

2.5. Injective objects
PROPOSITION 2.51 for topoi. Q s injective.

Al — A

Proof. Given A» B and A >+ 1let + + be a pullback.
1 — 0
t
A' — B
let ¢ + %be a pullback. Then verify that A > B> Q =4 +Q .
1 - Q

COROLLARY 2.52 for topoi. €° is injective.

Proof. Given A » B we wish to show that (B, QC) > LA, QC) is
epic. But

(8, 26 + (a, &)
R 4

(BxC, @) + (4xCc, Q)
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and AXC + BXC 1is moniec. o

Using the singleton map B —+ QB we obtain:

PROPOSITION 2.52 for topoi. Every object may be embedded in an

injective. O

COROLLARY 2.53 for topoi. Pushouts of monomorphisms are

monomorphisms.

Ar B

Proof. Given a pushout + + choose C» E , E injective. There
c~+D

»

exists , hence there exists C *>*D+>E=C»FE and C »> D is

o«
by <« ty

-

monic. a

Ar» B
PROPOSITION 2.54 for topei. If ¥ ¥ <s& a pullback, then
c»D

Sub(D) - Sub(B)
¥ ¥ i8 a pushout.
Sub(C) -+ sub(4)

Proof. Just use the distributivity, x A {(y vz)=(zry)v (z A 2)
for Heyting algebras. O

COROLLARY 2.55 for topoi. If E <is injective then (-, E) carries
intersections (that is, monomorphic pullbacks) into pushouts.

Proof. If F 1is injective, then E » QE splits and it suffices to
show that (—, QE) carries monomorphic pullbacks into pushouts. But

(—, QE) = (-xE, Q) and -XE preserves (as in any category, any E )
monomorphic pullbacks, and Proposition 2.54 says that (-, Q) is as
desired. 0

¥

O <

PROPOSITION 2.56 for topoi. Given s 1t i8 a pullback iff for

Q «“x

¥

(D, E) = (C, E)
injective objects E , ¥ ¥ i8 a pushout.
(B, E) ~ (4, E)

Proof. The family {(-, E)} , E injective, is collectively faithful
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by Proposition 2.52 and hence reflects isomorphisms. Any family that

reflects isomorphisms reflects the limits it preserves (any category). O

2.6. Sheaves
Let j : & > be a closure operation as defined in the last section,
.2 . .. .
that is jJ =g and j 1is a homomorphism with regard to QxQ 5 Q and

1 L, Q. Given B' » B , we will write B' for the result of applying
(B, §) to sub(B) .

We will say that B' » B is gj-closed if B' = B' and j-dense if
B' =B.

We say that A is j-separated if for all j-dense B' » B ,
(B, A) -~ (B', 4) 1is monic.

We say that A is a j-sheaf if for all J-dense B' » B ,

(B, A) » (B', A) is an isomorphism.
A functor is eraet if it preserves &ll finite limits and colimits.

THEOREM 2.61. The fundamental theorem of sheaves. The full
subcategories of j-separated objects and j-sheaes are reflective and

each 18 cartesian-closed.

The full subcategory of j-sheaves is a topos and its reflector is

exact.
Proof. We fix J and drop the prefix "j-" . If B' » B is dense
B'—— B
then so is B'XC + BXC because if + ¥g 1is a pullback, then density
1 —t-> Q

is equivalent to B—LQ—-‘Z»Q=B->1—t>Q , and

B'XC + BXC
¥p

1 5
vg

1+ Q

is a pullback. Hence if A is separated (sheaf) and B' » B dense then
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@, 4 + (8", 4°
2 @
(BxC, A) + (B'xC, 4) ,

and the horizontal maps are mono (iso), and AC is separated (sheaf).
Let Sepj be the ful; subcategory of separated objects and Shj be
the full subcategory of sheaves.
We have just seen that Sepj and Shj are cartesian-closed (except

possibly for finite completeness) and hence by Proposition 1.31, when we

know that Sepj and Shj are reflective, we will know that the reflector
preserves products.

Define QJ. +  as the equalizer of 1 and J . Because J is
idempotent, there exists - Qj such that Q - Qj >Q =g,

R.»+»Q~+0.=1. ., is inJective.
J J J
LEMMA 2.611. Qj s a sheaf.

Proof. Let B' » B be dense, and B' -+ Qj given. The injectivity

B'— B
of Qj yields \, ,/ . We need only the uniqueness condition. Suppose
Q.
J
B, — B B,— B
1 2
B'+B—LQJ=B'~>B—9—>Q.. Let + Vf and + vg be
.1 - QJ 1 - SZJ
pullbacks. Then B, and B, are both closed. But B  n B' = By n B’
= ~ 5o —_ Tt = 7~ B = =
and ve have B) n B' =B nB By » B,nB B, and f=g . a
COROLLARY 2.612. For any A, szg is a sheaf. 0

The definition of Sepj and Shj easily says that both are closed

under limits, Sepj under subobjects.
The idempotence of J says that for B' < B, B' 1is dense in B'

Note that the closed subobjects of B are in natural correspondence
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with (B, QJ.)

LEMMA 2.613. A <s separated iff A L, 4x4 is a closed subobject.

Proof. If A 1is separated, let A C AX4A be the closure of A .

A—14 _ Py _ Py
There is at most one ]\+. A+ A>A%0 — A=A +A+AXA — A,
A

- p - p —
hence A + AXA —L»A=A->Ax/;—i>,4 , and hence ACEq(pl,p2)=A-

Thus A =4 .

Conversely, suppose A SN A%X4 is closed. Let B' » B be dense and

B' + B L A=8B >B-L4 . The equalizer of f, g can be constructed

E— B
as the pullback + Kf,g) , hence E is closed. But B' € F and
A = AxA

B'cCEcCB ;thus E=B and f=g . o

A
LEMMA 2.614. 4 is eeparated iff A+ =4 L df,

Proof. jA yields a transformation j : Rel(-, 4) + Rel(-, 4)
alternatively described as taking closures of subobjects of -X4 . The

equation of the lemma is equivalent to:
("s A) > Rel(—, A) = (-’ A) g Rel(-, A) _J_’ Rel(-s A)

A
which may be tested on 1, € (A, A) . The left side yields A4 — A4 ;
the right side yields the closure of A and the last lemma yields the
proof. 0

A
LEMMA 2.615. PFor any A the image of A ~+ L is the

reflection of A 1into Sepj .

Proof. Let 4 + A be the image of A - QA > QA . jA factors as

7 - ng > ana 4 is a subobject of n;‘ . Lemma 2.611 said that

S’G‘. € Sepj and SepJ- is clearly closed under subobjects, hence Z € Sepj .
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If B € Sepj then by the last lemma B -+ B is an isomorphism. Given

f:A->B, BE€ Sepj we need only show that the outer rectangle of

A

A L
L3 B
B+ QB '—-B—> QB
J
A2
commutes to obtain N\, ¥ Equivalently we consider
B

(-, 4) » Rel(=, 4) ——> Rel(-, 4)
(_9 f)l lRel('—a f) 1Rel(-, f)
(-, B) -~ Rel(-, B) ——T Rel(-, B) .

The right-hand square does not commute. Given R € X*X4 and chasing
clockwise we obtain Im(R -+ XXB) and in the other direction m .
Inverse, not direct, images preserve closures. But the fact for inverse
images yields that Im(R ~ XXB) c Im(R > X*B) and because direct images
preserve order we also have Im(R > XxB) ¢ Im(R > XxB) . It suffices to
show that when R is the graph of a map then Im(R » XxB) = m .
But if R C XxA4 1is the graph of g : X > A then Im(R » XXB) is the

graph of x4 £, B and the last lemma says precisely that graphs of

maps into separated objects are closed. ]

For the reflectivity of Shj it suffices to show it reflective in

Sep. .
Py
LEMMA 2.616. If 4'»4 is closed, 4 € Sh; them A' € Sh, .
B' - B
Proof. Given B» B dense and B' >+ A4 , let + ¥ commute and
At » A
B" > B
0 V., a pullback. Then B" is closed, B' < B" and hence B"' =B. O
Al > A

We'll say that a separated object is absolutely closed if whenever it

appears as a subobject it appears as a closed subobject.
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LEMMA 2.617. Sheaves are absolutely closed and separated.

