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Abstract

We introduce the spaces V% (X) (respectively V% (X)) of the vector measures F : ¥ — X of bounded
(p, B)-variation (respectively of bounded (p, B)-semivariation) with respect to a bounded bilinear map
B :X x Y — Z and show that the spaces L% (X) consisting of functions which are p-integrable with
respect to B, defined in by Blasco and Calabuig [“Vector-valued functions integrable with respect to
bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in V% (X). We characterize

V%(X) in terms of bilinear maps from LP x Y into Z and V% (X) as a subspace of operators from

LP'(Z*) into Y*. Also we define the notion of cone absolutely summing bilinear maps in order to describe
the (p, B)-variation of a measure in terms of the cone-absolutely summing norm of the corresponding
bilinear map from L?’ x Y into Z.
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1. Notation and preliminaries

Throughout the paper X denotes a Banach space, (€2, X, ) a positive finite measure
space, Dg the set of all partitions of F € X into a finite number of pairwise
disjoint elements of ¥ of positive measure and Sy, (X) the space of simple functions,
s=> y_; xkla,, where x; € X, (A)x € Do and 14 denotes the characteristic
function of the set A € ¥. Also Y and Z denote Banach spaces over K (R or C)
and B : X x Y — Z a bounded bilinear map. We use the notation Bx for the closed
unit ball of X, L(X, Y) for the space of bounded linear operators from X to ¥ and
X* =L, K).

For a vector measure F: ¥ — X we use the notation |F| and ||F| for the
nonnegative set functions |F|: ¥ — R* and ||| : ¥ — R given by

|FI(E) =sup{Z IF(A)Ix 7 € DE}

Aem
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and

IFICE) = sup{(F, x*)I(E) : x* € Bx+},
respectively. In the case of operator-valued measures F : & — L(Y, Z) we use [|F]|
for the strong-variation defined by

NFNE) = Sup{ Y IF(Aylz:yeBy, me @E}-

Aerm

Given a norm t defined on the space ¥ ®; X satisfying ||y ® x|l < C|ly| - ||lx|| we

write Y®X for its completion. In [1] Bartle introduced the notion of Y-semivariation
of a vector measure F : ¥ — X with respect to 7 by the formula

By (T, f)(E)ZSUP{

> ya®F(A)

Aerm

:yAeBy,neﬂg}
T

for every E € X. This is an intermediate notion between the variation and
semivariation, since for every E € ¥ we clearly have

IFICE) = By (F, T)(E) < |FI(E).

If Y® X and Y®;X stand for the injective and projective tensor norms,
respectively, then we actually have

IFICE) = By (F, e)(E) < By (F, T)(E) < By (F, m)(E) =< |FI(E).

We refer the reader to [11] for a theory of integration of Y-valued functions with
respect to X-valued measures of bounded Y-semivariation initiated by Jefferies and
Okada and to [3] for the study of this notion in the particular cases X = L”(u),
Y = L9(v) and t the norm in the space of vector-valued functions L” (u, L9(v)).

We are going to use notions of B-variation (or B-semivariation) which allow us to
obtain all of the previous cases for particular instances of bilinear maps.

Recall that, for 1 < p < oo, the p-variation and p-semivariation of a vector measure
F are defined by

FAIPN P
|&"|,,(E)=sup{(z %) ‘7 eDE} 1.1)
Aem

and

(T, P\
||3"||,,(E)=sup{</;w> L eBX*,neDE}. (1.2)

We use VP(X) and VP (X) to denote the Banach spaces of vector measures for
which |F],(2) < oo and [|F]|,(£2) < oo, respectively.

The limiting case p =1 corresponds to |F||(E)=|F|(E) and ||F|(E)
= || FI|I(E). For p =00 V*°(X) = V*°(X) is given by vector measures satisfying the
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property that there exists C > 0 such that |F(A)|| < Cu(A) for any A € X and the
oo-variation of a measure is defined by

1F(A)Ix
n(A)

We use L°(X) and Lgeak(X ) to denote the spaces of strongly and weakly
measurable functions with values in X and write L?(X) and Lgeak(X ) for the space
of functions in L%(X) and Lgveak(X) such that || f|| € L? and (f, x*) € L? for every
x* € X*, respectively. As usual for 1 < p < oo the conjugate index is denoted by p’,
thatis 1/p+1/p' = 1.

For each f € L?(X), 1 < p < 00, one can define a vector measure

||3"||OO(E)=sup{ :AEE,ACE,,LL(A)>0}. (1.3)

S"f(E)szfdu, Eex

which is of bounded p-variation and |F¢|,(2) = || fllL»(x). On the other hand, the
converse depends on the Radon—-Nikodym property (RNP), that is, given 1 < p < oo,
X has the RNP if and only if for any X-valued measure J of bounded p-variation there
exists f € LP(X) such that F = T .

