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Abstract. Let A be a uniform algebra on a compact Hausdorff space X and
m a probability measure on X . Let Hp(m) be the norm closure of A in Lp(m) with
1 ≤ p < ∞ and H∞(m) the weak ∗ closure of A in L∞(m). In this paper, we describe
a closed ideal of A and exhibit a closed invariant subspace of Hp(m) for A that is of
finite codimension.
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1. Introduction. Let A be a uniform algebra on a compact Hausdorff space
X. M(A) denotes the maximal ideal space of A. Let m be a probability measure on
X. Hp(m) denotes the norm closure of A in Lp(m) with 1 ≤ p < ∞ and H∞(m) denotes
the weak ∗ closure of A in L∞(m). Hp(m) is called an abstract Hardy space. When A is
a disc algebra, if m is the normalized Lebesgue measure on the unit circle, Hp(m) is the
usual Hardy space and if m is the normalized area measure on the unit disc, Hp(m) is
the usual Bergman space.

Let I be a closed ideal of A. In this paper, we are interested in I with dim A/I < ∞.
Then A/I is called a Q-algebra. Two dimensional Q-algebras can be described easily;
that is, I = { f ∈ A; φ1( f ) = φ2( f ) = 0}, where φj ∈ M(A) ( j = 1, 2), or I = { f ∈
A; φ( f ) = Dφ( f ) = 0}, where φ ∈ M(A) and Dφ is a bounded point derivation at φ.
One of the authors [3] showed that a two dimensional operator algebra on a Hilbert
space is a Q-algebra. It seems to be worthwile to describe a finite dimensional Q-
algebra. In Section 2, we describe an ideal I with dim A/I < ∞ using a theorem of
T. W. Gamelin [2]. As a result, a finite dimensional Q-algebra is described.

When M is a closed subspace of Hp(m) and AM ⊂ M, M is called an invariant
subspace for A. In this paper, we are interested in M with dim Hp(m)/M < ∞. When
A is the polydisc algebra on Tn and m is the normalized Lebesgue measure on Tn, a
finite codimensional invariant subspace M in Hp(m) was described by P. Ahern and
D. N. Clark [1] using the ideals in the polynomial ring � C[z1, . . . , zn] of finite
codimension whose zero sets are contained in the polydisk Dn. In Section 3, for an

∗This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

https://doi.org/10.1017/S0017089503001587 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001587


118 TAKAHIKO NAKAZI AND TOMOKO OSAWA

arbitrary uniform algebra A we describe a finite codimensional invariant subspace M
in Hp(m) using the result in Section 2.

2. Finite codimensional ideal. Let φ ∈ M(A). A closed subalgebra H of A is a
(φ, k)-subalgebra if there is a sequence of closed subalgebras A = A0 ⊃ A1 ⊃ · · · ⊃
Ak = H such that Aj is the kernel of a continuous point derivation Dj of Aj−1 at φ. If
H is a (φ, k)-subalgebra of A, then H has finite codimension in A and M(H) = M(A)
by [2, Lemma 9.1].

If I is a closed ideal of A and A/I is of finite dimension, B = � C + I is a closed
subalgebra of A, and A/B is of finite dimension. By a theorem of T. W. Gamelin [2,
Theorem 9.8], we can describe B and so also I . Since B is a special closed subalgebra
of A we can describe I more explicitly.

THEOREM 1. If I is a closed ideal of A and A/I is of finite dimension, then there exists
a closed subalgebra E = E(I) of A such that E = { f ∈ A : φ1( f ) = · · · = φn( f )}, 1 ≤
n < ∞, {φj} ⊂ M(A) and

I = HE
φ ∩ ker φ,

where φ = φj|E, 1 ≤ j ≤ n and HE
φ is a (φ, k)-subalgebra with respect to E for some k.

Proof. Put H = I + � C; then A/H is of finite dimension. By a theorem of T. W.
Gamelin [2, Theorem 9.8], H can be obtained from A in two steps.

(i) There exist pairs of points ψj, ψ ′
j , 1 ≤ j ≤ �, in M(A) such that if E consists of

the f ∈ A such that ψj( f ) = ψ ′
j ( f ), 1 ≤ j ≤ �, then H ⊂ E ⊂ A.