Absolutely closed objects are sheaves.

Proof. Given A» B, A€ Shj , let A» B be the closure. There

A
exists A * A such that +>B , that is, AC A c4 .
A

Conversely, if A 1is separated then it appears as a subobject of
ﬂ;l. € Shj and if A 1is absolutely closed, then by the last lemma, A4 is

a sheaf. 0

LEMMA 2.618. QJ. satisfies the S-condition for Shj . O

LEMMA 2.619. Given A» B, B a sheaf, then the closure of A in
B is the reflection of A in Shj .
Proof. Let 4 » B be the closure. Lemma 2.616 says that 4 € Shj

For any C € Shj , (4, C) = (4, C) because A + 4 is dense. O

Because every separated A can be embedded in a sheaf (for example,
Q:;l. ) we obtain that every separated A has a reflection in Shj .
Composing the two reflections, the reflection of an arbitrary A4 1is the

closure of the image of A + Q‘; .

We saw at the beginning of the proof that Shj is closed under
exponentiation. Lemma 2.618 says that Shj has an £ , and we have just

seen that it is reflective, hence finitely cocomplete. Thus Shj is a

topos. Note that for E injective in Shj , that E » Qf retracts and
is injective in the ambient category T .
Since the reflection R : T ~» Shj preserves products it suffices for

exactness to show that it preserves equalizers. Given f, g : 4 + B in

any category, the equalizer of f, g may be constructed as the pullback of

A
W1,9)
A 17 4B ,
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hence it suffices to show that R : T -+ Shj preserves monomorphic

pullbacks.
A» B
Given a pullback ¥ Y in T , it suffices according to Proposition
C» D

2.56 to show that for any injective E ¢ Shj , it is the case that

(RD, E) » (RC, E)
¥ + is a pushout. But that diagram is isomorphic to
(RB, E) ~ (RA, E)

(D, E) >~ (C, E)
+ + and since FE 1is injective in T , Corollary 2.55 provides
(B, E) »~ (4, E)

the finish. )

>
Consider 8 .Q=(3+2) . Let <1 be (0>1)c (1L +1) and

J the closure operator that sends (4' + B') c (4 = B) to

(A' » B) c (A > B) . Then the j-sheaves are of the form

(4 ~»1) . QJ. = (2 > 1) . The reflection of (4 +B) is (4 > 1) . The

reflection of  is (3 + 1) not Qj .

Recall that £ —];]* 2 1is a closure operator.
PROPOSITION 2.62 for topoi. Sh 4 18 boolean.

t
Proof. 1 +1 -—f—* 2 is easily seen to be dense, hence becomes an

isomorphism in Sh q - 0

COROLLARY 2.63. Every non-degenerate topos has an exact
co~continuous functor to a non-degenerate boolean topos.

Proof. 0 is a 171 -sheaf. O

Following the remarks at the end of Section 2.4, let U< 1 and

consider @ —L+ Q the closure operator so that for B' € B ,
B' = B' u (BXU) . The reflector T = Shj sends O * U +tc an isomorphism,

that is, U 1is sent to the zero-object. Shj is degenerate iff U =1 .

COROLLARY 2.64 for topoi. Given x,y : 1 >*B, x#y , there

exists a boolean topos B , exact co-continuous F ~+ B that separates
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Ty Y .
Proof. Let UcC 1l be the equalizer of x, y . Then for j as

described above, T =+ Shj sends X, Yy : 1 B .to a pair of maps with -0

as equalizer. Now apply Corollary 2.63. 0

THEOREM 2.65 (the plentitude of boolean topoi). For every
fog:A=+B, f#g, there exists a boolean topos B , exact

co-continuouse T + B that separates f, g .

Every small topos can be exactly embedded in a boolean topos.

axa LY opeg oaxa LLspxg g
Proof. T+ T/A sends f, g to ‘\y g// s \\y v . ¥
A A A

is the terminator for T/4 and
AL axg LLopg g0 L oaxa L gy
Hence we can apply Corollary 2.6k to obtain T/4 > B as desired. 0

op
Let H be a partially ordered set. We define J : & * Q in st

as follows: for z € H, Q) ={AcCcH | usvea=uecA=us<gzgl;
define jx(A) to be the set of all u € H such that there exists A' < A

with the property that VzeH[v z) = (v = u)] . (If U4’ exists,

veA'(v =
then this simply says u < UA' .) j 1is easily seen to be idempotent and

inflationary.

It is natural and it preserves intersections iff H is very
distributive, for example, a Heyting algebra. For H a Heyting algebra

(l, Qj) is its completion. Hence for H a complete Heyting algebra

(1, Qj) =~ H and Qj(x) ={u€Hd|usx}. That is, jx(A) = U4 .

For H the lattice of non-empty open sets in a space X , (1, Qj)
is the lattice of all open sets, Shj is the classically defined category
of sheaves.

The definition of a Grothendieck topology on A 1is almost the

op
definition of a closure operator in S . Closure operators are a bit

more general.
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2.7. Insoluble topoi, or how topoi aren't as complete as you'd like

In a powerful way, topoi are "internally complete". One may, for

example, define a map & - QA which acts as a union operator. Hence

given any B C QA we obtain a subobject UB C 4 (via the functions

Sub [9‘4) = (1, QQA] + (1, QA) = Sub(A)l which has all of the properly
stated properties of a union.

There is a catch. UB is not necessarily the least upper bound of the
subobjects of A described by (1, B) € (1, 27) = Sub(4) . The type of
completeness we often need is just that; that is, given B < QA , a least
upper bound for (1, B) < Sub(4) . UB fails miserably. For the

singleton map A4 *'QA , UA =A . But the least upper bound of

(1, 4) © Sub{A) would be the least subobject 4 of A such that

(1, 4) = (1, 4) . Tosay that A=A4 , all 4 s 1s equivalent to saying
that 1 1is a generator (that is, a well-pointed topos as defined in the

next section).

If for every A there were such 2 C A , then Ug is the least
upper bound of (1, B) € Sub(4) . (We shall not use this construction and
hence will not prove it.) The existence of 2 C A 1is elementary but
independent of the axioms for topoi. Indeed, as we shall show, it is not

equivalent to any essentially algebraic axioms.

We will call T solvable if for every A there exists Ac A such
that (1, 4) = (1, A) and for all B < A such that (1, B) = (1, 4) it
is the case that AcB.

PROPOSITION 2.71. WNot all topoi are solvable.

Proof. We saw at the end of the last section that every complete
Heyting algebra appears as (1, Q) . Let Tl be such that (1, ) is the

order-type of the unit interval and let T2 C Tl be a countable elementary

submodel. In T2 , (1, Q) 4is a dense ordering and countable, hence there
i ist. 14

exists {Uh<: l}n » U, € U,,, such that Uy, does not exist. Let g1

be such that Un cV all n .
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n
Consider the direct system 12/| | (1+Ui) induced by the obvious
=1

n+l n
projection maps T—r(1+Ui) > ]_T(1+Ui) and let T ©be the direct limit.

The essentially algebraic nature of topoi insures that 7T is a topos. We

can give a more elementary description of T as follows:
n
objects: <n, A~ l(l—d/i]> s AET,

n PR
maps: from <n, A 'gﬁrT(lH/i)) to <m, B = T_r(l+l/i)> ,

are equivalence classes of pairs (k, f)> where

A X T_r(1+U)+B>< TT(lw)

Z=n4l T=m+1
such that
k
ax TT wy) 8 TT1(1+U ) -—»W(w) x rrl(wJ
k y n
T Taw,) =4 x TT () <2 ) * TT () +TT(1+U)
1=] i=n+l =1 Z=n+l

The equivalence relation is generated by (k, f) = (k+l, fx1) .

n .
The notation is eased by replacing T2/ I(l'*U,,;) with its image T/n

in T . Hence T/0 = U/m=T, T(A, B) = 1im T/n(4, B)

—_—

T2,

For A €T/n, BE€ET/O,

k
T(4, B) = lim T/O(A x TT (1+Ui), B]
. L=n+l

—_

(an easy verification). Thus T7T(1, 1+V) = lim T/O(l |(1+U) 1+V] . Note

— =1

k
that | |(1+U1l) is a coproduct of 2k subobjects of 1 , one of which Zs
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one, one of which is Uk , the other smaller than Uk . Hence the union of

k
the images of T/O(T_T(1+Ui), 1+V] is 1+, .