For general Banach spaces X, V°°(X) can be identified with the space of operators
L (L', X) by means of the map F — T4 where

T3y (1g)=3(E), EeX,

and for 1 < p < oo the space VP (X) can be identified (isometrically) with the space
A(LP/, X), formed by the cone absolutely summing operators from L into X with
the 1+ norm (see [14, 2]). We refer the reader to [9, 8, 11, 14] for the notions appearing
in the paper and the basic concepts about vector measures and their variations.

Quite recently the authors started studying the spaces of X-valued functions which
are p-integrable with respect to a bounded bilinear map B : X x Y — Z, that is,
functions f satisfying the condition B(f, y) € L?(Z) for all y € Y. Some basic theory
was developed and applied to different examples (see [4, 5, 6]). Note that the use of
certain bilinear maps, such as

B: X xK- X, given by B(x, 1) = Ax, (1.4)
D: X x X* =K, given by D(x, x*) = (x, x™), (1.5)
Di:X*"xX—->K, given by Dy (x*, x) = (x, x™), (1.6)
ny:XxY—>X®Y, given by my (x, y) =x ® y, (1.7)
6)/ X xL(X,Y)—> Y, given by 6)/()6, T)=T(x), (1.8)
Oyz: LY, Z)yxY — Z, givenby Oy z(T, y)=T(y) (1.9)

have been around for many years and have been used in different aspects of vector-
valued functions, but a systematic study for general bilinear maps was started in [4]

https://doi.org/10.1017/5S0004972708000798 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000798

414 O. Blasco and J. M. Calabuig [4]

and used, among other things, to extend the results on boundedness from L7(Y)
to LP(Z) of operator-valued kernels by Girardi and Weiss [10] to the case where
K : Q x Q' — X is measurable and the integral operators are defined by

Tk (f)(w) =/§2/ B(K (w, w), fw")du'(w).

The reader is also referred to [6] for some versions of Holder’s inequality in this
setting.

We require some notation and definitions from the previous papers. We write
dp: X —> LY, Z)and V5:Y — L(X, Z) for the bounded linear operators defined
by ®p(x) =B, and Wp(y) = BY where By and B” are given by B, (y) = BY(x)
=B(x, y).

A bounded bilinear map B : X x Y — Z is called admissible (see [4]) if &5 is
injective. Throughout the paper we always assume that B is admissible. However, a
stronger condition will also be required for some results: a Banach space X is said to
be (Y, Z, B)-normed if there exists k > 0

Ixlix <klBxller,z), x€X.

The bounded bilinear maps (1.4)—(1.9) provide examples of B-normed spaces.
As in [4] we write LPB(X) for the space of functions f :Q — X with B(f, y)
e L%(Z) for any y € Y and such that

1N ez ) = suptIB(S, MliLr(z) : y € By} < oo,

and we use the notation L%(X ) for the space of functions f € L%(X ) for which
there exists a sequence of simple functions (s,), € Sx(X) such that s, — f almost
everywhere and ||s, — f||£;;3(x) — 0. In such a case, we write ||f||L1;5(X) instead of
“f”[f,g(x) and ”f”LEB(X) =lim, “S”“L%(X)‘

In particular, for the examples B and D we have that Lg(X) = LP(X) and
LX) =L~ (X). In addition LZ(X)=LP(X) and L{(X) coincides with the
space of Pettis p-integrable functions P”(X) (see [13, p. 54], for the case p = 1).

Observe that, for any B, L (X) C L%(X ) and the inclusion can be strict (see [8,
p. 53], for the case B = D). Regarding the connection between LPB(X ) and Lfveak(X )
it was shown that X is (¥, Z, B)-normed if and only if L%(X) C Lf;eak(X) with
continuous inclusion.

Owing to this fact, if f € LIB(X ) for some (Y, Z, B)-normed space X, then for

each E € X there exists a unique element of X, denoted by || EB f du, verifying

B
/EB(f,y)du=93(/E fdu,y), Vyer.
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This allows us to define the vector measure

B
93?(E)=/ fdu, EE€X.
E

We consider the notion of (p, B)-variation which fits with the theory allowing us
to show that the (p, B)-variation of Iy coincides with its norm || f| L2(X)"

