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Abstract

We introduce the spaces Vp
B(X) (respectively V

p
B(X)) of the vector measures F :6→ X of bounded

(p,B)-variation (respectively of bounded (p,B)-semivariation) with respect to a bounded bilinear map
B : X × Y → Z and show that the spaces L p

B(X) consisting of functions which are p-integrable with
respect to B, defined in by Blasco and Calabuig [‘Vector-valued functions integrable with respect to
bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in Vp

B(X). We characterize

V
p
B(X) in terms of bilinear maps from L p′

× Y into Z and Vp
B(X) as a subspace of operators from

L p′(Z∗) into Y ∗. Also we define the notion of cone absolutely summing bilinear maps in order to describe
the (p,B)-variation of a measure in terms of the cone-absolutely summing norm of the corresponding
bilinear map from L p′

× Y into Z .
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1. Notation and preliminaries

Throughout the paper X denotes a Banach space, (�, 6, µ) a positive finite measure
space, DE the set of all partitions of E ∈6 into a finite number of pairwise
disjoint elements of 6 of positive measure and S6(X) the space of simple functions,
s=

∑n
k=1 xk1Ak , where xk ∈ X , (Ak)k ∈D� and 1A denotes the characteristic

function of the set A ∈6. Also Y and Z denote Banach spaces over K (R or C)
and B : X × Y → Z a bounded bilinear map. We use the notation BX for the closed
unit ball of X , L(X, Y ) for the space of bounded linear operators from X to Y and
X∗ =L(X,K).

For a vector measure F :6→ X we use the notation |F| and ‖F‖ for the
nonnegative set functions |F| :6→R+ and ‖F‖ :6→R+ given by

|F|(E)= sup
{∑

A∈π

‖F(A)‖X : π ∈DE

}
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and
‖F‖(E)= sup{|〈F, x∗〉|(E) : x∗ ∈ BX∗},

respectively. In the case of operator-valued measures F :6→L(Y, Z) we use |||F|||
for the strong-variation defined by

|||F|||(E)= sup
{∑

A∈π

‖F(A)y‖Z : y ∈ BY , π ∈DE

}
.

Given a norm τ defined on the space Y ⊗τ X satisfying ‖y ⊗ x‖τ ≤ C‖y‖ · ‖x‖we
write Y ⊗̂X for its completion. In [1] Bartle introduced the notion of Y -semivariation
of a vector measure F :6→ X with respect to τ by the formula

βY (F, τ )(E)= sup
{∥∥∥∥∑

A∈π

yA ⊗ F(A)

∥∥∥∥
τ

: yA ∈ BY , π ∈DE

}
for every E ∈6. This is an intermediate notion between the variation and
semivariation, since for every E ∈6 we clearly have

‖F‖(E)≤ βY (F, τ )(E)≤ |F|(E).

If Y ⊗̂εX and Y ⊗̂π X stand for the injective and projective tensor norms,
respectively, then we actually have

‖F‖(E)= βY (F, ε)(E)≤ βY (F, τ )(E)≤ βY (F, π)(E)≤ |F|(E).

We refer the reader to [11] for a theory of integration of Y -valued functions with
respect to X -valued measures of bounded Y -semivariation initiated by Jefferies and
Okada and to [3] for the study of this notion in the particular cases X = L p(µ),
Y = Lq(ν) and τ the norm in the space of vector-valued functions L p(µ, Lq(ν)).

We are going to use notions of B-variation (or B-semivariation) which allow us to
obtain all of the previous cases for particular instances of bilinear maps.

Recall that, for 1< p <∞, the p-variation and p-semivariation of a vector measure
F are defined by

|F|p(E)= sup
{(∑

A∈π

‖F(A)‖p
X

µ(A)p−1

)1/p

: π ∈DE

}
(1.1)

and

‖F‖p(E)= sup
{(∑

A∈π

|〈F(A), x∗〉|p

µ(A)p−1

)1/p

: x∗ ∈ BX∗, π ∈DE

}
. (1.2)

We use Vp(X) and Vp(X) to denote the Banach spaces of vector measures for
which |F|p(�) <∞ and ‖F‖p(�) <∞, respectively.

The limiting case p = 1 corresponds to ‖F‖1(E)= |F|(E) and ‖F‖1(E)
= ‖F‖(E). For p =∞ V∞(X)= V∞(X) is given by vector measures satisfying the
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property that there exists C > 0 such that ‖F(A)‖ ≤ Cµ(A) for any A ∈6 and the
∞-variation of a measure is defined by

‖F‖∞(E)= sup
{
‖F(A)‖X

µ(A)
: A ∈6, A ⊂ E, µ(A) > 0

}
. (1.3)

We use L0(X) and L0
weak(X) to denote the spaces of strongly and weakly

measurable functions with values in X and write L p(X) and L p
weak(X) for the space

of functions in L0(X) and L0
weak(X) such that ‖ f ‖ ∈ L p and 〈 f, x∗〉 ∈ L p for every

x∗ ∈ X∗, respectively. As usual for 1≤ p ≤∞ the conjugate index is denoted by p′,
that is 1/p + 1/p′ = 1.

For each f ∈ L p(X), 1≤ p ≤∞, one can define a vector measure

F f (E)=
∫

E
f dµ, E ∈6

which is of bounded p-variation and |F f |p(�)= ‖ f ‖L p(X). On the other hand, the
converse depends on the Radon–Nikodým property (RNP), that is, given 1< p ≤∞,
X has the RNP if and only if for any X -valued measure F of bounded p-variation there
exists f ∈ L p(X) such that F = F f .