Suppose W » 14V € T were such that (1, W) = (1+V) . We shall show
that there exists W' - 14V with the same property, and such that

k
WEW . W14V in T appears as 4 X (l+U,L.) 2+ 14V some k. For
all n, 1+J, c Im(g) € 1+4V . Let B < V be such that U,<B all n

bl

but 1+B § Im(g) . Then 14B »> 14V as a subobject in T 1is contained in

W > 1+V . a

3. Well-pointed topoi

A topos is well-pointed if it is non-degenerate and if 1 is a

generator.
PROPOSITION 3.11 for well-pointed topoi.

(1, 2)

2 ;

jt}

1+1=Q;

(1, -) preserves coproducts, epimorphisms, epimorphic families, and
pushouts of monomorphisms;
A to0=4a is injective;
A% 0,1=4 1is a cogenerator.

Proof. For A # 0 there are at least two maps from A to Q , hence

there exists 1+ 4 .

et UC1. If U#O then there exists 1 > U and 1**U"l=1l

forces U=+ 1 to be epic. Hence (1, Q) =2.

1+1>Q is always monic. Because (1, 1+#1) = (1, &) and 1

reflects isomorphisms, 1 + 1 =@ .

i

For (1, 4) + (1, B) = (1, A+B) use Corollary 2.33.

c~+1
Given 4 - B and 1+ B 1let + ¥ be a pullback. By Corollary
A~ B
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2.32, € +1 is epic; thus C # 0 and there exists 1 + ¢ yielding
1
/+ .
A"+ B
Given any family {Ai + B} collectively epimorphic, and l—L B, we
can view {Ai + B} as a collection of objects in T/B which collectively

cover the terminal object. Applying f# we obtain a collection of objects
that do the same. Hence for some < , f#[/li +B) #0 and

{(1, Ai) + (1, B)} is collectively epimorphic.

A» B
Given a pushout + ¥ we use the booleanness to write B =4 + 4'
c=+D
A+ A+A'
and we see that ¥ ¥ is a pushout, clearly preserved by (1, -)
C =+ C+A

Given A» B, 4 %0, again write B=A + A' and choose 1 +4 .
Then B = A+A' -+ A+l + A 1is a right-inverse for 4 =+ B . 0

PROPOSITION 3.12. If B 1is a boolean topos then it is well-pointed
iff for all A € B, A %0 there exists 1+ 4 .

Proof. Let f,g : B*C, f#g . Let EC B be the equalizer of
fs g, AcCB the complement of E in B . Hence if there exists 1+ 4
then there exists 1 + B that distinguishes f, g . a

3.2. The plentitude of well-pointed topoi

A logical morphiem of topoi is a functor that preserves all the
structure.

THEOREM 3.21. For every small boolean topos B and A € B, A kO
there exists a well-pointed B and logical T : B » B , TA 0. T

preserves epimorphic families.
Proof. We first show:

LEMMA 3.211. For every boolean topos B and A € B, A ¥ 0 there
exists a topos B' , logical T : B> B', T(4) $0 . T preserves
epimorphic families; and for all B € B either TB =0 or there exists
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1->7TB.

Proof of lemma. Well-order the cbjects of B , taking 4 as first

object. We construct an ordinal sequence of topoi and logical morphisms as
follows:

If T: BO > Ba has the deseribed property, terminate the
sequence at 0O .

If, on the other hand, there exist B € By such that TB $o
and (1, TB) = @ then take B to be the first such and define
Ba+1 = B /TB .

If B is a limit ordinal, and Ba 18 defined for all a < B ,

then B6 18 the colimit of the Ba's .
The essentially algebraic nature of topoi insures that BB is a topos.

The functor Ba - Ba+l carries TB +to an object with a map from 1 .
Moreover for every C € BO such that Ba(l’ TC) # ¢ , Ba(l’ T'C) #+ ¢ and
eventually the sequence must terminate. a

Now, for the theorem, define a sequence on the finite ordinals by

BO =B,

]
Bn+l Bn ’

(as defined in the lemma) and 8 = 1im B_ .
_,n

ﬁ is boolean because B + 8 is logical and 1+ 1 =9 in B

~

implies the same in B . Proposition 3.12 says that B is well-pointed.

That T preserves epimorphic families follows from the fact that

colimits of such functors are such functors. a

COROLLARY 3.22. Every small boolean topos can be logically embedded
in a product of well-pointed topoi, and the embedding preserves epimorphic
families.
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Proof. For exact T : B +~ B' between boolean topoi, T is faithful
iff TA=20=4=0. 0

Composing with Theorem 2.65 we obtain:

THEOREM 3.23. Every small topos can be exactly embedded in a product

of well-pointed topoi and the embedding preserves epimorphic familtes.
Composing with (1, -) and using Proposition 3.11 we obtain:

THEOREM 3.24. For every small topos T there exists faithful
7. T~>1S .,
T preserves all finite limits, coproducts, epimorphisms, epimorphic

families, and pushouts of monomorphisms.

3.3. Metatheorems

By the universal theory of exactness of a category we mean all true
universally quantified sentences using the predicates of composition,
finite limits and colimits. By the universal Horn theory of exactness we
mean all the universally quantified Horn sentences in the predicates of

i =
exactness, that is, sentences of the form Al A A2 Aoe. A An An+l where
each Ai says either that something commutes, or is a limit, or is a

colimit. By theories of near exactness we mean those using the predicates
of composition, finite limits, coproducts, epimorphisms, and pushouts of

monomorphisms.
As easy corollaries of Theorem 3.21 through Theorem 3.24 we obtain:

METATHEOREM 3.31. The universal Horn theory of near exactness true

for the category of sets is true for any topos.

The universal Horn theory of exactness true for all well-pointed topot

is true for all topot.

The universal Horn theory of topoi true for all well-pointed topoi is

true for all boolean topot.

The universal theory of topoi true for all well-pointed topoi is true
for all boolean topoi in which (1, Q) =2 .

We will show later that there do exist universal Horn sentences in
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exactness predicates true for S but not true for all well-pointed topoi.

An equivalence relation on A 1is a relation E C AXA satisfying the

usual axioms.

COROLLARY 3.32 for topoi. Every equivalence relation is effective;

E~+A
that is, given E C AXA there exists A + B such that + Y 1is a
A=+ B

pullback.

Proof. We get rid of the existential quantifier by defining A + B
to be the coequalizer of the two maps from E to A . We note that the
statement is in the universal Horn theory of exactness and it suffices to

prove it in well-pointed topoi.

E' > 4
Accordingly, let + + be a pullback. If E ¥ E' there exists
A =+ B
1 »+ E' +that can not be factored through E -+ E' . Hence there exists

( )
x, ¥ : 1 *A such that 1~ 4+8=1-52+8 vut 1 L% 44 o
in E . Let A' be the complement of Im(z)} u Im(y) and define

4L 14141 by

Uu
a' A I 14141 = 41 > 1 —2 14141,

U

Z 1 —2 14141,

1 54 41410

“3
1 —= 1+1+1 .

144 -4 1aa
R A— B
Then E > A4 —&» 1+1+1 equalizes and there must be \ / e
contradiction. i)
COROLLARY 3.33 for topoi. Every epimorphism is a coequalizer.

