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INTERPOLATING SEQUENCE ON CERTAIN
BANACH SPACES OF ANALYTIC FUNCTIONS

B. YOUSEF!

Let G be a finitely connected domain and let X be a reflexive Banach space of func-
tions .analytic on G which admits the multiplication operator M, as a polynomially
bounded operator. We give some conditions that a sequence in G has an interpolating
subsequence for X. ‘ :

INTRODUCTION

Let X be a separable reflexive Banach space whose elements are analytic functions
on a complex domain . It is convenient and helpful to introduce the notation (z,z*)
to stand for z*(z), for z € X and z* € X*. Assume 1 € X and the operator M, of
multiplication by z maps X into itself and for each A in ©, the functional e()) : X — C,
the evaluation at A given by e(A)(f) = (f,e(})) = f(}), is bounded.

For the algebra B(X) of all bounded operators on a Banach space X, the weak
operator topology is the one in which a net A, converges to A if A,z — Az weakly,
re X.

A complex valued function ¢ on § for which pf € X for every f € X is called a
multiplier of X and the collection of all these multipliers is denoted by M (X). Because
M, is a bounded operator on X, the adjoint M} : X* — X* satisfies M e(A) = Ae()).
In general each multiplier ¢ of X determines a multiplication operator M,, defined by
Myf = of, f € X. Also Mze(A) = p(A)e(M) ([8]). It is well-known that each multiplier is
a bounded analytic function. Indeed |p(X)| < ||M,|| for each A in Q. Also M,1 = ¢ € X.
But X ¢ H(R), thus ¢ is a bounded analytic function. We say that M(X) is rotation
invariant if whenever h € M(X), then hy € M(X) where hy(2) = h(e~%z). Also we call
that M, is polynomially bounded in the sense that there is a constant C > 0 such that
M)l < C||plloo for every polynomial p, where ||p||, is the supremum norm of p on Q.
By H(Q)) we mean the set of all functions that are analytic in some fixed open set G
containing Q, with fy — f uniformly on compact subsets of G.
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MAIN RESULTS

First we give the Rosenthal-Dor Theorem which we need for the proof of our main
theorem.
ROSENTHAL-DOR THEOREM. Suppose X is a Banach space and {e,,} is a bounded
sequence in X. Then there exists a subsequence {en, }» such that either
[
(i) the map {ax}X; — 3 aken, is an isomorphism of ¢! into X, or
k=1
(if) limep(en,) exists for every ¢ € X*.
PROOF: See [4] and (7). 0
The pseudo-hyperbolic distance p(z,w) between points z,w in the unit disc U is
defined by p{z,w) = I(w - 2)/(1 - wz)(. Given any two pairs of points in U of equal
pseudo-hyperbolic distance apart, there is an analytic automorphism of U mapping the
first pair onto the second pair of points ([6]).
From now on we assume that X is a separable Banach space and the operator M,
is bounded on X.

LEMMA 1. Letw,...,w, € U, ande > 0. Then there exists a function y analytic
on U such that o(w;) =1 fori=1,2,...,nand (1) = ~1 and |||, <1 +e¢.
n
PRrooF: Consider the Blaschke product B(z) = [] e®%(z — w;)/(1 — w;z). Clearly

: 7=1
1Bl = 1 and B{w;) =0 for j =1,...,n. Now by the same method used in the proof of

Lemma 9 in [1], consider the pseudo-hyperbolic distance p(w, z) between points w,z € U.
Choose & > 0 such that 1/(1+68) = p(1/(1+¢),~1/(1+¢)). Thus p(0,1/(1 +4)) =
p(1/(1+¢€),—1/(1+¢)). So there exists b € H(U) such that [|bl|, = 1,b(0) = 1/(1 + )
and b(1/(1+6)) = =1/(1 +¢).