For general Banach spaces X , V∞(X) can be identified with the space of operators
L(L1, X) by means of the map F→ TF where

TF (1E )= F(E), E ∈6,

and for 1< p <∞ the space Vp(X) can be identified (isometrically) with the space
3(L p′, X), formed by the cone absolutely summing operators from L p′ into X with
the π+1 norm (see [14, 2]). We refer the reader to [9, 8, 11, 14] for the notions appearing
in the paper and the basic concepts about vector measures and their variations.

Quite recently the authors started studying the spaces of X -valued functions which
are p-integrable with respect to a bounded bilinear map B : X × Y → Z , that is,
functions f satisfying the condition B( f, y) ∈ L p(Z) for all y ∈ Y . Some basic theory
was developed and applied to different examples (see [4, 5, 6]). Note that the use of
certain bilinear maps, such as

B : X ×K→ X, given by B(x, λ)= λx, (1.4)

D : X × X∗→K, given by D(x, x∗)= 〈x, x∗〉, (1.5)

D1 : X
∗
× X→K, given by D1(x

∗, x)= 〈x, x∗〉, (1.6)

πY : X × Y → X⊗̂Y, given by πY (x, y)= x ⊗ y, (1.7)

ÕY : X ×L(X, Y )→ Y, given by ÕY (x, T )= T (x), (1.8)

OY,Z :L(Y, Z)× Y → Z , given by OY,Z (T, y)= T (y) (1.9)

have been around for many years and have been used in different aspects of vector-
valued functions, but a systematic study for general bilinear maps was started in [4]
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and used, among other things, to extend the results on boundedness from L p(Y )
to L p(Z) of operator-valued kernels by Girardi and Weiss [10] to the case where
K :�×�′→ X is measurable and the integral operators are defined by

TK ( f )(w)=
∫
�′

B(K (w, w′), f (w′)) dµ′(w′).

The reader is also referred to [6] for some versions of Hölder’s inequality in this
setting.

We require some notation and definitions from the previous papers. We write
8B : X→L(Y, Z) and 9B : Y →L(X, Z) for the bounded linear operators defined
by 8B(x)=Bx and 9B(y)=By where Bx and By are given by Bx (y)=By(x)
=B(x, y).

A bounded bilinear map B : X × Y → Z is called admissible (see [4]) if 8B is
injective. Throughout the paper we always assume that B is admissible. However, a
stronger condition will also be required for some results: a Banach space X is said to
be (Y, Z ,B)-normed if there exists k > 0

‖x‖X ≤ k‖Bx‖L(Y,Z), x ∈ X.

The bounded bilinear maps (1.4)–(1.9) provide examples of B-normed spaces.
As in [4] we write L

p
B(X) for the space of functions f :�→ X with B( f, y)

∈ L0(Z) for any y ∈ Y and such that

‖ f ‖Lp
B(X)
= sup{‖B( f, y)‖L p(Z) : y ∈ BY }<∞,

and we use the notation L p
B(X) for the space of functions f ∈L

p
B(X) for which

there exists a sequence of simple functions (sn)n ∈ S6(X) such that sn→ f almost
everywhere and ‖sn − f ‖Lp

B(X)
→ 0. In such a case, we write ‖ f ‖L p

B(X)
instead of

‖ f ‖Lp
B(X)

and ‖ f ‖L p
B(X)
= limn→∞ ‖sn‖L p

B(X)
.

In particular, for the examples B and D we have that L
p

B(X)= L p(X) and
L

p
D(X)= L p

weak(X). In addition L p
B(X)= L p(X) and L p

D(X) coincides with the
space of Pettis p-integrable functions Pp(X) (see [13, p. 54], for the case p = 1).

Observe that, for any B, L p(X)⊆ L p
B(X) and the inclusion can be strict (see [8,

p. 53], for the case B=D). Regarding the connection between L p
B(X) and L p

weak(X)
it was shown that X is (Y, Z ,B)-normed if and only if L p

B(X)⊆ L p
weak(X) with

continuous inclusion.
Owing to this fact, if f ∈ L1

B(X) for some (Y, Z ,B)-normed space X , then for

each E ∈6 there exists a unique element of X , denoted by
∫ B

E f dµ, verifying∫
E

B( f, y) dµ=B

(∫ B

E
f dµ, y

)
, ∀y ∈ Y.
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This allows us to define the vector measure

FB
f (E)=

∫ B

E
f dµ, E ∈6.

We consider the notion of (p,B)-variation which fits with the theory allowing us
to show that the (p,B)-variation of F f coincides with its norm ‖ f ‖L p

B(X)
.

The rest of this paper is divided into three sections. In Section 2 we introduce
the notion of B-variation, B-semivariation of a vector measure and study their
connection with the classical notions. We prove that for (Y, Z ,B)-normed spaces
the B-semivariation is equivalent to the semivariation and that the Y -semivariation
considered by Bartle coincides the B-variation for a particular bilinear map B. Of
particular interest is the observation that any vector measure with values in X = L1(µ)

is of bounded B-variation for every B whenever Z is a Hilbert space. We also show
in this section that the measure FB

f is µ-continuous and ‖FB
f ‖B(�)= ‖ f ‖L1

B(X)
. In

Section 3 the natural notion of (p,B)-semivariation is introduced. Starting with the
case p =∞ we describe, for 1< p ≤∞, the space of measures with bounded (p,B)-
semivariation as bounded bilinear maps from L p′

× Y → Z . In Section 4 we deal
with the notion of (p,B)-variation of a vector measure. Several characterizations
are presented and the new notion of ‘cone absolutely summing bilinear map’ from
L × Y → Z , where L is a Banach lattice, is introduced. This allow us to describe the
(p,B)-variation of a vector measure as the norm of the corresponding bilinear map
from L p′

× Y into Z in this class.
Throughout the paper F :6→ X always denotes a vector measure, B : X

× Y → Z is admissible and, for each y ∈ Y , B(F, y) denotes the Z -valued measure
B(F, y)(E)=B(F(E), y).