Proof. We again get rid of the existential quantifier by stating it

as: every epimorphism is the coegualizer of its kernel-pair. (The
E~+A

kernel-pair of 4 + B is the pullback ¥ + .} It suffices to prove it
A=+ B

in well-pointed topoi. Given 4 ~ B let A » B' be the coequalizer of
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>
E +4 . It suffices to show that B' - B is monic. Let

' !
1558 +8=1-%> B > B and find z,y : 1 *4 so that
1248 =z, 14458 =3 . Then 1 ~%H% 4x4 1ies in
EcC AX4 and z' =y' . m]
"A»B
COROLLARY 3.34 for topoi. If ¥ ¥ 4is a pullback and C+B + D
c»D

is epi, then it is a pushout.

' Proof. The statement lies in the universal Horn theory of near

exactness and it suffices to prove it in S , an easy matter. 0

3.4. Solvable topoi

Given a topos T and A € T we'll say that 4 is a well-pointed
object if the maps from 1 to A are jointly epimorphic. Define Tp cT

to be the full subcategory of well-pointed objects. In Section 2.7 we
defined a solvable topos, which definition is equivalent to the

coreflectivity of Tp
PROPOSITION 3.41 for topoi. Tp 18 closed under finite products.

Proof. Suppose A4, B € Tp . We may assume that neither A4 nor B
is 0. Let f,g :4B+C, f#g . We wish to find 1 + AXB such
that 1~ AXB-*%+ C#1+48 -4 C. Let 7, 5-: A > CB correspond to
f, g ,and let 1 =+ A be such that 154 L Ppy Eepg 4 P
Because B # 0 there exists 1 - B , and hence B + 1 1is epi, which
yields:

x S —

1B L xp Ly Pp 4 10 L, gup B, (Byp
By following with the evaluation CPXB - C we obtain
BsaxB—Locspsaxg L,

Finally, let 1 - B be such as to separate these two maps from B to
c . O

By a two-valued topos we mean {1, Q) =2 .
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PROPOSITION 3.42 for solvable two-valued topoi. Tp is a
well-potnted topos. Subobjects of Tp objects are in Tb s hence Té > T
is exact.

Proof. Because Tp is closed under products and coreflective,

exponentiation is effected by exponentiating in T and then coreflecting.

Given f : A4 +*B, B¢ Tb , consider f# : T/B+ T/A . The
collection of T/B-cbjects, {1 + Bl are such that their maps to the

terminator form a jointly epimorphic family. Hence f# applied to that
family yields a similar family in T7/4 . (Thus in any topos, the maps from
subterminators to A form a jointly epimorphic family.) Because 1 has
only two subobjects, A € Tp

Given A » B in Tp let A' + B be the negation of A as defined

in T . We wish to show that A uA' =B , for such implies that 1 + 1

satisfies the @ condition in Tp . It suffices to show that for any

1 + B there exists either 1 +4+B=1+*8 or 1+A'+B=1-+B. If
neither, then (A’uIm(l - B)) NnA=0 and the maximality of A' yields a

contradiction. 0

3.5. Topoi exactly embeddable in well-pointed topoi

We have shown that every topos is exactly embeddable in a product of
well-pointed topoi, and a residual question presents itself: which are
exactly embeddable in a single well-pointed topos? Because of the
elementary nature of the latter (they are closed under ultra-products), we
are asking which topoi have the universal exactness theory of well-pointed
topoi. For example: (U» 1) = (0> U) v (U > 1) . That is, such topoi
must be such that (1, Q) =2 .

It suffices to show for each n and

S B, Ay By, ., A, B ), g,

<A fl 391 f2 ’92 fn ,gn
1 1’ T2

1=1,2, «.., 1

that there is a well-pointed topos T’ and exact T : T + T' such that
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T(fi) # Tﬁgi) > 2=1,2, ..., n. (Ultra-products again). Let

X A X fi ’91’

= X i

A Al 2 . An and Ei C A the equalizer of 4 ~ Ai ——— Bi .
.= X o0 X A, XELUXAL X, X Lo i

EL Al Az—l EL Az+l An where E; is the equalizer of

fi’ g; - Let F = El U ... U En . If E # A we know that there exists

7 :1~>1 |, T' well-pointed, such that 7T(E) # T(4) and hence

r(r) 2 76;) -

It is a statement in the universal exactness theory of well-pointed

topoi that if each E; # Ai then E # A . Hence such is a necessary

condition for exact embeddability into a well-pointed topos. We can make
it elementary by noticing that the case for arbitrary »n follows from the

case n = 2 :
If (A'xB) u (A4%B') = A X B then either A' = A or B' =B.

Further reductions can occur by replacing A with A4/A' , the pushout

Al = A
of + .
1

If (1xB) v (AX1) = A x B then either A =1 or B =1.
Together with (1, ) = 2 this can be seen to be sufficient.

Finally, if one considers 1/T , that is, the category whose objects

A
are of the form 1 + A and whose maps are of the form 1\s ¥ , define
B

(1> 4) v (1+B) as the coproduct in 1/T , (1 + 4) A (1 > B) as the
cokernel of (1~ A) v (1 + B) *» (1 + 4AxB) , (=A- has a right-adjoint,
namely exponentiation), then the condition for exact embeddability into a
well-pointed topos is that the half-ring of isomorphism types with v as

addition and A as multiplication is without zero-divisors.

4. The first order calculus of a topos

Let L be a vocabulary of predicates and operators; that is, the
objects of L are either pairs (P, n) or (f, n) where we call P an

n-ary predicate, f an n-ary operator.
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An interpretation of L ina topos T 1is an object B €T , a

subobject P < B" for each (P, n) ¢L , a map ?:Bn* B for each
(fyn)elL.

Given any derived #n-ary predicate or operator using the vocabulary of

L and the classical logical connections and quantifiers, we wish to

stipulate a subobject of B" . The definition is recursive. The rules for

defining maps from expressions in the L-operators are well known. Given

two #n-ary predicates P, @ already assigned values in Sub (Bn) , We can

easily define PAQ , Pv @, P> @ as a subobject in 8" .

Given an n-ary predicate P(xl, cees xn) and operators fl’ ey f'n
a- g
each m-ary, we define P IEIRERE fn as the pullback + ¥  where
P> "
n . .
Bm > B is the obvious.
Given an n-ary P(xl, ey xn) modeled as P < B , we define
. = " n-1
3 P(xl, ces xn} as the image of P+ B -+ B . Por Y we need:
n

PROPOSITION 4.11 for topoi. Given g : A+ B and A' € A, there

exists a maximal B' < B such that g—l(B') < A' . Such B' 1is called
v A .
g
Proof. B' = B is Hg(A' > 4) . o
. : : Bn—l
We define V_ P(xl, AN :cn) as the maximal subobject in whose
n

inverse image is contained in P .
In this manner we obtain for each sentence S (that is, no

0

unquantified variables) a subobject of B~ , that is, an element of

(1, ) . Ve shall call such the truth value of the sentence, t(S)
Given any set T of sentences, we say that an interpretation of L

is a model of T if every sentence in T has truth value 1 -t Q.
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(Yes, that's why it's called "t" .) Given sentences S,, S, and a topos

1* "2

T we say that Sl implies S, in T 1if every model of Sl is a model

2
of S, , and denote same by S, F%_Sz - We say that S, strongly implies
52 in T if for every interpretation of L , t(Sl) = tLSQ) , and denote
same by FT . Note that Sl ET 52 is equivalent to 1 Pﬁ-(Sl e 52) .

Given any language L and sentences S 52 we say that Sl gsemantically

l!
implies 52 if for all topoi T , Sl}=} 32 . We denote same by
5y b 5, -

PROPOSITION 4.12. If 5,1, 5, then forall T, S5 Frs,.

Proof. Let B € T be an interpretation of L in T and suppose
tLSl) ﬁ t(Se) . Then in T/t(Sl) we obtain a model of Sl that is not a
model of 52 . C

The definition of semantic implication reduces a host of assertions in
intuitionistic logic to exercises in classical logic: ’

PROPOSITION 4.13. For fized L , F, is recursively enumerable.
k=, obeys Craig's interpolation theorem. If every finite subset of a given
T has a model in some topos, then so does T . O

For each monoid M , we obtain an intuitionistic logic F;M . We
suspect that the connection between such logics and classes of monoids will
be a fruitful pursuit.