Define p = (1+¢)bo (B/(1+6)). Clearly v is analytic on U, p(wi) = (1 +€)b(0) = 1
for k=1,...,n and @(1) = (1 +¢)b(1/(1 + &)} = —1. Because b is analytic on U and
[1bllo, = 1, we conclude that ¢ is analytic on U and ||pl|,, < 1 +e. 0

We now make the following.

DEFINITION 2: An open connected subset §2 of the plane is called a Caratheodory
region if its boundary equals the boundary of the unbounded component of C\Q.

It is easy to see that 2 is a Caratheodory region if and only if § is the interior of
the polynomially convex hull of Q. In this case the Farrell-Rubel-Shields Theorem holds
(5, Theorem 5.1, p. 151]. Let f be a bounded analytic function on Q. Then there is a
sequence {p,} of polynomials such that ||p,[l, < C for a constant C and p,(z) — f(2)
for all z € Q. In the following we suppose that Q is the unit disc U.

LEMMA 3. Let M, be polynomially bounded in the sense that for some C > 0,
|M,)| € Cllplly, for all polynomial p. Then ||M, || < C ¢l for all ¢ in M(X).
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PROOF: Since M(X) C H®(U) and U is a Caratheodory region, there is a sequence
{pn} of polynomials such that ||p]l, < |l¢|l,, and pa(z) — @(z) for every z € U. For
each A € U we have

(Mp, f,e(A)) = (2af)(N) = Pa(N)F(A) = ©(N)F(A) = (M,.f, e(N))-

Because X* = span{e(}) : A € U}, we conclude that (M,_f,g) — (M,f,g) for all f in
X and g in X*. Now '

(M, f,9)| < ML IFIE Hlgll < Cllpalloo 11 llgll < Cllello £ Hlgll-
Let n — oo, then [(M,f,g)| < Cllell, IFl ligll for all f in X and g in X*. This
completes the proof. ' 0

DEFINITION 4: A sequence {w,} of points of {2 is said an interpolating sequence
for X if there exists a positive weight sequence {k,} so that the sequence {f (w,,)k,,};o=1
is in £ for all f in X and conversely every sequence in £* can be written in that form.

In the following e(A) is the functional of evaluation at A.

THEOREM 5. Let U be the open unit disc for which each point is a bounded point
evaluation for a reflexive Banach space X of functions analytic on U which contains the
constant functions and admits M, to be polynomially bounded. Also assume that M(X)
is rotation invariant and H(U) C M(X). If {w,} is a sequence in U such that w, — 08U,
then some subsequences of {wn} is interpolating for X.

PRrROOF: Put e, = (e(w,,))/”e(w,,)” for all n € N. Then {e,}, is a bounded
sequence in X*. Use the Rosenthal-Dor Theorem for the Banach space X* and let {e,, }
be the subsequence of {e, }, promised by the Rosenthal-Dor Theorem, and suppose that
case (i) of the Theorem holds. Let T denotes the isomorphism from ¢! into X* given by
case (i) of the Rosenthal-Dor Theorem. Because X is reflexive and T is one to one with
closed range, the dual T maps X onto £*°. Now let @ = {a,} € ¢°. Since T* is onto,
there exists f € X such that T*f = a. Recall that T*f = foT. So foT = a. Apply
both sides of the equation f oT = a to the vector in £! that is 0 except for a 1 in the kth
coordinates, getting f(e,,) = a; for every k. Thus

f(wn,)
lleCen)l

ag = (en,,,f) = (f: em) = <f: “:E‘L’lznk;“>
for all k. On the otherhand for all f in X,
f(wny)

el = =|(x ”e‘“’::)”>’ <Al

Thus indeed {wp, }« is interpolating for X if we can prove that case (ii) of the Rosenthal-
Dor Theorem never holds. For this let {ex}« be a sequence of positive numbers such that
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oo .

[1(1 + &) < oco. Similar to the proof of [1, Proposition 4, p. 416], by using Lemma 1
k=1

we can choose inductively an increasing sequence n; < ns < --- of positive integers and

a sequence @i, ¢a, . .. of functions analytic on U such that

(o1 Pe_1)(wn,) = (—1)k-1,
Pr(wn,) = -+ = pr(wn,) =1,
er(l) = -1,
lokllce < 1+ €.