2. Variation and semivariation with respect to bilinear maps

DEFINITION 2.1. Let E ∈6. We define the B-variation of F on the set E by

|F|B(E) = sup{|B(F, y)|(E) : y ∈ BY }

= sup
{∑

A∈π

‖B(F(A), y)‖Z : π ∈DE , y ∈ BY

}
.

We say that F has bounded B-variation if |F|B(�) <∞.

DEFINITION 2.2. Let E ∈6. We define the B-semivariation of F on the set E by

‖F‖B(E) = sup{‖B(F, y)‖(E) : y ∈ BY }

= sup{|〈B(F, y), z∗〉|(E) : y ∈ BY , z∗ ∈ BZ∗}

= sup
{∑

A∈π

|〈B(F(A), y), z∗〉| : π ∈DE , y ∈ BY , z∗ ∈ BZ∗

}
.

We say that F has bounded B-semivariation if ‖F‖B(�) <∞.
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REMARK 2.3. Let F be a vector measure and E ∈6. Then:

(a) |F|B(E)≤ ‖B‖ · |F|(E);
(b) ‖F‖B(E)≤ ‖B‖ · ‖F‖(E);
(c) sup{‖B(F(C), y)‖ : y ∈ BY , E ⊇ C ∈6} ≈ ‖F‖B(E).

In particular any measure has bounded B-semivariation for any B.

We can easily describe the B-variation and B-semivariation of vector measures for
the bilinear maps given in (1.4)–(1.9). The following results are elementary and left to
the reader.

PROPOSITION 2.4. Let F be a vector measure and E ∈6. Then:

(a) |F|B(E)= |F|(E) and ‖F‖B(E)= ‖F‖(E);
(b) |F|D(E)= ‖F‖D(E)= ‖F‖(E);
(c) |F|D1(E)= ‖F‖D1(E)= ‖F‖(E);
(d) |F|πY (E)= |F|(E) and ‖F‖πY (E)= ‖F‖(E) (see Proposition 2.7);
(e) |F|ÕY

(E)= sup{|T F|(E) : T ∈ BL(Y,Z)} and ‖F‖ÕY
(E)= ‖F‖(E);

(f) |F|OY,Z (E)= |||F|||(E) and ‖F‖OY,Z (E)= ‖F‖(E).

The notion of B-normed space can be described in terms of vector measures.

PROPOSITION 2.5. Let B : X × Y → Z be an admissible bounded bilinear map.
Then X is (Y, Z ,B)-normed if and only if for any vector measure F :6→ X there
exist C1, C2 > 0 such that

C1‖F‖(E)≤ ‖F‖B(E)≤ C2‖F‖(E)

for all E ∈6.

PROOF. Obviously ‖F‖B(E)≤ ‖B‖ · ‖F‖(E) for any E ∈6. Assume that X is
(Y, Z ,B)-normed. Then we have that

‖F‖(E) = sup
{∥∥∥∥∑

A∈π

εAF(A)

∥∥∥∥
X
: π ∈DE , εA ∈ BK

}
≤ k sup

{∥∥∥∥B∑
A∈π εAF(A)

∥∥∥∥
L(Y,Z)

: π ∈DE , εA ∈ BK

}
= k sup

{∥∥∥∥∑
A∈π

εAB(F(A), y)

∥∥∥∥
Z
: π ∈DE , εA ∈ BK, y ∈ BY

}
= k‖F‖B(E).

Conversely, for each x ∈ X select the measure Fx (A)= xµ(A)µ(�)−1 and observe
that ‖Fx‖(�)= ‖x‖ and ‖Fx‖B(�)= ‖Bx‖. 2

We use B∗ for the ‘adjoint’ bilinear map from X × Z∗ to Y ∗, that is (B∗)x = (Bx )
∗

or
B∗ : X × Z∗→ Y ∗, given by 〈y,B∗(x, z∗)〉 = 〈B(x, y), z∗〉.
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[7] p-variation of vector measures 417

Note that B∗ =D,D∗1 = B, (πY )
∗
= ÕY ∗ and (OY,Z )

∗(T, z∗)= OZ∗,Y ∗(T ∗, z∗).
Let us prove that the B-semivariation and the B∗-semivariation always coincide.

PROPOSITION 2.6. We have ‖F‖B(E)= ‖F‖B∗(E) for all E ∈6.

PROOF. Let us take E ∈6. Then

‖F‖B(E)= sup
{∑

A∈π

|〈B(F(A), y), z∗〉| : π ∈DE , y ∈ BY , z∗ ∈ BZ∗

}
= sup

{∑
A∈π

|〈y,B∗(F(A), z∗)〉| : π ∈DE , y ∈ BY , z∗ ∈ BZ∗

}
= sup

{∣∣∣∣∑
A∈π

εA〈y,B
∗(F(A), z∗)〉

∣∣∣∣ : π ∈DE , y ∈ BY , z∗ ∈ BZ∗, εA ∈ BK

}
= sup

{∥∥∥∥∑
A∈π

εAB∗(F(A), z∗)

∥∥∥∥
Y ∗
: π ∈DE , z∗ ∈ BZ∗, εA ∈ BK

}
= sup

{∑
A∈π

|〈B∗(F(A), z∗), y∗∗〉| : π ∈DE , y∗∗ ∈ BY ∗∗, z∗ ∈ BZ∗

}
= ‖F‖B∗(E). 2

PROPOSITION 2.7. Let τ be a norm in Y ⊗ X with ‖y ⊗ x‖τ = ‖y‖‖x‖ for all y ∈ Y
and x ∈ X. Define τY : X × Y → Y ⊗̂τ X given by (x, y)→ y ⊗ x. Then, for each
E ∈6,

βY (F, τ )(E)≈ |F|(τY )
∗(E).