The rest of this paper is divided into three sections. In Section 2 we introduce
the notion of B-variation, B-semivariation of a vector measure and study their
connection with the classical notions. We prove that for (¥, Z, B)-normed spaces
the B-semivariation is equivalent to the semivariation and that the Y-semivariation
considered by Bartle coincides the B-variation for a particular bilinear map B. Of
particular interest is the observation that any vector measure with values in X = L' (1)
is of bounded B-variation for every B whenever Z is a Hilbert space. We also show
in this section that the measure 3"3;}’ is p-continuous and ||3"?||B(Q) = ”f”L‘B(X)' In
Section 3 the natural notion of (p, B)-semivariation is introduced. Starting with the
case p = oo we describe, for 1 < p < 00, the space of measures with bounded (p, B)-
semivariation as bounded bilinear maps from L? x Y — Z. In Section 4 we deal
with the notion of (p, B)-variation of a vector measure. Several characterizations
are presented and the new notion of ‘cone absolutely summing bilinear map’ from
L x Y — Z, where L is a Banach lattice, is introduced. This allow us to describe the
(p, B)-variation of a vector measure as the norm of the corresponding bilinear map
from L' x Y into Z in this class.

Throughout the paper F:X — X always denotes a vector measure, B:X
x Y — Z is admissible and, for each y € Y, B(F, y) denotes the Z-valued measure
BF, y)(E) =BF(E), y).

2. Variation and semivariation with respect to bilinear maps

DEFINITION 2.1. Let E € 3. We define the B-variation of F on the set E by
|FlB(E) = sup{|B(F, y)I(E) : y € By}
= sup{Z IB(F(A). Yliz:7eDg, y eBY}.

Aem

We say that F has bounded B-variation if |F|5(R2) < oo.
DEFINITION 2.2. Let E € . We define the B-semivariation of F on the set E by

1FIB(E) = sup{|B(F, y)II(E) : y € By}
= Sup{|(%(3r’ J’), Z*>|(E) 1ye By, Z>k c Bz*}

= SUP{Z HB(F(A), y), 2| :m € Dg, y €By, ¥ EBz*}.

Aern

We say that F has bounded B-semivariation if || F| () < oco.

https://doi.org/10.1017/5S0004972708000798 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000798

416 O. Blasco and J. M. Calabuig [6]

REMARK 2.3. Let F be a vector measure and E € X. Then:
@ |FIe(E) <|IB| - IFI(E);

®)  NFNsE) <IBI - IFI(E);

(©  sup{IB(IF(C), )|l :yeBy, E2C e X}~ ||F|5(E).

In particular any measure has bounded B-semivariation for any B.

We can easily describe the B-variation and B-semivariation of vector measures for
the bilinear maps given in (1.4)—(1.9). The following results are elementary and left to
the reader.

PROPOSITION 2.4. Let F be a vector measure and E € 3. Then:
(@) |FIB(E) =|F(E) and |F||B(E) = || FII(E);
(®)  |FIp(E) = FlIp(E) = FI(E);
©) 1Tl (E) = 1Flp (E) = IFI(E);
d) Ty (E) = |FI(E) and |F ||z, (E) = |FI(E) (see Proposition 2.7);
) [Flp, (E) =sup{|TFI(E) : T € Bry,z)} and | Flig, (E) = IFI(E);
O 1Floy,(E) = IIFNE) and [|F |l oy , (E) = IFI(E).
The notion of B-normed space can be described in terms of vector measures.

PROPOSITION 2.5. Let B: X x Y — Z be an admissible bounded bilinear map.
Then X is (Y, Z, B)-normed if and only if for any vector measure F : ¥ — X there
exist C1, Cp > 0 such that

CUIFIE) = IFNB(E) = C2lIFI(E)

forall E € X.

PROOF. Obviously [|F||s(E) <|B| - |F|I(E) for any E € . Assume that X is
(Y, Z, B)-normed. Then we have that

IFI(E) = sup{‘ Y ead(A)

Aerm

cm€DE, eq GBK}
X

< k sup ‘BZAeanfT(A) € Dpg, ea EBK}
L(Y,Z)
=ksup{ | Y eaBF(A).y)| :meDp eseBy. ye By}
Aem z
= k|| F|lB(E).
Conversely, for each x € X select the measure J, (A) = xu(A)(2) ! and observe
that [|Fy[|($2) = x| and [|Fy || 5($2) = [| B« |- O
We use B* for the ‘adjoint’ bilinear map from X x Z* to Y*, thatis (B*), = (B,)*
or

B*: X x Z* — Y*, givenby (y, B*(x, z%)) = (B(x, y), z¥).
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Note that B*Z@, D* B, (7Ty)* Oy* and (Oy Z) (T, Z*)—Oz* y*(T , Z )
Let us prove that the B semivariation and the B*-semivariation always coincide.

PROPOSITION 2.6. We have ||F||s(E) = ||F|| 5 (E) forall E € .

