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Abstract. Let A be a uniform algebra on a compact Hausdorff space X and
m a probability measure on X. Let H?(m) be the norm closure of 4 in LF(m) with
1 < p < oo and H*(m) the weak = closure of A4 in L>(m). In this paper, we describe
a closed ideal of 4 and exhibit a closed invariant subspace of H?”(m) for A that is of
finite codimension.
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1. Introduction. Let 4 be a uniform algebra on a compact Hausdorff space
X. M(A) denotes the maximal ideal space of 4. Let m be a probability measure on
X. H?(m) denotes the norm closure of 4 in I”(m) with 1 < p < oo and H*(m) denotes
the weak * closure of 4 in L>°(m). H?(m) is called an abstract Hardy space. When A is
a disc algebra, if m is the normalized Lebesgue measure on the unit circle, H?(m) is the
usual Hardy space and if m is the normalized area measure on the unit disc, H”(m) is
the usual Bergman space.

Let I be a closed ideal of 4. In this paper, we are interested in / with dim 4 /1 < oo.
Then A/ is called a Q-algebra. Two dimensional Q-algebras can be described easily;
that is, I = {f € 4; ¢1(f) = ¢2(f) =0}, where ¢p; e M(4) (j=1,2),or I ={f¢€
A; ¢(f ) = Dy(f) = 0}, where ¢ € M(A) and Dy is a bounded point derivation at ¢.
One of the authors [3] showed that a two dimensional operator algebra on a Hilbert
space is a Q-algebra. It seems to be worthwile to describe a finite dimensional Q-
algebra. In Section 2, we describe an ideal 7 with dim 4/ < oo using a theorem of
T. W. Gamelin [2]. As a result, a finite dimensional Q-algebra is described.

When M is a closed subspace of H?(m) and AM C M, M is called an invariant
subspace for A. In this paper, we are interested in M with dim H?(m)/M < oco. When
A is the polydisc algebra on 7" and m is the normalized Lebesgue measure on 7", a
finite codimensional invariant subspace M in H”(m) was described by P. Ahern and
D. N. Clark [1] using the ideals in the polynomial ring ([zj,...,z,] of finite
codimension whose zero sets are contained in the polydisk D”. In Section 3, for an
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arbitrary uniform algebra 4 we describe a finite codimensional invariant subspace M
in H?(m) using the result in Section 2.

2. Finite codimensional ideal. Let ¢ € M(A4). A closed subalgebra H of A is a
(¢, k)-subalgebra if there is a sequence of closed subalgebras 4 = 49 D> A} D --- D
Ay = H such that 4; is the kernel of a continuous point derivation D; of 4;_; at ¢. If
H is a (¢, k)-subalgebra of 4, then H has finite codimension in 4 and M(H) = M(A)
by [2, Lemma 9.1].

If 1 is a closed ideal of 4 and A4/I is of finite dimension, B = £ + [ is a closed
subalgebra of 4, and 4/B is of finite dimension. By a theorem of T. W. Gamelin [2,
Theorem 9.8], we can describe B and so also /. Since B is a special closed subalgebra
of A we can describe I more explicitly.

THEOREM 1. If I is a closed ideal of A and A/ is of finite dimension, then there exists
a closed subalgebra E = E(I) of A suchthat E={f € A:p;(f)=---=¢,(f)}, 1 <
n < oo, {¢j} C M(A)and

I=H f Nker ¢,
where ¢ = ¢;|E, 1 <j <nand H, f is a (¢, k)-subalgebra with respect to E for some k.

Proof. Put H =1+ ; then A/H is of finite dimension. By a theorem of T. W.
Gamelin [2, Theorem 9.8], H can be obtained from A4 in two steps.

(i) There exist pairs of points v, wjf , 1 <j <¥,in M(A) such that if E consists of
thefeAsuchthatwj(f):wj’(f), 1<j<{,then HC EC A.

(ii) There exist distinct points 6; € M(E) and 6;-subalgebras H; of E,1 <j <k,
such that H = HyN---N Hy.

Put 1#] YilE = 1// |E for 1 <j < ¢; then 1//j belongs to M(E). Since [ is an ideal
of A4, I C ﬂ lkerx/rj To see this, let / € 4 such that y;(f) # ¥;(f). If g € 1, then
Jg € I'buty;(fg) # ¥/(fg) when 1//J(g) # 0. This contradicts the fact that fg € E. Thus
%(g) =0. Hence I C ﬂil ker 1/?1- and so H C ﬂle ker &j + L. By the definition of
E, ¥i = --- = V. Therefore Ehastheform E={f € 4; ¢1(f)=---=¢u(f)}, 1 <
n < oo, and {¢;} C M(A).

Foreachjwithl <j <k, Hjisa6, subalgebra of E for 6; € M(E). Hence there is
a sequence of closed subalgebras E= E o D Ejp O -+ D Ejy; = Hj such that Ej, is the
kernel of a continuous point derivation D, of E,, | at o;. We shall write E,,; = ker Dy,
where Dy, is a derivation on Ej,—1). Then H = ﬂ ker Dg, andso I = {ﬂ] 1 ker Dy} N
ker 6, for some 0 € M(H). Suppose that g is an arbltrary function in /. For any
J(1 <j < k), thereexists a function f* € Ej,—1)suchthatf ¢ Ej, = ker Dy,. Since fg € [
and Dy,(g) = 0, Dy(fg) =6, (g)Del(f) = 0 because Dy isa derivation on Ej(,—1). This
implies that 6;(g) = 0. Hence I C ﬂ - ker 6;. Therefore by the definition of E, 6; =

<=6 € M(E), and so H| = --- = Hj. Thus 01|H =0 and I = (ker Dy,) Nker 0;.
Since I C ﬂ;=1 ker¢;, I C (kerqbl) N (ker Dy, ) Nker 0) and so ¢, |E = 6;.