PROOF. Taking into account that Y ⊗̂π X ⊆ Y ⊗̂τ X , then (Y ⊗̂τ X)∗ can be regarded as
a subspace of the space of bounded operators L(Y, X∗). Moreover ‖T ‖ ≤ ‖T ‖(Y ⊗̂τ X)∗

for any T ∈ (Y ⊗̂τ X)∗, where the duality is given by〈
T,

k∑
j=1

y j ⊗ x j

〉
=

k∑
j=1

〈x j , T (y j )〉.

From [3, Theorem 2.1], we have

βY (F, τ )(E)≈ sup{|T F|(E) : T ∈L(Y, X∗), ‖T ‖(Y ⊗̂τ X)∗ ≤ 1}.

Hence,

βY (F, τ )(E)≈ sup{|(τY )
∗(F, T )|(E) : T ∈L(Y, X∗), ‖T ‖(Y ⊗̂τ X)∗ ≤ 1}. 2

Of course vector measures need not be of bounded B-variation for a general B
(it suffices to take B such that |F|B = |F|), but there are cases where this happens to
be true owing to the geometrical properties of the spaces under consideration.
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PROPOSITION 2.8. Let X = L1(ν) for some σ -finite measure ν and let Z = H be a
Hilbert space. Then any vector measure F :6→ L1(ν) is of bounded B-variation for
any bounded bilinear map B : L1(ν)× Y → H and any Banach space Y .

PROOF. Recall first that Grothendieck theorem (see [7]) establishes that there exists a
constant κG > 0 such that any operator from L1(ν) to a Hilbert space H satisfies

N∑
n=1

‖T (φn)‖H ≤ κG‖T ‖ sup
{∥∥∥∥ N∑

n=1

εnφn

∥∥∥∥
L1(ν)

: εn ∈BK

}

for any finite family of functions (φn)n in L1(ν).
If F :6→ L1(ν) is a vector measure and π a partition, one has that

‖
∑

A∈π εAF(A)‖L1(ν) ≤ ‖F‖(�). Hence, By
∈ L(L1(η), H) for any y ∈ Y , so one

obtains ∑
A∈π

‖By(F(A))‖Z ≤ κG · ‖B
y
‖ · ‖F‖(�).

Therefore, one concludes that |F|B(�)≤ κG · ‖F‖(�). 2

Recall that a vector measure F :6→ X is called µ-continuous if limµ(E)→0
‖F‖(E)= 0.

THEOREM 2.9. Let X be (Y, Z ,B)-normed and f ∈ L1
B(X). Then

FB
f :6→ X, given by FB

f (E)=
∫ B

E
f dµ (2.1)

is a µ-continuous vector measure of bounded B-variation. Moreover, |FB
f |B(�)

= ‖ f ‖L1
B(X)

.

PROOF. It was shown (see [4, Theorem 1]) that functions in L1
B(X) are Pettis

integrable and
∫ B

E f dµ coincides with the Pettis integral. Hence, FB
f defines a vector

measure.
Using now that, for each y ∈ Y , the vector measure B(FB

f , y) has density B( f, y)

that belongs to L1(Z), one obtains that, for any E ∈6,

|B(F f , y)|(E)=
∫

E
‖B( f, y)‖Z dµ.

Thus, |FB
f |B(�)= ‖ f ‖L1

B(X)
. It remains to show that FB

f is µ-continuous. Let us fix

ε > 0 and select, using that f ∈ L1
B(X), a simple function s such that ‖ f − s‖L1

B(X)
≤ ε. Thus,
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[9] p-variation of vector measures 419

‖FB
f (E)‖X ≤

∥∥∥∥∫ B

E
( f − s) dµ

∥∥∥∥
X
+

∥∥∥∥∫ B

E
s dµ

∥∥∥∥
X

=

∥∥∥∥∫ B

E
( f − s) dµ

∥∥∥∥
X
+

∥∥∥∥∫
E

s dµ

∥∥∥∥
X

≤ k‖B∫B
E ( f−s) dµ‖L(Y,Z) +

∥∥∥∥∫
E

s dµ

∥∥∥∥
X

≤ k sup
{∫

E
‖B( f − s, y)‖Z dµ : y ∈ BY

}
+

∥∥∥∥∫
E

s dµ

∥∥∥∥
X

≤ kε +

∥∥∥∥∫
E

s dµ

∥∥∥∥
X
.

We have the conclusion just taking limits when µ(E)→ 0 and ε→ 0+. 2

COROLLARY 2.10. Let X is (Y, Z ,B)-normed and f ∈ L1
B(X). If

∫ B
E f dµ= 0 for

all E ∈6, then f = 0 almost everywhere in �.

3. Measures of bounded ( p, B)( p, B)( p, B)-semivariation.

Extending the notion for B= B, we say that a vector measure F :6→ X is (B, µ)-
continuous if limµ(E)→0 ‖F‖B(E)= 0. Clearly both concepts coincide for B-normed
spaces.

DEFINITION 3.1. We say that F has bounded (∞,B)-semivariation if there exists
C > 0 such that

|〈B(F(A), y), z∗〉| ≤ C · ‖y‖ · ‖z∗‖ · µ(A), y ∈ Y, z∗ ∈ Z∗, A ∈6. (3.1)

The space of such measures is denoted by V∞B (X) and we set

‖F‖V∞B (X) = inf{C : satisfying (3.1)}

= sup
{
|〈B(F(A), y), z∗〉|

µ(A)
: y ∈ BY , z∗ ∈ BZ∗, A ∈6, µ(A) > 0

}
.