PROOF. Letus take E € X. Then

IFNB(E) = SUP{Z (B(F(A), y), ") :m € Dg, yeBy, 2" € Bz*}

Aerm

=sup Z (v, B*(F(A), 2"))|:m € D, yeBy, 2" € Bz*}

Aerm

Z saly, B*(F(A), z*))’ :me€Dg, yeBy, 7" €Byg+, e € BK}

Aem

Z SAB*

Aem

=sup{ > [(B*(F(A). 7). y**)| 1w € Dp, y** €Byws, 2" € Bz*}

Aem

= 1Fllz(E). U

= sup

= sup

m €D, 7 €Byx, ea EBK}

PROPOSITION 2.7. Let t be anorminY @ X with ||y ® x| = ||¥|l|lx|| forall y e Y
and x € X. Define ty : X x Y - Y®; X given by (x, y) > y ® x. Then, for each
EeX,

IBY(SH’ t)(E) ~ |3~|(‘L’y)*(E)

PROOF. Taking into account that Y®7X C Y®, X, then (Y ®; X)* can be regarded as
a subspace of the space of bounded operators L (Y, X*). Moreover || T|| < || T|| (Y&, X)*
forany T € (Y ®: X)*, where the duality is given by

<T, Zk:yj ®xj> Xk: (xj, T(y;)).
j=1 j=1
From [3, Theorem 2.1], we have
By (T, O)(E) = sup{|ITF|(E) : T € LY, X), [T || (yg,x) < 1}.
Hence,
By (F, T)(E) ~ sup{|(ty)*(F, TIE) : T € LY, XN, [Tl yg xp <1}. O

Of course vector measures need not be of bounded B-variation for a general B
(it suffices to take B such that |F|g = |F]), but there are cases where this happens to
be true owing to the geometrical properties of the spaces under consideration.
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PROPOSITION 2.8. Let X = L' (v) for some o -finite measure v and let Z = H be a
Hilbert space. Then any vector measure F : ¥ — L1 (v) is of bounded B-variation for
any bounded bilinear map B : L' (v) x Y — H and any Banach space Y .

PROOF. Recall first that Grothendieck theorem (see [7]) establishes that there exists a
constant kg > 0 such that any operator from L' (v) to a Hilbert space H satisfies

N
Z EnPn

n=1

N
Y IT @)l <k6lIT sup{ :sneBK}
n=1

L)

for any finite family of functions (¢;), in L'(v).

If F:¥— LYv) is a vector measure and 7 a partition, one has that
I 2 acx EaF(M)lL1y < 1FN(R). Hence, BY € L(L1(n), H) for any y € Y, so one

obtains
D IBF ANz k6 - IBY] - [1FI(R).
Aerm
Therefore, one concludes that |F|5(R2) < kg - |F|I (). O

Recall that a vector measure J: ¥ — X is called u-continuous if lim,g)—o
IFICE) =0.

THEOREM 2.9. Let X be (Y, Z, B)-normed and f € L%B(X). Then
B
??32—))(, givenbyff%(E):/ fdu 2.1
' E

is a [L-continuous vector measure of bounded B-variation. Moreover, |3’~?|3(Q)

= ”f”L{B(Xy

PROOF. It was shown (see [4, Theorem 1]) that functions in LIB(X) are Pettis

integrable and f ET’ fdu coincides with the Pettis integral. Hence, & }3 defines a vector
measure.

Using now that, for each y € Y, the vector measure ‘B(??, y) has density B(f, y)
that belongs to L! (Z), one obtains that, for any £ € X,

IBGr, MIE) = / 1B Iz du.
E
Thus, |.F:F%|g(9) = ||f||L|B(X). It remains to show that 3"% is p-continuous. Let us fix

& > 0 and select, using that f € L;S(X), a simple function s such that || f — s||L193(X)
< ¢&. Thus,
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B B
/ (f—s)du / sdp
E E

B
f (f — ) du /sdu
E E X

<KIBa,_ e + /E van|

< kSUP{/E IB(f =s, Wllzdu:y eBy} + ’

/sdu
E

We have the conclusion just taking limits when @ (E) — O and ¢ — 0. O

IFPE)x <

d
X X

d
X

/sd,u
E

X

5ke+‘

X

COROLLARY 2.10. Let X is (Y, Z, B)-normed and f € L%(X). IffEBf du =0 for
all E € X, then f =0 almost everywhere in 2.

3. Measures of bounded (p, B)-semivariation.

Extending the notion for B = BB, we say that a vector measure F : & — X is (B, u)-
continuous if lim,g)—0 [|F||8(E) = 0. Clearly both concepts coincide for B-normed
spaces.