COROLLARY 1. If I is a closed ideal of A and A/I is of finite dimension 2, then

I'={fed; ¢pi(f)=¢(f) =0}, where ¢; € M(A) (j=1,2) and ¢\ # 2, or I =
{f eAd; ¢(f) = Dy(f)=0}, where ¢ € M(A), and Dy is a bounded point derivation

at ¢.
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Proof: Whendim A/I = 2, by Theorem 1, E = Aor E ={f € A; $:(f) = ¢(f)}.
If E= A, then Hj = {f € A; Dy(f) =0} and if E = {f € 4; 1(f) = ¢2(/)}. then
Hj = E, since d1m A/Hj = 1because H; = I + (. This implies the corollary.

COROLLARY 2. If B is a finite dimensional Q-algebra and By = rad B is its radical,
then there exist subalgebras By, B, .. Bk+1 in By such that By = {0}, dim B;/B;y| =
1 and By, is an ideal of B; for j = 0, 1 ,k. Hence rad B has a basis { fo, f1, ..., fk}
such that (f;)* V=) =0 forj=0,1,... k.

Proof. Since B is a Q-algebra, B = A4/I for some uniform algebra 4 and some
closed ideal I of 4. Also, since B is of finite dimension, we can apply Theorem 1 to
A and I. In the notation of Theorem 1, rad B={f € E; ¢(f) = 0}/1. Since H(f is
a ¢—subalgebra with respect to E, there exists a sequence of closed subalgebras E =
Ey D E, D DEy = H, E such that E; is the kernel of a continuous point derivation

D; ofE, %1 at ¢7£Hence E; 1 Nker ¢ is an ideal of E; N ker ¢ and dim{E; Nker¢/E; 1 N
ker¢} = 1. Put B; = (E; Nker ¢)/1. Then dim BJ/BH_I =1 and By, is an ideal of B;,
forj=0,1,.. k and By;1 = {0}. For each j, there exists f; such that B; = (f;) + Bj;1
and then {f(),f], ..., fx} 1s a basis of rad B = By. Observe that ];.2 belongs to Bjy
because Ej;1 = ker Dj;. Thus (f;)**+1=) = 0.

3. Finite codimensional invariant subspace. For a subset S of H”(m), [S], denotes
the closure of S in H”(m).

THEOREM 2. If M is an invariant subspace of H? with dim H? /M = n < oo, then
there exists a closed ideal of A such thatdim A/I = n, [I], = M andl = M N A. Ifo is
a (¢, k)-subalgebra with respect to E = E(I), then [Ej], D [Ej1]p forany j(0 <j <k —1)
and dim H? /[E], = dim A/E. Conversely, if dim A/I z n < oo, then dim H? /[I], < n
If [Ej], 2 [Ej11]y, for any j with 0 <j <k—1 and dim H?/[E], = dim A/E, then

dim H?/[I], =nand[I],N4=1.

Proof. Suppose that M is an invariant subspace of H”(m) and dim H?(m)/M =
n < oo. Then there exist # linearly independent linear functionals ¥, ..., ¥, in (H?)*
suchthaty; =0onMforl <j <n.Put¢; =yjldforl <j<nandl = M N A.Then
I= ﬂ]":  ker ¢; and so dim 4/1 = n. For ¢y, ..., ¢, are independent linear functionals
in A* because A is dense in H”(m). If M D [1],, then there exists ¥,,+1 € HP(m)* such that
Yur1 = 0on[l],and Yy, ..., ¥u, ¥uq1 areindependent linear functionalsin (H?)*. If we
put ¢, 1 = ¥u114, then ¢y, ..., ¢,, ¢,11 are independent linear functionals in 4* and
IcC ﬂ”+ ker ¢;. This contradlctlon implies that M = [I],. Note that dim H? /[E}] =
dlmH”/[I] — 1 =dimA4/I — 1 =dim 4/E;. If dim H? /[Ey],< dim 4/Ey where Ey =
E or [Ej], = [Ej+1]p, for some j (0 <j < k — 1), then this contradicts the fact that
dim H? /[E}], = dim A/E}. The converse is clear.

COROLLARY 3. If M is an invariant subspace of HP with dim H’ /M = 2, then
M ={feH O,(f)=P:f) =0}, where ®; € (H')*, and ®;(fg) = P;(f)P;(g).
forfeHP andge A, or M ={f € H; O(f )= Dy(f) =0}, where &, Dy € (H?)*,
O(fg) = O(f)P(g) and Do(fg) = P(f )Do(g) + P(g)Do(f ) for [ € H" and g € A.

Proof. This follows from Corollary 1 and Theorem 2.
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COROLLARY 4. If M is an invariant subspace of H? with dim H? /M = n < oo, then
there exist fy, ..., fu in A such that { fj + M}]_, is a basis in H” /M.

Proof. By Theorem 2, if I = M N A, then dim A/1 = nand M = [I],. Hence there
existfi, ..., fy in A such that { f; + I};_, isa basis in 4/I. If f; belongs to M, then f; also
belongs to M N A = I and so f; does not belong to M. This proves the corollary.
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