Problem: For every topos T is kﬁ' the same partial ordering as
FEM for some monoid M ?

4,2. The boolean case

If we restrict our interpretation of a language to boolean topoi, we
can replace P> @ with TPvg and V with 1377 . The advantage is
that Vv, A, 1 and 3 are all definable using only the predicates of
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near-exactness. CE =7¢Q iff P+ Q~ B" is an isomorphism.)
More precisely, let

L = {<P1, nYy aey (Pa, na),(fl, m?, ...,(fb, mb)} .

Let JB be the set of interpretations of L in a boolean topos B . The

elements of JB are of the form

PROPOSITION 4.21. Given any elementary sentence S there exists a
universally quantified Horn formula F <in the predicates of near-exactness

such that for each boolean B and (B, ﬁi, cee, ?b) € JB it 18 the case

that F[B, Pl’ e ?b) iff (B, ﬁi, e ?Z) ie q model of S ., Also,

there is an existentially quantified cbnjunction of near-exactness

predicates G(B, ?i, cees ?Z] with the same property,

Proof. There is a tree. Its root is S , each branch a wff (well
formed formula), each leaf a single variable, each branch point (we'll
allow degenerate branch points) marked with either

Pl’ ooy Pa’ fl’ e fb, A, 1 ,= or (3,n); and, if a branch point is

marked Pi then ni branches lead into it, they are all operator

expressions Gys e gn and the branch leading out is.
7

Pi(gl’ s gy 1 ;3 1if the branch point is marked f% then m, branches
7
lead in, they are all operator expressions gl, ey gm. and the branch
7
leading out is fi(gl’ RN Qﬂ } 3 1if the branch point is marked A then
7

two branches lead in, both are predicates P, § and the branch leading
out is P A @ ; if the branch point is marked ~1 then one branch leads
in, it is a predicate P and the branch out is 1P ; if it is marked
= , two branches lead in, both operator expressions g, h , and the branch

leading out is g = h ; finally if the branch point is marked (3, »n)

then one branch leads in, it is a predicate Pﬁrl, ey xm) and the branch
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leading out is 3x PLrl, cees xm)
n
Let K be the number of variables in S . The quantified variables
of F and G are defined as follows: for each variable in S , a map
P
BK-———* B ; for each branch other than a leaf, we introduce a variable

5 : BK + B if the branch is an operator expression, a variable P+ BK if

the branch is a predicate. To each leaf marked z, we make correspond the

new variable pi .

For each branch point we define a near-exactness predicate as follows:

If a branch point is marked P, then let 31, cees §n be the

variables corresponding to the incoming branches; P+ BK to the outgoing,

and let A say that
7 Bk
gl,...,gn.>
1
_ n

P. -+ B t
7

is a pullback.
If a branch point is marked fi , then let 5&, vy 5; be the
1
. . . X - K
variables corresponding to the incoming branches; g : B > B to the

outgoing and let A say that

(Gro ) w7,
g=58 t,pt—tp,

If a branch point is marked A , then let P BK . 5 -+ BK be the

variables corresponding to the incoming branches: R~ BK to the outgoing

]

and let A say that R -+ BK is a pullback of

ty €«

Q> By
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If a branch point is marked 1 then let P + 8% correspond to the

K

incoming branch; R+ B is the outgoing, and let A say that is

@ <« "ol

7 >
R™ By

a coproduct.
If a branch point is marked = , then let 5 : BK + B, o BK -+ B

correspond to the incoming branches, P > BK to the outgoing, and let A

p— K . . -
say that P > B 1is an equalizer of g, h .

If a branch point is marked (3, n) , then let P + BK correspond to

the incoming branch, 5 > BK to the outgoing, and let A4 say that

g —— B

( PysecesBy 19Pppqe0 e ,pk)
In (BB o8y » BFL

is a pullback.

Finally, let S - BK be the variable assigned to the root.

Fav/N\a>G=8]. c=3\an G=59]. O

COROLLARY 4.22. If a theory has a model in any non-degenerate

boolean topos, it has a model in sets.

Proof. By Theorem 3.23 there always exists a near-exact functor into

sets, which functor must preserve G . (]

COROLLARY  4.23. For any boolean B if S g S, then 5, lsB 5, -

Proof. Suppose that Sl |==S 52 but not S1 FB 52 . Then there exists
an interpretation of L in B/t (Sl) that is a model for S§; but not
.5'2 . Let t(S2) be the truth value for 32 » and reflect the
interpretation into Shj for J +the closure operator such that O > t(Sz]
becomes an iso. We then have a model in Shj of Sl Al 32 . Then apply

Corollary k4.22. (]
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Of course '-S is classical logic. In a later section we find
necessary and sufficient conditions on B so that F=B coincides with

-

5. Arithmetic in topoi

Apair 1 —> N, N-2+ ¥ is a natural mumbers object, or NNO for

short, if for every 1 =4 -t A there exists unique N - A such that

NNO's are clearly unique up to unique isomorphisms.

f
PROPOSITION 5.11. If 1->N-2>N is an NNO then Lz} D 14N > N
i8 an isomorphism,

Proof. Let U, : 1+ 1+ and Uy ¢ N > 1+N be the coprojections.

. . > - = .
Define &' : 14V 1+N by ule cu2 , ues su2 . Since

1—> ¥ % ¥ is an NNO , there is a unique g : N > 14V such that

og =u, and 8g = gs' . We claim that g is the inverse of
o

1 1+ .
(s] 1+V > N

That g(:l =1 follows from the uniqueness clause in the definition

of NNO applied to the commutative diagram
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o .
That [ ]g =1 is equivalent to og = ¥ and &g = u The first we

1 2"

have, and the second comes by applying the uniqueness clause to the

commutative diagrams

N —2 y N =2 y

e o

u, Uy s 1} 8g 8g
Taﬁﬁ\\’ 5\\y
1+8 ——> 1+ 140 —> 140 . o
PROPOSITION 5.12. If 1—> N 25N isan NNO then W+ 1 isa
coequalizer of & and 1y -
Proof. ¥ + 1 is epic (because there exists 1 * N ) and it suffices

. 8
to show that if N —> ¥ L 4 = # L5 4 then there exists 1 +4 such

that =L+ 4 =¥ +1>4 . Define 1-5+4=1-2§-L+ 4. Then votn

v

i
o)
1 f f
X
A A

YN

—
1
and
]
P4
1 1 1
RL’E L’t
A '1* A
and the uniqueness condition on NNO's yields N-f* A=N->1 Z,4. O

We shall show that the exactness conditions of the last two
propositions characterize NNO's in topoi. In the last section we
observed that near-exactness conditions are equivalent to stating that
something is a model for a finite theory. Here we will see that the
addition of a single coequalizer condition can yield a categorical (in the

0ld sense) definition.
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We consider first the category of sets:

PROPOSITION 5.13 for sets. If A-2+4 ismonicand A+1 isa

coequalizer of s and 1

4 then either A = Z, s sla) =a+1 or

AN, s=s8. O

Hence, if we add the requirement that & 1is not epic, we can

characterize the natural numbers.

Let T be a well-pointed topos, T-—Z* S exact. If 1-2n-2y

is an NNO in T , then 1 > TN —22+ 7N is the standard NNO in S .

(Any exact functor from a well-pointed topos to a non-degenerate topos is

faithful.) Suppose then that in T there exists 1 =, N such that for

no natural n does 1—2>+ N L& .S py=15 0. Ten T Just

can't exist. We obtain such 7 simply by taking a non-principal

ultra-power of S .