Observe that every vector measure F belonging to V∞B (X) is (B, µ)-continuous and it
has bounded B-variation. Also note that F has bounded (∞,B)-semivariation if and
only if one of the following holds:

‖B(F(A), y)‖ ≤ C‖y‖µ(A), y ∈ Y, A ∈6,
‖F‖B(A) ≤ Cµ(A), A ∈6
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or

|F|B(A)≤ Cµ(A), A ∈6.

It is elementary to see, owing to the admissibility of B, that ‖F‖V∞B (X) is a norm.
Of course,

‖F‖V∞B (X) = sup{‖B(F, y)‖V∞(Z) : y ∈ BY }

= sup
{
‖B(F(A), y)‖Z

µ(A)
: y ∈ BY , A ∈6

}
= sup

{
‖F‖B(A)

µ(A)
: A ∈6

}
= sup

{
|F|B(A)

µ(A)
: A ∈6

}
.

PROPOSITION 3.2. We have F ∈ V∞B (X) if and only if there exists a bounded bilinear
map BF : L1

× Y → Z such that

BF (1A, y)=B(F(A), y), A ∈6, y ∈ Y.

Moreover, ‖BF‖ = ‖F‖V∞B (X).

PROOF. Assume that F ∈ V∞B (X). Define BF on simple functions by the formula

BF

( n∑
k=1

αk1Ak , y

)
=

n∑
k=1

αkB(F(Ak), y).

Observe that ∥∥∥∥BF

( n∑
k=1

αk1Ak , y

)∥∥∥∥
Z
≤ ‖F‖V∞B (X)‖y‖

n∑
k=1

|αk |µ(Ak).

This allows us to extend the bilinear map to L1
× Y → Z with norm ‖BF‖

≤ ‖F‖V∞B (X). Conversely, one has

‖B(F(A), y)‖Z ≤ ‖BF‖ · ‖y‖ · ‖1A‖L1,

which gives ‖F‖V∞B (X) ≤ ‖BF‖. 2

We use the notation Bil(L1
× Y, Z) for the space of bounded bilinear maps with its

natural norm.
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COROLLARY 3.3. We have that V∞B (X) is isometrically embedded in Bil(L1
× Y, Z).

In the case B= OY,Z we have

V∞OY,Z
(L(Y, Z))= Bil(L1

× Y, Z).

Let L∞B (X) stand for the space of measurable functions f :�→ X such that
B( f, y) ∈ L∞(Z) for all y ∈ Y and write

‖ f ‖L∞B (X)
= sup{‖B( f, y)‖L∞(Z) : y ∈ BY }.

Note that L∞B (X)⊆ L1
B(X) and |B(FB

f , y)|(A)=
∫ B

A ‖B( f, y)‖dµ for any set

A ∈6. In particular, if f ∈ L∞B (X), then the measure FB
f ∈ V∞B (X) and

‖FB
f ‖V∞B (X) = ‖ f ‖L∞B (X)

.

PROPOSITION 3.4. The following are equivalent:

(a) X is (Y, Z ,B)-normed;
(b) V∞B (X)= V∞(X);
(c) there exists k > 0 such that ‖FB

f ‖V∞(X) ≤ k‖ f ‖L∞B (X)
for any f ∈ L∞B (X).

PROOF. (a) H⇒ (b) We always have V∞(X)⊆ V∞B (X). Assume that X is (Y, Z ,B)-
normed and F ∈ V∞B (X). Note that

‖F(A)‖ ≤ k‖BF(A)‖ ≤ k‖F‖V∞B (X)µ(A).

(b) H⇒ (c) Let f ∈ L∞B (X). Clearly,

‖FB
f ‖V∞(X) ≤ k‖FB

f ‖V∞B (X) = k‖ f ‖L∞B (X)
.

(c) H⇒ (a) Let us take fx = x1� for a given x ∈ X and observe that FB
fx
(A)

= xµ(A) for all A ∈6. Note that ‖ fx‖L∞B (X)
= ‖Bx‖ and ‖FB

fx
‖V∞(X) = ‖x‖. 2

DEFINITION 3.5. Let 1≤ p <∞. We say that F has bounded (p,B)-semivariation
if

‖F‖Vp
B(X)
= sup

{(∑
A∈π

|〈B(F(A), y), z∗〉|p

µ(A)p−1

)1/p

: y ∈ BY ,

z∗ ∈ BZ∗, π ∈D�

}
<∞.

The space of such measures is denoted by V
p
B(X).

We have the equivalent formulation

‖F‖Vp
B(X)
= sup{‖B(F, y)‖Vp(Z) : y ∈ BY }

= sup{‖〈B(F, y), z∗〉‖Vp : y ∈ BY , z∗ ∈ BZ∗}.

Let us start with the following description.

https://doi.org/10.1017/S0004972708000798 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000798


422 O. Blasco and J. M. Calabuig [12]

PROPOSITION 3.6. Let 1< p <∞. Then F ∈ V
p
B(X) if and only if there exists a

bounded bilinear map BF : L p′
× Y → Z such that

BF (1A, y)=B(F(A), y), A ∈6, y ∈ Y.

Moreover, ‖BF‖ = ‖F‖V p
B(X)

.

PROOF. Assume that F ∈ V
p
B(X). As above define BF on simple functions by the

formula

BF

( n∑
k=1

αk1Ak , y

)
=

n∑
k=1

αkB(F(Ak), y).