(ii) There exist distinct points θj ∈ M(E) and θj-subalgebras Hj of E, 1 ≤ j ≤ k,
such that H = H1 ∩ · · · ∩ Hk.

Put ψ̃ j = ψj|E = ψ ′
j |E for 1 ≤ j ≤ �; then ψ̃ j belongs to M(E). Since I is an ideal

of A, I ⊂ ⋂�
j=1 ker ψ̃ j. To see this, let f ∈ A such that ψj( f ) �= ψ ′

j ( f ). If g ∈ I , then
fg ∈ I but ψj( fg) �= ψ ′

j ( fg) when ψ̃ j(g) �= 0. This contradicts the fact that fg ∈ E. Thus

ψ̃ j(g) = 0. Hence I ⊂ ⋂�
j=1 ker ψ̃ j and so H ⊆ ⋂�

j=1 ker ψ̃ j + � C. By the definition of
E, ψ̃1 = · · · = ψ̃�. Therefore E has the form E = { f ∈ A; φ1( f ) = · · · = φn( f )}, 1 ≤
n < ∞, and {φj} ⊂ M(A).

For each j with 1 ≤ j ≤ k, Hj is a θj-subalgebra of E for θj ∈ M(E). Hence there is
a sequence of closed subalgebras E = Ej0 ⊃ Ej1 ⊃ · · · ⊃ Ej�j = Hj such that Ejt is the
kernel of a continuous point derivation Djt of Ejt−1 at θj. We shall write Ej�j = ker Dθj ,
where Dθj is a derivation on Ej(�j−1). Then H = ⋂k

j=1 ker Dθj and so I = {⋂k
j=1 ker Dθj } ∩

ker θ , for some θ ∈ M(H). Suppose that g is an arbitrary function in I . For any
j(1 ≤ j ≤ k), there exists a function f ∈ Ej(�j−1) such that f /∈ Ej�j = ker Dθj . Since fg ∈ I
and Dθj (g) = 0, Dθj ( fg) = θj(g)Dθj ( f ) = 0 because Dθj is a derivation on Ej(�j−1). This

implies that θj(g) = 0. Hence I ⊂ ⋂k
j=1 ker θj. Therefore by the definition of E, θ1 =

· · · = θk ∈ M(E), and so H1 = · · · = Hk. Thus θ1|H = θ and I = (ker Dθ1 ) ∩ ker θ1.
Since I ⊂ ⋂n

j=1 ker φj, I ⊂ (ker φ1) ∩ (ker Dθ1 ) ∩ ker θ1 and so φ1|E = θ1.

COROLLARY 1. If I is a closed ideal of A and A/I is of finite dimension 2, then
I = { f ∈ A; φ1( f ) = φ2( f ) = 0}, where φj ∈ M(A) ( j = 1, 2) and φ1 �= φ2, or I =
{ f ∈ A; φ( f ) = Dφ( f ) = 0}, where φ ∈ M(A), and Dφ is a bounded point derivation
at φ.
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Proof. When dim A/I = 2, by Theorem 1, E = A or E = { f ∈ A; φ1( f ) = φ2( f )}.
If E = A, then HE

φ = { f ∈ A; Dφ( f ) = 0} and if E = { f ∈ A; φ1( f ) = φ2( f )}, then
HE

φ = E, since dim A/HE
φ = 1 because HE

φ = I + � C. This implies the corollary.

COROLLARY 2. If B is a finite dimensional Q-algebra and B0 = rad B is its radical,
then there exist subalgebras B1, B2, . . . , Bk+1 in B0 such that Bk+1 = {0}, dim Bj/Bj+1 =
1 and Bj+1 is an ideal of Bj for j = 0, 1, . . . , k. Hence rad B has a basis { f0, f1, . . . , fk}
such that ( fj)2((k+1)−j) = 0 for j = 0, 1, . . . , k.