DEFINITION 3.1. We say that F has bounded (0o, B)-semivariation if there exists
C > 0 such that

(BEA), ), )N =<C- Iyl - I2*l - n(A), yeY,Z"eZ* Aex. (3.1
The space of such measures is denoted by V35 (X) and we set

[Fllvegx) = inf{C : satisfying (3.1)}

{ (BT (A), y), z")|
=su
w(A)

:yeBy,z*eBz*,AEZ,M(A)>O}.

Observe that every vector measure J belonging to V35 (X) is (B, u)-continuous and it
has bounded B-variation. Also note that F has bounded (oo, B)-semivariation if and
only if one of the following holds:

IBEFA), I =Clyln(d), yeY AeX,
[FB(A) < Cu(A), Aex
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or

|F|R(A) < Cu(A), AeX.

It is elementary to see, owing to the admissibility of B, that || F|| VE(X) is a norm.
Of course,

1Flveexy = sup{lB(F, y)llveez) : y € By}

[IBEA, Iz
= sup T.yEBy,AEE}
1FIB(A) }
= ——:AcX
sup A €
|F|B(A) }
= ——~:AecX}.
sup A €

PROPOSITION 3.2. We have F € VE (X) if and only if there exists a bounded bilinear
map Bg: L' x Y — Z such that

Bga, y) =BF(A),y), Aex, yeV.

Moreover, | Bl = | Fllvgx)-

PROOF. Assume that F € V5 (X). Define Bg on simple functions by the formula

Bsr(z iy, y) =Y aB(F(A), y).
k=1 k=1

Observe that

H%(Z ol g, y) H < 1 F vyl D lekle(Ar).
k=1 4 k=1

This allows us to extend the bilinear map to L' x Y — Z with norm || B
<|IF ||\7,j>§(X)- Conversely, one has

IBEA), iz =<IBsl - lIyll - 1LallL1,
which gives ||3'"||v%o(x) < IB4. O

We use the notation Bil(L! x Y, Z) for the space of bounded bilinear maps with its
natural norm.
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COROLLARY 3.3. We have that V%’(X) is isometrically embedded in Bil(L! x Y, Z).
In the case B = Oy, z we have

&, (L. 2)) =Bil(L! x Y, 7).

Let L% (X) stand for the space of measurable functions f:€ — X such that
B(f, y) € L®°(Z) forall y € Y and write

I fllLsgx) = sup{llB(f, W liLez) : vy € By}
B
Note that LF(X) € L%(X) and |B(97f3, WIA) = [+ IB(f, y)lldu for any set
AeX. In particular, if fe L3(X), then the measure 3']3 eV (X) and
1F Pllvge o) = 1F g

PROPOSITION 3.4. The following are equivalent:

(@) Xis (Y, Z, B)-normed;
(b) VEX) = V>(X),
(¢c) there exists k > 0 such that ||?%||V°°(X) < k||f||L9§(X) forany f € LF(X).

PROOF. (a) = (b) We always have V>°(X) € VZ (X). Assume that X is (Y, Z, B)-
normed and & € V5 (X). Note that

[FAN kIBgiall <kl Fllvg oy (A).
(b) = (c) Let f € LE(X). Clearly,
1F Pllveecx) < kIF Pl =kl FllLsg -
(c) = (a) Let us take fy =x1gq for a given x € X and observe that fr'“(f’i (A)

=xu(A) for all A € ¥. Note that ||fx||L°9§(X) = ||Bx|l and ||9’j3i||voo(x) = |lx]. O

DEFINITION 3.5. Let 1 < p < 0o. We say that F has bounded (p, B)-semivariation

if
(BT (A), y), 2P\ /7

Z*EBz*,nEQQ} < Q.

The space of such measures is denoted by V%(X ).

We have the equivalent formulation

IICT"IIWB(X) = sup{[|B(F, y)lwz) : y € By}
= sup{|[(B(T, y), z")llw : y € By, 2" € Bz«}.

Let us start with the following description.
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PROPOSITION 3.6. Let 1 < p <oo. Then F e V%(X) if and only if there exists a
bounded bilinear map B : LP x Y — Z such that

Byr(14,y)=BFA),y), AcX,yeY.
Moreover, | Bg|| = ”5”\7,)"3(X)'

PROOF. Assume that & € VPB(X ). As above define B4 on simple functions by the
formula

%(Z arly,. y) =Y aB(F(Ap), y).
k=1 k=1

We use that

Z (B(F(A), y), 2")va

. *
/_L(A)l/p/ 'yeBY7Z GBZ*,

||?||V%(X) = sup{

Aem
w€Dgq, (va)ae ngf}
= sup{ Y BF(A), y)Ba
Aerm

= sup{H‘Bg(Z ,BAIA, y) H Lye By, T € DQ, Z ,BAlA EBLI"}‘
Z

Aem Aem

:y€By, m e Dg, ZﬂAlA GBL,,/}
z Aem

Hence, using the density of simple functions we extend to LP and 1B+ < 1T VE(X)-
The converse also follows from the previous formula. O

It is known that VP (X) = L(LP/, X) (see [12]). The next result is the analogue in
the bilinear setting.