We use that

‖F‖V p
B(X)
= sup

{∣∣∣∣∑
A∈π

〈B(F(A), y), z∗〉γA

µ(A)1/p′

∣∣∣∣ : y ∈ BY , z∗ ∈ BZ∗,

π ∈D�, (γA)A ∈ B
`p′

}
= sup

{∥∥∥∥∑
A∈π

B(F(A), y)βA

∥∥∥∥
Z
: y ∈ BY , π ∈D�,

∑
A∈π

βA1A ∈ BL p′

}
= sup

{∥∥∥∥BF

(∑
A∈π

βA1A, y

)∥∥∥∥
Z
: y ∈ BY , π ∈D�,

∑
A∈π

βA1A ∈ BL p′

}
.

Hence, using the density of simple functions we extend to L p′ and ‖BF‖ ≤ ‖F‖V p
B(X)

.
The converse also follows from the previous formula. 2

It is known that Vp(X)=L(L p′, X) (see [12]). The next result is the analogue in
the bilinear setting.

COROLLARY 3.7. Let 1< p <∞. Then V
p
B(X) is isometrically embedded in

Bil(L p′
× Y, Z). In the case B= OY,Z we have

V
p
OY,Z

(L(Y, Z))= Bil(L p′
× Y, Z).

PROPOSITION 3.8. Let B : X × Y → Z be an admissible bounded bilinear map
and 1< p <∞. Then X is (Y, Z ,B)-normed if and only if the space V

p
B(X) is

continuously contained into Vp(X).
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PROOF. Assume that X is (Y, Z ,B)-normed. Then

‖F‖Vp(X) = sup
{∣∣∣∣∑

A∈π

〈F(A), x∗〉γA

µ(A)1/p′

∣∣∣∣ : x∗ ∈ BX∗, π ∈D�, (γA)A ∈ B
`p′

}
= sup

{∥∥∥∥∑
A∈π

F(A)γA

µ(A)1/p′

∥∥∥∥
X
: π ∈D�, (γA)A ∈ B

`p′

}
≤ k sup

{∥∥∥∥B∑ F (A)γA
µ(A)1/p′

∥∥∥∥
L(Y,Z)

: π ∈D�, (γA)A ∈ B
`p′

}
= k sup

{∥∥∥∥∑
A∈π

B

(
F(A)γA

µ(A)1/p′
, y

)∥∥∥∥
Z
: y ∈ BY , π ∈D�, (γA)A ∈ B

`p′

}

= k sup
{(∑

A∈π

‖B(F(A), y)‖p

µ(A)p−1

)1/p

: y ∈ BY , π ∈D�,

}
= k‖F‖V p

B(X)
.

For the converse consider the vector measure Fx :6→ X given by Fx (A)
= xµ(A)µ(�)−1 for each x ∈ X . Note that ‖Fx‖Vp(X) = ‖x‖ and ‖Fx‖Vp

B(X)

= ‖Bx‖. 2

4. Measures of bounded ( p, B)( p, B)( p, B)-variation

DEFINITION 4.1. We say that F has bounded (p,B)-variation if

‖F‖Vp
B(X)
= sup

{(∑
A∈π

‖B(F(A), y)‖p
Z

µ(A)p−1

)1/p

: y ∈ BY , π ∈D�

}
<∞.

The space of such measures is denoted by Vp
B(X).

It is clear that the norm in the vector space Vp
B(X) is also given by the expressions

‖F‖Vp
B(X)
= sup{‖B(F, y)‖Vp(Z) : y ∈ BY }

= sup
{∥∥∥∥∑

A∈π

B(F(A), y)

µ(A)
1A

∥∥∥∥
L p(Z)

: y ∈ BY , π ∈D�

}
= sup

{∥∥∥∥∑
A∈π

F(A)

µ(A)
1A

∥∥∥∥
L p

B(X)
: π ∈D�

}
.

REMARK 4.2. For p = 1 and p =∞ this corresponds to |F|B(�) and ‖F‖V∞B (X).
Hence, we define V∞(X)= V∞(X).

It is clear that Vp
B(X)⊆ V

p
B(X) and ‖F‖Vp

B(X)
≤ ‖F‖Vp

B(X)
.

On the other hand, since

|F|B(E)≤ ‖F‖Vp
B(X)
‖1E‖L p′ , E ∈6,

https://doi.org/10.1017/S0004972708000798 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000798


424 O. Blasco and J. M. Calabuig [14]

one sees that if F ∈ Vp
B(X) then F has bounded B-variation and it is (B, µ)-

continuous.

REMARK 4.3. Using the inclusions Lq(X)⊆ L p(X) for 1≤ p ≤ q ≤∞ one also has

V∞B (X)⊆ Vq
B(X)⊆ Vp

B(X)

and

‖F‖Vp
B(X)
≤ µ(�)1/q−1/p

‖F‖Vq
B(X)
≤ µ(�)1/q‖F‖V∞B (X).

Let us find different equivalent formulations for the norm in Vp
B(X).