Proof. Since B is a Q-algebra, B = A/I for some uniform algebra A and some
closed ideal I of A. Also, since B is of finite dimension, we can apply Theorem 1 to
A and I . In the notation of Theorem 1, rad B = { f ∈ E; φ( f ) = 0}/I . Since HE

φ is
a φ-subalgebra with respect to E, there exists a sequence of closed subalgebras E =
E0 ⊃

�−
E2 ⊃

�−
· · · ⊃

�−
Ek+1 = HE

φ such that Ej is the kernel of a continuous point derivation

Dj of Ej−1 at φ. Hence Ej+1 ∩ ker φ is an ideal of Ej ∩ ker φ and dim{Ej ∩ ker φ/Ej+1 ∩
ker φ} = 1. Put Bj = (Ej ∩ ker φ)/I . Then dim Bj/Bj+1 = 1 and Bj+1 is an ideal of Bj,
for j = 0, 1, . . . , k, and Bk+1 = {0}. For each j, there exists fj such that Bj = 〈 fj〉 + Bj+1

and then { f0, f1, . . . , fk} is a basis of rad B = B0. Observe that f 2
j belongs to Bj+1

because Ej+1 = ker Dj+1. Thus ( fj)2(k+1−j) = 0.

3. Finite codimensional invariant subspace. For a subset S of Hp(m), [S]p denotes
the closure of S in Hp(m).

THEOREM 2. If M is an invariant subspace of Hp with dim Hp/M = n < ∞, then
there exists a closed ideal of A such that dim A/I = n, [I ]p = M and I = M ∩ A. If HE

φ is
a (φ, k)-subalgebra with respect to E = E(I), then [Ej]p ⊃

�−
[Ej+1]p for any j(0 ≤ j ≤ k − 1)

and dim Hp/[E]p = dim A/E. Conversely, if dim A/I = n < ∞, then dim Hp/[I ]p ≤ n.
If [Ej]p ⊃

�−
[Ej+1]p, for any j with 0 ≤ j ≤ k − 1 and dim Hp/[E]p = dim A/E, then

dim Hp/[I ]p = n and [I ]p ∩ A = I.

Proof. Suppose that M is an invariant subspace of Hp(m) and dim Hp(m)/M =
n < ∞. Then there exist n linearly independent linear functionals ψ1, . . . , ψn in (Hp)∗

such that ψj = 0 on M for 1 ≤ j ≤ n. Put φj = ψj|A for 1 ≤ j ≤ n and I = M ∩ A. Then
I = ⋂n

j=1 ker φj and so dim A/I = n. For φ1, . . . , φn are independent linear functionals
in A∗ because A is dense in Hp(m). If M ⊃

�−
[I ]p, then there exists ψn+1 ∈ Hp(m)∗ such that

ψn+1 = 0 on [I ]p and ψ1, . . . , ψn, ψn+1 are independent linear functionals in (Hp)∗. If we
put φn+1 = ψn+1|A, then φ1, . . . , φn, φn+1 are independent linear functionals in A∗ and
I ⊆ ⋂n+1

j=1 ker φj. This contradiction implies that M = [I ]p. Note that dim Hp/[Ek] =
dim Hp/[I ]p − 1 = dim A/I − 1 = dim A/Ek. If dim Hp/[E0]p<�−

dim A/E0 where E0 =
E or [Ej]p = [Ej+1]p, for some j (0 ≤ j ≤ k − 1), then this contradicts the fact that
dim Hp/[Ek]p = dim A/Ek. The converse is clear.

COROLLARY 3. If M is an invariant subspace of Hp with dim Hp/M = 2, then
M = { f ∈ Hp; �1( f ) = �2( f ) = 0}, where �j ∈ (Hp)∗, and �j( fg) = �j( f )�j(g),
for f ∈ Hp and g ∈ A, or M = { f ∈ Hp; �( f ) = Dφ( f ) = 0}, where �, D� ∈ (Hp)∗,
�( fg) = �( f )�(g) and D�( fg) = �( f )D�(g) + �(g)D�( f ) for f ∈ Hp and g ∈ A.

Proof. This follows from Corollary 1 and Theorem 2.
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COROLLARY 4. If M is an invariant subspace of Hp with dim Hp/M = n < ∞, then
there exist f1, . . . , fn in A such that { fj + M}n

j=1 is a basis in Hp/M.

Proof. By Theorem 2, if I = M ∩ A, then dim A/I = n and M = [I ]p. Hence there
exist f1, . . . , fn in A such that { fj + I}n

j=1 is a basis in A/I . If fj belongs to M, then fj also
belongs to M ∩ A = I and so fj does not belong to M. This proves the corollary.
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