COROLLARY 3.7. Let 1 < p <oo. Then V%(X) is isometrically embedded in
Bil(Lp/ x Y, Z). In the case B = Oy z we have

Vo, , (LY, 2)) = Bil(L? x Y, Z).

PROPOSITION 3.8. Let B: X x Y — Z be an admissible bounded bilinear map
and 1 < p <oo. Then X is (Y, Z, B)-normed if and only if the space V%(X) is
continuously contained into VP (X).
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PROOF. Assume that X is (Y, Z, B)-normed. Then

F(A), x* .
1F v x) = sup{ 3 % x* €Bys, 7 € Do, (y4)a eBU,f}
= wA)
F(A)ya }
=su —_— :m € Dq, (Ya)a €B,y
< k sup ‘BZ FAy :mt €Dgq, (yYa)a € Be,,/}
wVP" LAY, Z)
F(A)ya )
=k su B(—/, :yeBy, Tt €Dgq, (Ya)a €B,,
P AX@; (AP y Z Yy € by Q, (YaA)a € By,
3 IBEFA), WIP\?P
—kSllp <1§TW .yEBY,T[E@Q,

zk”gj”v%(x)-

For the converse consider the vector measure F,:X — X given by F,(A)
=xu(A)p(Q)~! for each x € X. Note that | Fy|lwx) = x|l and 1Fxllve x)
= [|Bxll- U

4. Measures of bounded (p, B)-variation

DEFINITION 4.1. We say that F has bounded (p, B)-variation if
IBIT(A), »Y
1Flvex) = sup{ (Z — =

1/p
:yeBy, 7D 00.
(AT ) rE “} -
The space of such measures is denoted by V%(X ).

Aem

It is clear that the norm in the vector space V%(X ) is also given by the expressions

1F v x) = supliBE, y)livez) - y € Br}

BT (A), y)
=sup{ B s 7 :y€By, 7 €Dg
é u(A) LP(Z)
:sup{ Zgj(ﬁ)lA ZﬂE'DQ}.
daw HA) i x)

REMARK 4.2. For p=1 and p = o0 this corresponds to |F|5(£2) and [|F]lvxgx).
Hence, we define VX (X) = V*°(X).

It is clear that V/5(X) € V7(X) and 1Flve, ) < 1F vz x)-

On the other hand, since

FIBE) < 1Fllye oo I1ell s E €3,
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one sees that if eV’ 5(X) then F has bounded B-variation and it is (B, u)-
continuous.

REMARK 4.3. Using the inclusions L9(X) C L?(X) for 1 < p < g < oo one also has
F(X) S VLX) S VE(X)
and
1Ty ) < DI IF Ny ) < 1@V T g
Let us find different equivalent formulations for the norm in V/ R(X).

PROPOSITION 4.4. We have

”?”V{JB(X) = SUP{ Z IB(F(A), Bay)llz:y €By, m € Dg,

Aerm
> Baly€B,, } @.1)
Aem
“?”\IFB(X) sup{ ZB*(S(A) ZA) yEBYanGDQ,
Aem
Y dilae BLP/(Z*)}. 4.2)
Aem

PROOF. Given a partition 7 € Dq, a4 € R and 4 = (ozA/,u,(A)l/p/) one has that the
simple function g = )", Bala satisfies llgll; » = ll{ea) aex |l ;- Therefore,

i EON
19l x) = sop { H <HB<M<A)1/1’” ’ > z>Aen

F(A)
= Ssup Z B( (A)l/p/’ y)‘ |05A|3y€BY,7T€fDQ,(OlA)Aen Eng’}

Aem

ZyEBy,JTGDQ}
124

= sup Z <§(A) (A)I/P”y>H :y €By, m € Dg, (@a)aer EB“}

Aem

= sup Z

Aem

:y €By, 7 €Dq, Z,BAIA GBLP/}.
z

Aern
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We obtain (4.2) from the duality (£'(Z))* = £°°(Z*) and (4.1). Indeed,

Hﬂng=Sw{2:MN%AL&wNﬂyGB%ﬂGDm

Aern

E:ﬂﬂAEBU}

Aerm

D (BF(A), Bay), 24)

Aern

zjﬂﬂAEB”}

Aerm

> (v, BHF(A), ﬂAZZ»‘ :y €By, m € Do, 74 € Bz,

Aerm

S false B}
Aem

Y BHI(A), )

Aerm

1y €By, m € Dg, 7 € Bz,

= sup{
= sup{
= sup{

Let us give a characterization of the vector measures in the space V%(X ) using only
scalar-valued functions {¢, | y € By} C L?.