PROPOSITION 4.4. We have

‖F‖Vp
B(X)
= sup

{∑
A∈π

‖B(F(A), βA y)‖Z : y ∈ BY , π ∈D�,

∑
A∈π

βA1A ∈ BL p′

}
. (4.1)

‖F‖Vp
B(X)
= sup

{∥∥∥∥∑
A∈π

B∗(F(A), z∗A)

∥∥∥∥
Y ∗
: y ∈ BY , π ∈D�,

∑
A∈π

z∗A1A ∈ BL p′ (Z∗)

}
. (4.2)

PROOF. Given a partition π ∈D�, αA ∈R and βA = (αA/µ(A)1/p′) one has that the
simple function g =

∑
A∈π βA1A satisfies ‖g‖L p′ = ‖(αA)A∈π‖`p′ . Therefore,

‖F‖Vp
B(X)
= sup

{∥∥∥∥(∥∥∥∥B( F(A)

µ(A)1/p′
, y

)∥∥∥∥
Z

)
A∈π

∥∥∥∥
`p
: y ∈ BY , π ∈D�

}
= sup

{∑
A∈π

∥∥∥∥B( F(A)

µ(A)1/p′
, y

)∥∥∥∥
Z
|αA| : y ∈ BY , π ∈D�, (αA)A∈π ∈ B

`p′

}
= sup

{∑
A∈π

∥∥∥∥B(F(A)
αA

µ(A)1/p′
, y

)∥∥∥∥
Z
: y ∈ BY , π ∈D�, (αA)A∈π ∈ B

`p′

}
= sup

{∑
A∈π

∥∥∥∥B(F(A), βA y)

∥∥∥∥
Z
: y ∈ BY , π ∈D�,

∑
A∈π

βA1A ∈ BL p′

}
.
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We obtain (4.2) from the duality (`1(Z))∗ = `∞(Z∗) and (4.1). Indeed,

‖F‖Vp
B(X)
= sup

{∑
A∈π

‖B(F(A), βA y)‖Z : y ∈ BY , π ∈D�,

∑
A∈π

βA1A ∈ BL p′

}
= sup

{∣∣∣∣∑
A∈π

〈B(F(A), βA y), z∗A〉

∣∣∣∣ : y ∈ BY , π ∈D�, z∗A ∈ BZ∗,

∑
A∈π

βA1A ∈ BL p′

}
= sup

{∣∣∣∣∑
A∈π

〈y,B∗(F(A), βAz∗A)〉

∣∣∣∣ : y ∈ BY , π ∈D�, z∗A ∈ BZ∗,

∑
A∈π

βA1A ∈ BL p′

}
= sup

{∥∥∥∥∑
A∈π

B∗(F(A), z∗A)

∥∥∥∥
Y ∗
: π ∈D�,

∑
A∈π

z∗A1A ∈ BL p′ (Z∗)

}
. 2

Let us give a characterization of the vector measures in the space Vp
B(X) using only

scalar-valued functions {ϕy | y ∈ BY } ⊆ L p.

THEOREM 4.5. We have F ∈ Vp
B(X) if and only if there exist 0≤ ϕy ∈ L p for each

y ∈ Y such that:

(a) sup{‖ϕy‖L p : y ∈ BY }<∞; and
(b) ‖B(F(E), y)‖ ≤

∫
E ϕy dµ for every y ∈ Y and E ∈6.

Moreover, ‖F‖Vp
B(X)
= sup{‖ϕy‖L p : y ∈ BY }.

PROOF. Let F ∈ Vp
B(X). Then we have that B(F, y) ∈ Vp(Z) for all y ∈ BY and

|B(F, y)| is a nonnegative µ-continuous measure that has bounded variation. Using
the Radon–Nikodým theorem there exists a nonnegative integrable function ϕy such
that for all E ∈6

|B(F, y)|(E)=
∫

E
ϕy dµ. (4.3)

In fact ϕy can be chosen belonging to L p and verifying that

‖ϕy‖L p = ‖B(F, y)‖Vp(Z).

Then, for every E ∈6 and y ∈ BY ,

‖B(F(E), y)‖ ≤ |F|B(E)= sup{|B(F, y)|(E) : y ∈ BY }

= sup
{∫

E
ϕy dµ : y ∈ BY

}
and we obtain the result.
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Conversely observe that using Hölder’s inequality we have that

‖B(F(E), y)‖ ≤
∫

E
ϕy dµ≤

(∫
E
ϕ

p
y dµ

)1/p

µ(E)1/p′

for all E ∈6 and y ∈ BY . Hence, for every π ∈D�∑
A∈π

‖B(F(A), y)‖p

µ(A)p−1 ≤

∫
�

ϕ
p
y dµ.

This shows that F ∈ Vp
B(X) and ‖F‖Vp

B(X)
≤ sup{‖ϕy‖L p : y ∈ BY }. 2

Let us now see the analogue to Theorem 2.9 in the cases 1< p <∞.

THEOREM 4.6. Assume X is (Y, Z ,B)-normed and 1< p <∞. If f ∈ L p
B(X) then

FB
f ∈ Vp

B(X) and ‖FB
f ‖Vp

B(X)
= ‖ f ‖L p

B(X)
.

PROOF. Let us take f ∈ L p
B(X). From Theorem 2.9 one know that FB

f :6→ X is a

vector measure of bounded variation. Now, for each y ∈ Y , ByFB
f :6→ Z is a vector

measure verifying that

ByFB
f (E)=B(FB

f (E), y)=B

(∫ B

E
f dµ, y

)
=

∫
E

B( f, y) dµ, E ∈6.

Therefore

‖ f ‖L p
B(X)
= sup{‖B( f, y)‖L p(Z) : y ∈ BY } = sup{‖B(FB

f , y)‖Vp(Z) : y ∈ BY }

= ‖FB
f ‖Vp

B(X)
. 2

COROLLARY 4.7. If X is (Y, Z ,B)-normed, then L p
B(X) is isometrically contained

in Vp
B(X).

From the definition one clearly has the following interpretations of Vp
B(X) as

operators:

Vp
B(X) is isometrically embedded in L(Y, Vp(Z)) by composition, that is

F→8F(y)=ByF.

