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Hydroelastic wave diffraction by a vertical
circular cylinder standing in a channel with an ice
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The problem of hydroelastic wave diffraction by a surface-piercing vertical circular
cylinder mounted on the bottom of an ice-covered channel is considered. The ice sheet
is modelled as an elastic thin plate with homogeneous properties, while the linearized
velocity potential theory is adopted to describe the motion of the fluid. The solution
starts from the Green function satisfying all other boundary conditions apart from that
on the body surface. This is obtained through applying a Fourier transform in the
longitudinal direction of the channel and adopting an eigenfunction expansion in the
vertical direction. The boundary conditions on the side walls and ice edges are imposed
through an orthogonal product. Through the Green function, the velocity potential due
to a surface-piercing structure with arbitrary shape can be expressed through a source
distribution formula derived in this work, in which only integrals over the body surface
and its interaction line with the ice sheet need to be retained. For a vertical circular
cylinder, the unknown source distribution can be expanded further into a Fourier series in
the circumferential direction, and then the analytical solution of the velocity potential can
be obtained further. Extensive results and discussions are provided for the hydrodynamic
forces and vertical shear forces on the cylinder, as well as the deflection and strain of the
ice sheet. In particular, the behaviour of the solution near one of the natural frequencies of
the channel is investigated in detail.

Key words: ice sheets, channel flow, wave-structure interactions

1. Introduction

In ocean engineering, model tests in a wave or towing tank are commonly undertaken to
investigate the hydrodynamic properties of offshore structures. Due to the existence of side
walls, tanks or channels have their own natural frequencies, which leads to the result that
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the hydrodynamic performance of structures in tanks may differ from that in unbounded
ocean. Therefore, it is of practical importance to understand the interaction between fluid
and structures in a tank or channel.

Columns with circular sections are very important structural components that have been
used widely in many types of marine structures, such as the legs of offshore platforms.
The problem of free surface waves interacting with vertical circular cylinders in a channel
has received considerable attention since the last century. Based on the linearized velocity
potential theory, Eatock Taylor & Hung (1985) calculated the mean drift force on a single
vertical cylinder in a channel by treating the side walls as mirrors, and then the problem
was approximated by an array of cylinders in the open sea. Yeung & Sphaier (1989)
proposed a more accurate approach by placing an infinite number of cylinders in the
planes perpendicular to the channel, and then considered the problem of waves radiation
and diffraction by a cylinder standing at the centre of the channel. The same problem
was also considered by Linton, Evans & Smith (1992) through a different method. They
expressed the velocity potential in terms of an infinite series, where each term in the series
satisfies all the boundary conditions apart from that on the body surface. This method
was confirmed to be very effective for capturing trapped modes (Ursell 1951) and far
field waves. The same procedure was also employed by McIver & Bennett (1993) and
extended to a vertical cylinder at non-centre positions of the channel. Later, Evans &
Porter (1997) and Utsunomiya & Eatock Taylor (1999) further considered the trapped
mode waves around multiple vertical circular cylinders in a channel. In addition to the
works listed above, studies about structures of other shapes can be found in Wu (1998) and
Ursell (1999) for wave diffraction and radiation by a fully submerged sphere, where the
method of multipole expansion was applied. A more recent numerical work by Newman
(2017) also analysed the trapped modes of bodies with arbitrary shapes in channels.

As the scientific exploration and commercial activities in polar and other icy water
regions have increased greatly (Smith & Stephenson 2013) in recent years, there has
been an increasing interest in understanding the hydrodynamic performance of offshore
structures in fluid with an ice cover. Generally, an ice sheet covering a large area could be
modelled as a thin elastic plate (Greenhill 1886). Based on this, a large volume of work
about wave and ice sheets interaction has been undertaken. Typical examples include those
by Fox & Squire (1994) for oblique incident water wave transmission and reflection by a
semi-infinite ice sheet, Meylan & Squire (1996) for wave diffraction by a circular ice floe,
and Porter (2019) for wave interaction with a rectangular ice plate.