:m € Dg, Z 2414 EBLP’(Z*)}' O
Y Aem

THEOREM 4.5. We have F € V%(X) if and only if there exist 0 < ¢, € L? for each
y €Y such that:

(@) sup{llgyliLr : y € By} < o00; and
() NBF(E), VI < [p@yduforeveryyeY and E € X.

Moreover, ||Fllyr x) = sup{lloyllLr - y € By}.
PROOF. Let F € VI,(X). Then we have that B(F, y) € VP(Z) for all y € By and
|B(F, y)| is a nonnegative j-continuous measure that has bounded variation. Using

the Radon-Nikodym theorem there exists a nonnegative integrable function ¢, such
that forall E € ¥

IB(F, y)I(E)=/ @y dpu. (4.3)
In fact ¢, can be chosen belonging to L?” and Vgrifying that
loyllLr = 1B, ) ve(z).
Then, for every E € ¥ and y € By,
IBEE), I < 1F|B(E) =sup{|B(I, »)I(E): y € By}

=sup{/ w),du:yeBy}
E

and we obtain the result.

https://doi.org/10.1017/5S0004972708000798 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000798

426 O. Blasco and J. M. Calabuig [16]

Conversely observe that using Holder’s inequality we have that

I/p ,
||B(?(E),y)||s/E¢y dui(fE wfdu> W(E)/P

forall E € ¥ and y € By. Hence, for every 7 € Dg

IBF(A), »IP
/;T TS §/Q§0§’d,u.

This shows that F € V/;(X) and ||§||V%(X) <sup{llgyllr : y € By}. 0
Let us now see the analogue to Theorem 2.9 in the cases 1 < p < oo.

THEOREM 4.6. Assume X is (Y, Z, B)-normed and 1 < p < oo. If f € L% g(X) then
FF € ViR(X) and | F Pllye x) = 1f 115, x)-

PROOF. Let us take f € L g(X). From Theorem 2.9 one know that 3’"3 Y—>Xisa

vector measure of bounded variation. Now, foreach y € Y, BY ff B. % - Zisavector
measure verifying that

BYTP(E) = BIF(E), y) = B(/jf dp., y) - /E B(f.y)dp, EeX.
Therefore
171200 = suplIB(f, MliLrz) v € By} = sup{I BEF. Mllve(z) : v € By)

= 15 llvz cx)- O

COROLLARY 4.7. If X is (Y, Z, B)-normed, then L¥, w(X) is isometrically contained
in VI(X).
From the definition one clearly has the following interpretations of V/ p(X) as
operators:
V%(X ) is isometrically embedded in L(Y, VP (Z)) by composition, that is
F— o5(y) =B'F
Let us see other processes that generate operators from vector measures: given
a vector measure J:X — X and a bounded bilinear map B: X x Y — Z we

can consider the operators Tg? or S? defined on Y-valued simple functions
s =Y p—1 ykla, or Z*-valued simple functions r = ) "}, z;14,, respectively, by

TS?(S) = Z BT (Aw), yk)
=1
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and

SF0) =Y B (A, 7).
k=1

Observe that actually S? = T;B*.

THEOREM 4.8. Let 1 < p <oo. Then V%(X) is continuously contained into
L(LP'®Y, Z).

PROOF. LetJ € V’,’B(X ). Consider the linear operator T\,? defined on Y-valued simple
functions and with values in Z. Note that for any partition 7, ¢ =) 4., @ala and
yeyY

ITF@ @ yllz < D IBEFA), aay)lz.

Aerm

Using (4.1) and the definition of projective tensor product one obtains ||T$||
= ”g:”\/%(x)' O

THEOREM 4.9. Let 1 < p <oo. Then V%(X) is isometrically embedded into
L(LY (Z*), Y*).

PROOE. LetF € V%(X ). Consider the linear operator S? from the space of Z*-valued
simple functions into Y*. Note that for any partition 7

o(z )

Aerm

> BHF(A), )

Aerm

Y* Y*

Using (4.2) and the density of simple functions in L”/(Z*) one obtains ||S$||

= ”3:”V%(X)' O

Note that V%(X) EV%(X) and, from Corollary 3.7, V%(X) is embedded in
Bil(Lp/ x Y, Z) . Hence, V%(X) is continuously contained in Bil(Lp/ ®Y, Z) by
means of the mapping F — B LV xY—>Z given by

Ba(s, y) =Y BF(Ar), )
k=1

where s =) ;_; axla,. Let us find which special class of bilinear maps represents
elements in V%(X ).