Let us see other processes that generate operators from vector measures: given
a vector measure F :6→ X and a bounded bilinear map B : X × Y → Z we
can consider the operators T B

F or SB
F defined on Y -valued simple functions

s =
∑n

k=1 yk1Ak or Z∗-valued simple functions t =
∑n

k=1 z∗k 1Ak , respectively, by

T B
F (s)=

n∑
k=1

B(F(Ak), yk)
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and

SB
F (t)=

n∑
k=1

B∗(F(Ak), z∗k ).

Observe that actually SB
F = T B∗

F .

THEOREM 4.8. Let 1< p <∞. Then Vp
B(X) is continuously contained into

L(L p′
⊗̂Y, Z).

PROOF. Let F ∈ Vp
B(X). Consider the linear operator T B

F defined on Y -valued simple
functions and with values in Z . Note that for any partition π , φ =

∑
A∈π αA1A and

y ∈ Y

‖T B
F (φ ⊗ y)‖Z ≤

∑
A∈π

‖B(F(A), αA y)‖Z .

Using (4.1) and the definition of projective tensor product one obtains ‖T B
F ‖

≤ ‖F‖Vp
B(X)

. 2

THEOREM 4.9. Let 1< p <∞. Then Vp
B(X) is isometrically embedded into

L(L p′(Z∗), Y ∗).

PROOF. Let F ∈ Vp
B(X). Consider the linear operator SB

F from the space of Z∗-valued
simple functions into Y ∗. Note that for any partition π∥∥∥∥SB

F

(∑
A∈π

z∗A1A

)∥∥∥∥
Y ∗
=

∥∥∥∥∑
A∈π

B∗(F(A), z∗A)

∥∥∥∥
Y ∗
.

Using (4.2) and the density of simple functions in L p′(Z∗) one obtains ‖SB
F ‖

= ‖F‖Vp
B(X)

. 2

Note that Vp
B(X)⊆ V

p
B(X) and, from Corollary 3.7, V

p
B(X) is embedded in

Bil(L p′
× Y, Z) . Hence, Vp

B(X) is continuously contained in Bil(L p′
⊗ Y, Z) by

means of the mapping F→BF : L p′
× Y → Z given by

BF(s, y)=
n∑

k=1

B(F(Ak), αk y)

where s =
∑n

k=1 αk1Ak . Let us find which special class of bilinear maps represents
elements in Vp

B(X).
In the case of Y =K the corresponding operators would correspond to the class of

cone absolutely summing operators.
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DEFINITION 4.10. Let L be a Banach lattice, Y and Z be Banach spaces and U :
L × Y → Z be a bounded bilinear map. We say that U is cone absolutely summing if
there exists C > 0 such that

sup
{ N∑

n=1

‖U(ϕn, y)‖Z : y ∈ BY

}
≤ C sup

{ N∑
n=1

|〈ϕn, ψ〉| : ψ ∈ BL∗

}
for any finite family (ϕn)n of positive elements in L .

We denote by 3(L × Y, Z) the space of such bilinear maps and we endow the
space with the norm π+(U) given by the infimum of the constants satisfying the above
inequality.

THEOREM 4.11. If F ∈ Vp
B(X), then BF ∈3(L p′

× Y, Z) and ‖F‖Vp
B(X)
=

π+(BF).

PROOF. Given F ∈ Vp
B(X), then BF : L p′

× Y → Z is bounded. Let us show that
BF ∈3(L p′

× Y, Z) and π+(BF)= ‖F‖Vp
B(X)

.
From Theorem 4.5 there exists 0≤ ϕy ∈ L p such that

‖F‖Vp
B(X)
= sup{‖ϕy‖L p : y ∈ BY }

and

‖BF(1A, y)‖ ≤
∫
�

1Aϕy dµ, A ∈6.

Using linearity and density of simple functions one also extends to

‖BF(ψ, y)‖ ≤
∫
�

ψϕy dµ,

for any 0≤ ψ ∈ L p′ and y ∈ Y .
Now, given a finite family 0≤ ψn ∈ L p′ and y ∈ Y , we can write

N∑
n=1

‖BF(ψn, y)‖ ≤
N∑

n=1

∫
�

ψnϕy dµ

=

N∑
n=1

‖ϕy‖L p

〈
ψn,

ϕy

‖ϕy‖L p

〉
dµ

≤ ‖F‖Vp
B(X)

sup
{ N∑

n=1

|〈ψn, ϕ〉| : ϕ ∈ BL p

}
.

This shows that π+(BF)≤ ‖F‖Vp
B(X)

.

On the other hand, given a partition π , a sequence (αA)A ∈ `
p′ and denoting

ψA = (|αA|/µ(A)1/p′)1A one can apply the condition of cone absolutely summing
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bilinear map to obtain

∑
A∈π

∥∥∥∥B( F(A)

µ(A)1/p′
, αA y

)∥∥∥∥
Z
=

∑
A∈π

‖BF(ψA, y)‖Z

≤ π+(BF)‖y‖ sup
{∑

A∈π

∫
�

ψA|ϕ| dµ : ϕ ∈ BL p

}
= π+(BF)‖y‖ sup

{∑
A∈π

|αA|

µ(A)1/p′

∫
A
|ϕ| dµ : ϕ ∈ BL p

}

≤ π+(BF)‖y‖ sup
{∑

A∈π

|αA|

(∫
A
|ϕ|p

)1/p

dµ : ϕ ∈ BL p

}
≤ π+(BF) · ‖y‖ · ‖(αA)A‖`p′ .

Now (4.1) allows us to conclude that ‖F‖Vp
B(X)
≤ π+(BF). 2

COROLLARY 4.12. We have that Vp
B(X) is isometrically embedded in 3(L p′

×

Y, Z).
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