In fact, we are using very little of the exactness of T . For
well-pointed T , non-degenerate T' and 7T : T +»T' suppose T(1) =1,
T(1+1) =1+ 1 . Then T is faithful. (1 + 1 is a cogenerator for well-
pointed topoi.) Because non-zero objects in well-pointed topoi are
injective, T preserves monomorphisms if it is faithful. Hence if

1->2>py-S2+p§ isan NNO in T and T(1) =1, T(1) + T(1) = T(1+1) ,
Coeq(T(lN), T(S)] = T(Coeq(l[v, s)] , then 1~ TN > TN is as described in

Proposition 5.13. Thus for T a non-principal ultra-power of S , there

isnosuch T : T +3S . We can go one further step:

PROPOSITION 5.14 (the scarcity of right-exact functors). If T is
a non-principal ultra-power of S , then for every T : T > S such that

7(1) + T(1) = T(141) and Coeq(T(lNJ, T(s)] = T(Coeq(1, s)) , (for
example, right exact T ), it is the case that T = 0 .

Proof. Suppose for some 4 €T , TA # 0 . Then because there exists
1+4, 7T(1) $ 0. View T as a functor with values in S/T(1) , choose
1> 7(1) and define T' =T » S/T(1) + S/1 . T' may be alternatively
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7' (B) > T(B)

described by the pullbacks + ¥ . T' preserves at least the same
1 > 7(1)

colimits as T , and T'(1) =1 Hence by our remarks above, T' can not

exist. Nor can T . ju]

In particular, Theorem 3.24 can not be improved to make 7T exact.
Moreover, we have laid to rest the idea that the exact embedding theorem
for abelian categories has a nice generalization to "base" categories other

than abelian. For:

COROLLARY 5.15. HNo set of elementary conditions true for the
ecategory of sets implies exact (even right-exact) embeddability into the
category of sets. (Even if you add countability.)

Proof. We can take the complete elementary theory of S , and let T
be an elementary submodel of a non-principal ultra-power of S and apply

Proposition 5.1b4. O

The embedding theorem for abelian categories was motivated by the
consequent metatheorem for the universal theory of exactness. The latter
can be true without the former. But, alas, not for topoi. We need, first,

a bit more about NNO's .

5.2. Primitive recursive functions in topoi

PROPOSITION 5.21 for topoi. If 1-2> 8 -2+ ¥ 4s an NNO , then
for every A % B and B I+ B there exists unique AXN - B such that

axy 2285 axy

(1,2}//2

A

Ea

B — B

t

Proof. Transfer the problem to solving for
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For the standard natural numbers in S we know that given

g:A~>B, h: AXNXB > B there exists unique f : AXN > B such that
fla, 0) = gla) ,
fla, y*1) = kia, y, fla, y)) .

(Usually A is a power of N, B=N.)

PROPOSITION 5.22 for topoi. Let 1N -2+N bea NNO,
g :A+B, h: AXNXB ~ B given. There exists unique f : AXN > B such

that
4-ax1 2 g Lipayg,
PqsPnsf
axi 228, axy Lo pooaxg =272 i B B

Proof. (Notation: for any X , X—2>N means X +1-> W ) Let
k 7be such that

1Xg

AXY ——————— AXN

(l,o/.
A k
(l,o,g)\‘

—
AXN*B <P1 ,pze,h> AXNXB

(5.231) ks

as insured by Proposition 5.22. We will show that kp3 works. First:

kpy = k<p1, P,8s h)pl = (1><¢3)kpl and (1, o)kpl = 1 , hence
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axy L, axy

A —— 4

pl works as well as kpl and Proposition 5.22 says, therefore, that
kpl =Py -
Second: kpys = k(pl, P83 h)p2 = (lxs)kp2 and (1, o)kp2 = o hence

X,
axn s axy

<1,?ﬁ//”

A kp o kpy

o~

N ——— N

and P, works as well as kp2 and again Proposition 5.22 says that
kp, = py -

Finally, for the existence of f , define f = kp3 . Then
k = (pl, Pys f) and

(1, o)f =(1, o>kp3 =(1, o, g)p3 =g,
X, = = = .
(1xe)f (lxs)kp3 k(pl, P h)p3 (pl, Pys ih

For the uniqueness, suppose f 1is as described in the proposition.
Define k = (pl, Ps» f) , verify that (5.231) commutes and use Proposition
5.22. O

Note that A need not "depend" on 4 or N , or B . That is,
given h : AXB > B we could define k' : AXNXB + B = AXNXB > AXB'—]L> B
and apply the proposition.

Thus we can define on any NNO in a topos a, m, e : NXN » N Dby
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IV-Q‘Q—LNXN—Q—*N=1N, N EE pxy Sy = ey Z Sy,
{p,,m)
w0l iy Ty = o, o X gxy I oy o= oy — L oy Sy,

1Xs (pl,e) m

(1,0)
1,0 NN =2 gx§ &> N = §X§ ——— N> § .

N —=25% yxy—E> § = o5

k]

In the category of sets a, m, e are addition, multiplication and

exponentiation; that is,

z+0=2, x+ (y*tl) = (x+y) + 1 ,

z*0=0, x* {y+t1)

(x+y) + x ,

0 1, x(y+l) = Cty) tx .

Take any elementary sentence S 1in the operators o, s, a, m, e .

8
L[}

Add to it the six equations above which define a, m, ¢ on N . We saw in
Proposition 4.21 that there is a universal Horn exactness predicate that

says that a given (N, o, 8, a, m, e) is a model of S . Enlarge that
formula to include (ZI :1+ N =N and Coeq(l, s8) =1 . The universal

quantification of that formula then says that the arithmetic of the NNO

satisfies S . Hence,

THEOREM 5.23. For any recursively emmerable set of elementary
conditions T , true for the category of sets, there exists a model T of
T and a universal Horn sentence in the predicates of exactness, true for
sets but false for T .

Proof. Add to T +the axioms of a well pointed topos with an NNO .
By Godel's Incompleteness Theorem we know that there is an elementary
sentence S true for standard arithmetic, whose translation, S' , into a
universal Horn sentence in the predicates of exactness is not a consequence

of T (else number theory would be decidable).

Godel's Completeness Theorem implies that there is a model of
Tu{1s'}. ]

5.3. The exact characterization of the natural numbers

PROPOSITION 5.31 for topoi. If a topos has NNO then
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1-2nv-8 N isan mNO iff (g] 1L+ NN is iso and

1. (W]

i}

Coeq(1l, s)
x t x s s
Proof. Let 1 —> A —> A Ybe such that + is iso and

Coeq(l, t) =1 . Let 1N -2 ¥ be NNO and let

vy
e
1 f f
kS
A —t—> A
commute. We wish to show f an isomorphism.
First, f is epi. We have a universal Horn sentence in exactness

theory, namely that (ZI, (‘:I isomorphs and Coeq(l, 8) = Coeq(l, ¢t) = 1

imply f is epi. It suffices to prove it in well pointed topoi.
Accordingly let A' = Im(f) and A" the complement of A' . It suffices
to show that t(4") < 4", for such allows us to "split" ¢ as ¢|4' + £|4"
and obtain a splitting Coeq(l, ¢) = Coeq(l,, t|a') + Coeq(lA,,, t|a") .

If A' #A , then A" # 0 and Coea(l, t) is bigger than 1 . Hence it

suffices to show t(4") < A" .

]
Let ¢' =¢/a" , 1 -5 4" =1-2>¥§>4" . Then (

]
universal Horn sentence: "If A' + 4" =4 and (:.], (‘2] iso then

t(4") € A" " is in the predicates of near-exactness and it suffices to

prove it in S , an easy matter.

Second, f 1is mono. Using just that (gl and (‘:I are isomorphs we

1—1 v L4
can show that o¥ ¥+ and s8¢ ¥t are pullbacks since such are
N "-f-.-> A N —? A

sentences in the universal Horn theory of near-exactness and it suffices to

prove them in S .
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Q1+ g
Let @ A be as described in Proposition 2.21, that is ¥ ¥
N— 4
X-—l* X
is a pullback, and for all X + A such that + ¥ is a pullback,
N—> A
1-+1
there exists X *+ @ A = X + 4 . Then because o¥ Yxr is a pullback,
N >4
there exists 1+ @ >4 =1 =, A . Because
1
@ —@
+ ¥
N— A
+ +
N— A
is a pullback, there exists ¢ s @ such that
1
. Q=9
Q -~ @ *A=¢g >4 — 4 ., Because V¥ ¥ is a pullback we obtain
N— A
— @ q [e) 8
1 ¥ ¥+ . Because 1 —> N — N is a NNO we obtain ¥ + @ such
TS N— W
that ¥ > @ > N = lN . That is @ - N is eri and @ + 4 1is an isomorph.
Hence so is f . 0

Thus, exact functors between topoi with NNO's preserve NNO's .
Hence,

THEOREM 5.32. If T -+ T' <8 exact for T, T' well-pointed topot
with NNO's , then the elementary arvithmetics of T, T' coincide.