In the case of ¥ = K the corresponding operators would correspond to the class of
cone absolutely summing operators.
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DEFINITION 4.10. Let L be a Banach lattice, Y and Z be Banach spaces and U :
L x Y — Z be a bounded bilinear map. We say that U is cone absolutely summing if
there exists C > O such that

N N
sup{Z W(gn, P)llz 2y € By} <cC sup{Z [ ns Y12 ¥ eBL*}

n=1 n=1

for any finite family (¢, ), of positive elements in L.

We denote by A(L x Y, Z) the space of such bilinear maps and we endow the
space with the norm 7+ (1) given by the infimum of the constants satisfying the above
inequality.

THEOREM 4.11. If FeVI(X), then Bye A(LP xY,Z) and 1Flve ) =
7T (By).

PROOF. Given ¥ € ijB(X) then Bg: L? x Y — Z is bounded. Let us show that
Bye ALY x Y, Z)and nH(Bg) = 1FNlye r(xX)"
From Theorem 4.5 there exists 0 < ¢y € L” such that

1Fllyz ) = suplligyllor : y € By)

and
1Bs(La, )l 5/ Lagydi, Acs.
Q

Using linearity and density of simple functions one also extends to

1Bs(w. Wl < fg Vo, du,

forany0 <y € LP and y € Y.
Now, given a finite family 0 < ¢, € L? and y € Y, we can write

N N

> 1B VI < Z/an@y du

n=1 =
—Z||coy||m<wn, ” y”L >

= ||f7r||v{jB(X) sup!; (Y, ©) 1@ € BLP}~

This shows that 7 7 (Bg) < ||3~||V1;3(X).

On the other hand, given a partition 7, a sequence (xa)a € ¢ and denoting
Va = (laal/m(A)/P )14 one can apply the condition of cone absolutely summing
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bilinear map to obtain

F(A)
12 ()

Aerm

<7 (BP|yll sup 2:]Lwnwndu:¢eBLp}

Aem

> UIBsWa, ¥z

Z  Aem

=" (B s M/ du:@eB
<mww§MMWJmM¢Lp

1/p
<7 (B |yl sup Z|“A|</:4 prlp> dut@GBLP}

Aem
<7 (B - Iyl - Iaa)ally -

Now (4.1) allows us to conclude that ||CT"||V1;3(X) <t (By). d

COROLLARY 4.12. We have that V%(X) is isometrically embedded in A(Lp, X
Y, Z).

References

[1] R.G. Bartle, ‘A general bilinear vector integral’, Studia Math. 15 (1956), 337-352.

[2] O. Blasco, ‘Positive p-summing operators, vector measures and tensor products’, Proc. Edinburgh
Math. Soc. (2) 31(2) (1988), 179-184.

, ‘Remarks on the semivariation of vector measures with respect to Banach spaces’, Bull.
Austral. Math. Soc. 75(3) (2007), 469-480.

[4] O. Blasco and J. M. Calabuig, ‘Vector-valued functions integrable with respect to bilinear maps’,
Taiwanese Math. J. to appear.

, ‘Fourier analysis with respect to bilinear maps’, Acta Math. Sinica to appear.

] ———, ‘Holder inequality for functions integrable with respect to bilinear maps’, Math. Scan. 102

(2008), 101-110.

[71 1. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in
Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).

[8] . Diestel and J. J. Uhl Jr, Vector Measures, Mathematical Surveys, 15 (American Mathematical
Society, Providence, RI, 1977), xiii+322 pp.

[91 N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Applied
Mathematics, 95 (Pergamon Press, Oxford/VEB Deutscher Verlag der Wissenschaften, Berlin,
1967).

[10] M. Girardi and L. Weis, ‘Integral operators with operator-valued kernels.’, J. Math. Anal. Appl.
290(1) (2004), 190-212.

[11] B.Jefferies and S. Okada, ‘Bilinear integration in tensor products’, Rocky Mountain J. Math. 28(2)
(1998), 517-545.

[12] R.S. Phillips, ‘On linear transformations’, Trans. Amer. Math. Soc. 48(290) (1940), 516-541.

[13] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in
Mathematics (Springer, London, 2002).

[14] H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen
Wissenschaften, 215 (Springer, Heidelberg, 1974).

https://doi.org/10.1017/5S0004972708000798 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000798

430 O. Blasco and J. M. Calabuig [20]

0. BLASCO, Department of Mathematics, Universitat de Valencia,
Burjassot 46100 (Valencia), Spain
e-mail: oscar.blasco@uv.es

J. M. CALABUIG, Department of Applied Mathematics,
Universitat Politecnica de Valencia, Valéncia 46022, Spain
e-mail: jmcalabu@mat.upv.es

https://doi.org/10.1017/5S0004972708000798 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000798