In reality, when offshore structures are operating in icy water, the surrounding water
surface might be frozen, and the body surfaces may contact directly the ice sheet edge.
Therefore, the interaction of hydroelastic waves and structures in such a case has been
investigated extensively. For three-dimensional surface-piercing bodies, Brocklehurst,
Korobkin & Părău (2011) studied the problem of hydroelastic waves scattered by a vertical
circular cylinder using the Weber transform, where the cylinder was assumed to be
clamped into the ice sheet, and detailed analyses were made on the hydrodynamic forces
and vertical shear forces on the cylinder, as well as the principal strain and deflection
of the ice sheet. Dişibüyük, Korobkin & Yılmaz (2020) studied a similar topic but for a
vertical cylinder of non-circular cross-section. In their work, the impermeable condition on
the body surface was satisfied on the mean position by applying the perturbation theory,
and then the velocity potential was derived by the method of eigenfunction expansion.
The problem of hydroelastic waves diffracted by multiple vertical circular cylinders was
investigated by Ren, Wu & Ji (2018a), in which the edge conditions at the intersection
lines of the ice sheet and each cylinder surface were imposed through Green’s second
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identity. Their procedure was applicable to any types of edges, including clamped, simply
supported, free, and their combinations. Their results showed that the edge condition
would affect significantly the hydrodynamic forces on the cylinder. In some other cases,
the ice edge does not contact directly the body surface. Instead, there may be a gap of
open water region, such as bodies floating in a polynya or a lead. In such a case, both
conditions on ice-covered surface and free surface need to be considered. Typically, Ren,
Wu & Ji (2018b) derived an analytical solution for wave interaction with a vertical circular
cylinder in a polynya standing arbitrarily. Later, Li, Shi & Wu (2020) proposed a hybrid
numerical method and extended it to arbitrary shapes of floating bodies and polynya. Other
investigations about wave–ice-sheet-structure interactions can be also found in Das &
Mandal (2008) and Das, De & Mandal (2020) for a fully submerged sphere and a thin
cap, respectively.

The ice sheet in the above studies is normally treated as unbounded, which can be
realistic in the polar ocean. By contrast, a tank or channel is a confined region. When
it is fully covered by an ice sheet, the edge of the ice will contact the side walls with
certain constraints. Then the effects of the edge conditions cannot be ignored. In fact,
wave propagation in a channel with an ice cover has been found to be very different from
that in a free surface channel. The propagation of hydroelastic waves in a rectangular
channel with an ice cover clamped into two side walls was considered by Korobkin,
Khabakhpasheva & Papin (2014); their results indicated that the waves in an ice-covered
channel are normally fully three-dimensional. Later, a similar analysis was also made of
an ice-covered channel with free edges by Batyaev & Khabakhpasheva (2015). Ren, Wu
& Li (2020) proposed a different procedure that can be applied effectively to ice-covered
channels with any combinations of three common types of edge constraints (clamped, free
and simply supported). From the results, they pointed out that the dispersion relation and
the wave profile were affected significantly by the edge conditions. Based on the method
in Ren et al. (2020), a more recent work by Yang, Wu & Ren (2021) first constructed the
Green function due to a steady moving source, and then adopted the multipole expansion
method to investigate interaction between a uniform current and a horizontal circular
cylinder submerged in an ice-covered channel.

The nature of the work by Yang et al. (2021) is in fact to understand the wave profile
generated by a steady current passing through a submerged body. In this work, we will
consider the problem of hydroelastic waves diffracted by a vertical circular cylinder in a
channel with an ice cover. Since the problem is periodic in time rather than steady, the
boundary conditions on the ice sheet will be different. In such a case, the Green function
needs to be reconstructed. Besides, the method of transverse mode expansion used in
Yang et al. (2021) may not be efficient in the present problem. Alternatively, the Green
function here is derived in a series of eigenfunctions along the vertical direction, where
the edge conditions on the intersections of the ice sheet and two side walls are imposed
through two orthogonal inner products. Through the Green function, a source distribution
formula for the velocity potential of surface-piercing structures with arbitrary shapes is
established. Compared with the problem in free surface channels, an extra integral along
the intersection line of the ice sheet and the body surface is added in the formula to satisfy
the edge conditions. By further expanding the Green function into a cylindrical coordinate
system, an analytical solution for a vertical circular cylinder mounted to the bottom of the
channel is obtained. Based on the results, extensive analyses are made for the physical
behaviour of the hydrodynamic forces and vertical shear forces on the cylinder, as well
as the wave profiles and principal strains in the ice sheet near the cylinder. In particular,
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the behaviour of the solution near or at the natural frequencies of the channel is also
discussed.