Proof. Combine Propositions 4.21 and 5.31. m]

We can push a bit further. By the existential second-order arithmetic
of a topos, we mean the second-order sentences in arithmetic in which all
second-order guantifiers are existential. Propositions 4.21 and 5.31 say
that the truth of such a sentence in T is equivalent to an existential

sentence in the exactness theory of T . Hence,

PROPOSITION 5.33. The existential second-order arithmetic of a

well-pointed topos is determined by its universal Horn theory of
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exactness. (m]

5.4. Inferring the axiom of infinity

PROPOSITION 5.41 for topoi. Given 1 =>4 —E+ 4 there ewists

A' » A and
I
A

Before proving Proposition 5.41 we show its consequences:

' '

_t',

1

A
z,”
X
4 t

xl

such that (t,I : 1+ A" >4 is ept.

t
and Coeq(x, t) = 1 then for every A' C A such that Im(z) < A' ,
t(4') < A' it is the case that A' = A .

PROPOSITION 5.42 (the Peano property). If (x] :1+A4+A is iso

Proof. The sentence is in the universal theory of exactness and it
suffices to prove it in well-pointed topoi. By applying Proposition 5.41

x' t' x!
to 1 —— A' == A' we can assume that 4| is epi.

Let A" € A be the complement of A4' . Using just that (ﬂ is iso

and (':,] is epi we can show that ¢(4") € 4" in S , hence everywhere.

Thus ¢ splits as ¢' + t" (¢" = t|A") and
Coeq(1, t) = Coeq(l,,, t') + Coeq(1,n, t") . If A" 0 then Coeq(1, t)

is bigger than 1 . O
THEOREM 5.43 for topoi. 1 -+ N -2+ ¥ is an NNO <iff

(:] : 1 +NFN and Coeq(l, s)=1.

Proof. The necessity of the exactness condition was Propositions
5.11, 5.12. For the sufficiency, note first that the Peano property above

yields the uniqueness conditions, that is, if both f, g : ¥ > A were such
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N v
4
l b
>
A A

then the equalizer of f, g would satisfy the hypotheses of Proposition

that

_s_y

—
t

5.42 and hence would be all of N .

For the existential condition, let 1 4> p -2 B be given, and apply

{o sXxy

)
Proposition 5.41 to 1 2 7, yxp » NXB to obtain 1 S 4—tr4 ,

(ﬁ} epi, maps A+ N , A+ B . It suffices to show that 4 + N is iso.

Again, the Peano property says 4 - N 1is epi. We need:

LEMMA 5.431. 17 (i} :1+4— A is epi, (:] :1+N->N iso,
[ I
N N

Proof. The sentence is in the universal Horn theory of exactness and

Coeq(l, 8) =1, and

-E,

—
S
then 4 <> B is mono.

it suffices to prove it in well pointed topoi. Let E € AX4 Dbe the
kernel-pair of f ; E'=E-048, N =1In(E' » A4 >N). Weneed E=4,
that is, E' = 0 , equivalently N' =0 . Let N” ©be the complement of
N' . We need N" =N .

Note that 1 —I» N factors through #" iff g has a unique lifting
to A . We may verify that 1 25 ¥ factors through #" and that if

1T does, then so does 1 48, § . fnat is, N" satisfies the
hypotheses of Proposition 5.42 and W#" = N . a
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THEOREM 5.44 for topoi. The following are equivalent:
(a) there exists an NNO ;

(b) there exists a monomorphism A™ A and a map 1 + A such that
0+1
¥ ¥ is a pullback;
A+ A

(¢) there exists an isomorphism 1 + A = A .

Proof. Clearly (a) = (e¢) = (b).  For (b) = (a) apply Proposition 5.41

to obtain
tl
A —— 4
=/
1 s
AT
' QO —1
(t'] : 1+ A" >A'" epic. It is clear that + vz' is a pullback,
: Al t'! Al
xl
hence [t'] is monic, and an isomorphism.

Let A' + C be a coequalizer of 105 t' and define

]
1+C=124"+C. View A' > C as an object in T/C . Note that

]
Al x Al ,

N S and that (‘2,] :1+A" =A" remains true in T/C . Pullback
c

along 1 * C to obtain v N in T/1 . We maintain the coproduct

conditions and gain the coequalizer condition. (]

THEOREM 5.45 for topoi. If (1, Q) = 2 then either there exists an

NNO or every mono-endo is auto and every epi-endo is auto.

Proof. Suppose that f : A» A is not epi. Then fq : AA - AA is

U =+1
mono and if ¥ ¥ is a pullback where 1 -+ AA corresponds to

AA+AA

https://doi.org/10.1017/50004972700044828 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044828

Aspects of topoi 67

1
A —> A , then U=+ 1 can not be iso. Hence U =0 and we can apply the
last theorem.
If g : A 4 is not mono, we can repeat the argument for
49 AA» AA . a

T——
The proof of Theorem 5.41 is fairly easy in solvable topoi (see 2.7).
We can there take A' as the smallest subobject such that ¢{4') € A’ and
such that Im(x) c &'

Remarkable enough, even without solvability we can construct 4' , not

as an intersection but as a union.

Proof of Proposition 5.41. We define B C QA to correspond to the
family of subobjects of A such that A' < Im(x) u ¢(4’') eand show that

UB works. Define B cC QA as the equalizer of the identity map and

o ST ppct o o o

where [z : QA"QA=QA"1‘>QA and 1"QA corresponds to A4 * £ the

characteristic map of 1 = A .

For any A' € A, the corresponding map 1 =+ QA factors through
Bc QA iff A' < Im(x) u t(4') . Moreover:

such remains the case after application by any logical morphism.

Let
¢ —™ BX4
¥
o
te
1 —t—> Q
be a pullback.
c' +¢C
For any 1+ B let + + be a pullback. Then C' - C + A is mono and
1l + B

¢' ¢ Im(x) v t(C')

and such remains the case after application by any logical morphism.
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c' » 1%
The proof of this is obtained by noticing that ¥ ¥+ is a pullback,
C =+ BXA
hence
¢'— 1%
X1
2
Ye
1— 0
t

is a pullback, where 1 £ QA =1~+B8 *-QA . But (fxl)é =4-9 Q the

c'+ A
map which corresponds to f . ¥+ Yg 1is a pullback. Thus the
1 > Q

characteristic map of C' corresponds to a map 1 > QA which factors
through B and (' < Im(x) u (C")

We wish to show that Im{C > A) works as A' as demanded by the
proposition. The reversal of the above paragraph shows that given any
C'» 4 such that C¢' < Im{x) u ¢(C') we can find 1 + B such that

c' + ¢
4 ¥+ 1is a pullback and C' > C+ A =C' A4 . We wish to show, first,
1 > B

that Im(C » A4) Im(C + A —z*-A) , equivalently that in the pullback

P =+ 1+C
4
1+4

T
e
c~> A s
P+ ¢ is epic. (This last "equivalently" is a pair of sentences in
the universal Horn theory of near-exactness and may be verified in sets.)

Suppose P + C 1is not epic. We may transport the entire situation to T/C

P2 - TP
and obtain a map 1 = TC such that in the pullback + v o, P2 +~ 1 is
1 +7C

not epic. Because all our constructions are preserved by logical

morphisms, we may drop the "T" and show that for any 1 + ¢ and pullback
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P2 — 1+(C

ro
¥
1 »Cc» 4 ,

P2 +~ 1 1is epi.