By Lemma 3, |M, ]| < Cll¢ll, for all ¢ € M(X), thus we get

k k
IMprp 0]l < Cllpr1z - lloo < C [ llilloe < CTT(1 +0)-
i=1

i=1

Hence the sequence { Mgy, 4,. 4, }x is norm bounded. Since X is reflexive, the unit ball of
X is weakly compact. Therefore the unit ball of B{X) is compact in the weak operator
topology. We may assume, by passing to a subsequence if necessary, that My, ,, ., — A
in the weak operator topology, for some operator A. Thus M . . e(}) = Ae(}) in
the weak star topology. On the otherhand M ,, .. e(A) = (©102...0x)(A)e(A), so there
exists a function ¢ such that A*e(A) = ¢(A)e()) and thus A* = M. Hence A = M,
on X which implies that ¢ € M(X) and if {w,} is a sequence in U such that |w,| — 1,

then ¢ satisfies ¢(wn,) = (—1)F and li{n ¢(wy,) does not exist. Now for suitable choices
of Ok, e~ wf is a positive real number for all k. Now consider the sequence {ax}; of

o0 .
positive real numbers such that the function ¥(z) = Y are™*%2* be in X. Then y(wy,,)

k=0
is a positive real number. Define h = ¢1. Since ¢ € M(X), the function A is in X and

we have:
(wn )1/)(10" ) k w(wn )
h(en,) = (B, n) = (b, €q,) = Lx el Bme) (g PABne)
* * = ewad] - Y Tetwml
Bt (0ar) (b e(w20))
P Wy ) E\Wp,,
0< = < llvll,
Tewadl] ~ Tetwndl] < 11
for all k. So lilxcn h(e,,) does not exist. This completes the proof. 0

COROLLARY 6. Let w, — OU. Then there exists a function h in H®(U) such
that lim h(w,) does not exist.

PROOF: Let ¢, 4, h are defined as in the proof of the above theorem. Note that we
could choose 3 being in M(X). But M(X) is an algebra, thus h = ¢3p € M(X). Since
liin h(ws, ) does not exist, the proof is complete. 0
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COROLLARY 7. Let X C H(S) when  is one of the sets {z : |z| > r} or
{z 2| < r}. If {w,} is a sequence in Q such that w, — 0, then under the assumptions
of the theorem there exists h € H*(2) such that lim h(w,) does not exist.
‘ n

Proor: Since 2 is the conformal image of the open unit disc U, by the above
corollary it is clear. g

Consider the circular domain G = U\K, U ...U Ky where K; = D; = {z : |z — 2
< 1y} are disjoint closed subdiscs of the open unit disc U. Put G; = (C U {o0})\K; for
1=1,2,...,N. Then by the Cauchy integral formula it is proved that

(1) H®(G) = H*(Go) + H*(G1) + - -- + H®(GN)

where Gy = U, H{°(G;) .= H*®(G;) N Hy(G;) and Hy(G;) is the space of all analytic
functions on G; that vanish at infinity ([2, 3]).

The above Theorem can be extended for the case of circular domain instead of the
open unit disc.

COROLLARY 8. Theorem (5) is also true for any circular domain G, if in addition
we suppose that M(X) = H*(G).

PRrROOF: By the same way as the Theorem we can prove that if case (i) of the
Rosenthal-Dor Theorem is satisfied, then there exists some subsequence of {w,} that is
interpolating for X. So it is sufficient to prove that case (ii) of the Theorem does not hold.
Let w, — 9(G;) for some i = 0,1,..., N. By the above corollary there is h € H®(G;)
such that, li'rln h(w,) does not exist. By the decomposition (1), H*(G,) and H{°(G;) are

subsets of H®(G). So h € H®(G) C M(X) C X and this completes the proof. 0
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