¢! —— ¢

Let ¥ ¥+ be a pullback. Then
1 »-C~+B
P —— 1+C
2 v
l 144
¥
1 >C' + 4
P3 > 1+¢'
is a pullback. Let + ¥ be a pullback.. It suffices to show that
P, > 1+C
2
P3 - P2 > 1 is epi.
Ph > 1+C' P’S - Ph
Let + ¥ be a pullback. P), > C' is epic. Let + v bea
¢+ A 1 »c'
P, » 1+C' > 1+’
5 1+C P3 1 |
pullback. P5 + 1 is epic. But ¥ ¥ and ¢ ¥ are both

1 > A 1 - A
pullbacks and we have shown that Im(C » 4) € Im(x) v Im(C + A ¢, A) .

Call A' = Im(C + A) . We remarked above, that for any C' © A4 such
that ¢' < Im(x) v £(C') it is the case that (' + 4 =(C' - (¢ + A hence
¢' cA4' . Thus A' is the maximal such subobject. But note that for
¢' = A" v t(4') it is the case that ¢ c Im{x) u t(C') . Hence

! t

4 ut(a')ycA' and t(4') c A' , yielding For

Do
DD

—_—
_
t

¢' = Im(z) uA' we have C' < Im(x) v t(C') and Im(z) € A4’ , yielding
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A

Finally, A' < Im(x) u t(4') directly yields (‘z,

l 1+ A =4 0
5.5. One coequalizer for all

Given f, g : A+ B let Reg = In{A Afaad, BxB) < BxB and
bl

Ef g C BXB the kernel-pair of the coequalizer of f, g . By Corollary

3

3.32, E is the smallest equivalence relation containing R .

f’g f’g
Suppose B —* ( 1is epi. Let E'h C BXB Dbe the equivalence relation
>

Eh B

induced by A4 , that is, + ¥ a pullback. Then by Corolldary 3.33,
B > C

B —h* C 1is a coequalizer of f, g iff E = E, . DNote that R and

fig Th £
Eh are defined using only near-exactness.

B B, C 18 a coequalizer of f, g : A> B iff h is epic and Ey,
i8 the smallest equivalence relation containing Rf g "
3
In general, given R € BXB define =R +to be the smallest equivalence

relation containing R . Then a near-exact functor is exact iff it

preserves the = operator on binary relations.

Given any R < AXC we can define a transformation

P-+>Q
Rel(-,A)LR*Rel(-,C) as follows: for QC XA let + + be a
R > A

pullback and send @ to Im(P + XXC) . oR is natural and there exists

or : i+ . (1f R is the graph of a map f , then ©R = 3]" .) Given

R BxB define RC BB as A UR U Im(R > BXxB —— BxB) where T is the
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. . BxB oR_ BXB
twist map, and define B ok, QB as above. In a topos with NNO let

BxB k

X
k:N>Q be the map such that 1 - § —=» oP*B corresponds to

B -2+ BxB ana

I

BXB

1Y) — QB

oR

xB

We obtain a relation from N to BxXB , @ C NXBXB , Im(Q > BXB) = =R .
We may look at @ backwards as a map from =R to QN .

*
In well-pointed topoi, at least, we can define (QN) to correspond

*
to the non-empty subobjects of N and define va) + N to correspond to

least elements, and obtain Z=R L N . f has the following properties:

A — =R § — =R §'" —> =R
¥ ¥ 18 a pullback and for + vy o, ¥ ¥  pullbacks,
l“o—*N l?” l?ﬂ

S' = (SoR) - 5 .

These two properties, entirely in the language of near-exactness

except for N itself, characterize =R . Hence:

PROPOSITION 5.51. If 7 : T+ T' 4is a near-exact functor of
well-pointed topoi that preserves epimorphic families, then T <is exact

iff it preserves the coequalizer of 1, and & . a

Moreover given any diagram in a well-pointed topos, we can enlarge it

and add 1 =, N £, N and translate any coequalizer condition into
near-exactness conditions on the enlarged diagram. We can know the
universal Horn theory of exactness of T if we know which two-sorted
elementary theories have models in T 1in which one of the stipulated sorts

is the natural numbers.

If T is a well-pointed topos with the axiom of choice, that is every
object is projective, then by a Lowenheim-Skolem argument we can reduce the

two-sorts to one and obtain the converse of Proposition 5.33:
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THEOREM 5.52. The universal Horn theory of exactness of a
well-pointed topos with NNO and axiom of choice is determined by its

extstential second order arithmetic. D

5.6. A standard recovery

PROPOSITION 5.61 for topoi. If T <s such that for every R < BXB,

=R 1is the union of the sequence A4, R, §2, <.y through the standard

natural numbers, then T may be exactly embedded in a power of S .

Proof. By Theorem 3.2k we know that there is a collectively faithful
family of non-exact functors into S , each of which preserves epimorphic
families, hence unions. Hence the operation R +> ZR is preserved and by

our remarks in the last section, such functors are exact. 0

COROLLARY 5.62. Countably complete topei may be exactly embedded in

a power of S .

Proof. Whenever A4, E; EQ, vees ﬁn, ... has a union it is =R . 0
From Corollary 5.15 we thus obtain:

PROPOSITION 5.63. W&o set of elementary properties true for the
category of sets implies exact (even right-exact) embeddability into a
product of countably complete topoi. o

By the standard maps from 1 to N we mean those of the form

12y Sy Sy & Sy,

We say that ¥ 1is of standard generation if the standard maps form a
collectively epimorphic family. In a well-pointed topos, such is

equivalent to (1, N¥) having only standard maps.

THEOREM 5.64. If T <is a topos with NNO then it may be exactly
embedded in a power of S if N 1is of standard generation.

Proof. Theorem 5.23 says that there is a collectively faithful family
of exact functors into well-pointed topoi each of which preserves
epimorphic femilies, hence in each of which (1, N) is standard. (Each

has NNO by Proposition 5.42.)

By our remarks in the last section, =R is the union of the values of
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BX
amap N > B , thus a union of a sequence over the standard natural

numbers, and Proposition 5.61 applies. D

If T is solvable then # 1is well-pointed and standard generation is

necessary.

COROLLARY 5.65. If T <is a solvable (for example, well-pointed)
topos with NNO and every 1 > N is standard then the existential second
order arithmetic of T is standard. O

It seems to me that Corollary 5.65 provides something of a semantics

for existential second-order arithmetic.

6. Problems
Which categories can be exactly embedded in topoi?

Which well-pointed topoi can be exactly embedded in well-pointed topoi
with NNO ?

Which of the latter can be exactly embedded in well-pointed topoi with

the axiom of choice?

Which of the latter can be exactly embedded in well-pointed topoi with

AC and an axiom of replacement?

Mitchell and Cole have independently shown that the latter are
isomorphic to categories arising from models of Zermelo-Fraenkel. Hence
we are asking for a metatheorem in which not the category of sets (what's

that?) but a category of sets is the model.

The answers to the last two questions would tell us which existential
second order theories of arithmetic are compatible with Z-F . 1Indeed a
good question is whether each first-order arithmetic compatible with the

axioms of well-pointed topoi is compatible with 2Z-F .

Using standard techniques transferred to well-pointed topoi we can see
that each existential second order sentence in arithmetic is equivalent to
one which asserts the existence of a single unary operator g that
satisfies an equation involving g, +, X, - . If we know that each such
sentence implies (using the axioms of topoi) that g is bounded by a
first-order definable operator (for example, recursive) then the

existential second order theory is determined by the first order theory.
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We should remark, in regard to the second question, that Theorem 5.23
remains true even if we replace the category of sets with the category of
finite sets. The idea of the proof is to find a finite elementary theory
such that the sentences true for all finite models are not recursively
enumerable. '

An example of such is the theory of ordered partial rings, with enough
axioms to insure that the finite models of such are finite intervals of the
integers. The theory of diophantine equations is thus a subset of the
theory of its finite models.

Editor's note (1 May 1972). The Editor is very grateful to Mr T.G.
Brook and especially also to Professor G.M. Kelly for reading the proofs
with care and amending several mathematical errors. Some last-minute (and

later) changes are due to the author.
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