The paper is arranged as follows. In § 2, the linearized boundary value problem for a
vertical circular cylinder in a channel with an ice cover is presented. In § 3.1, the Green
function or the velocity potential due to an oscillating source is derived, while using a
similar procedure, the velocity potential of the incident wave is provided in § 3.2. In § 3.3,
the velocity potential due to a vertical circular cylinder is solved from the boundary integral
equation, based on which, the formulas for hydrodynamic forces and vertical shear forces
are obtained in § 3.4. The numerical results are presented and discussed in § 4, followed
by conclusions in § 5. The key procedure to transfer the Green function in the unbounded
ocean to a series form is provided in Appendix A. The expressions for some essential
coefficients are summarized in Appendix B. In Appendix C, a general source distribution
formula for surface-piercing structures with arbitrary shapes is constructed.

2. Mathematical formulations

The problem of hydroelastic wave diffraction by a vertical circular cylinder in an
ice-covered rectangular channel is sketched in figure 1. A Cartesian coordinate system
Oxyz is established, with its origin at the centre line of the still water surface, the x-axis
along the longitudinal direction, and the z-axis measuring vertically upwards. An incident
wave comes from x = +∞ and will be scattered by the cylinder. Two side walls of the
channel are located at y = ±b, and the bottom of the channel is assumed to be horizontal
and at z = −H. The upper surface of fluid is covered fully by a homogeneous ice sheet
with density ρi and thickness hi. The surface-piercing vertical circular cylinder of radius
a is mounted on the bottom, whose centre axis is along x = xc & y = yc. A cylindrical
coordinate system (r, θ, z) is further defined as

x = xc + r sin θ,
y = yc + r cos θ,

}
(2.1)

where r = 0 is the centre of the cylinder.
Based on the assumption that the fluid with density ρ is ideal, incompressible and

homogeneous, and its motion is irrotational, the fluid flow can be described by the velocity
potential Φ. For small amplitude waves, linearization of the boundary conditions on the
ice sheet can be introduced further. For a sinusoidal wave in time with frequency ω, the
total velocity potential can be written in the form

Φ = Re{φ(x, y, z)× eiωt}, (2.2)

where φ is composed of the incident component φI and diffracted component φD. The law
of conservation of mass requires φ to satisfy the Laplace equation throughout the fluid
domain, which can be expressed as

∇2φ + ∂2φ

∂z2 = 0, −∞ < x < +∞, −b ≤ y ≤ b, −H ≤ z ≤ 0, (2.3)

where ∇2 is the two-dimensional Laplacian on the Oxy plane. Here, the ice sheet is
modelled as a thin elastic plate. Then the boundary condition on the ice sheet can be
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written as

(L∇4 − miω
2 + ρg)

∂φ

∂z
− ρω2φ = 0, z = 0, (2.4)

where L = Eh3
i /[12(1 − ν2)] represents the effective flexural rigidity of the ice sheet, E

and ν denote its Young’s modulus and Poisson’s ratio, respectively, mi = ρihi represents
the mass per unit area of the ice sheet, and g is the acceleration due to gravity. The
impermeable condition on the body surface SB can be expressed as

∂φ

∂n
= 0, on SB, (2.5)

where n = (nx, ny, 0) is the unit normal vector of SB pointing into the body. The
impermeable conditions are also enforced on the rigid side walls and the bottom of the
channel, i.e.

∂φ

∂y
= 0, y = ±b, (2.6)

∂φ

∂z
= 0, z = −H. (2.7)

At far field, the radiation condition should be imposed to ensure that the disturbed wave
propagates outwards. In addition to all the above, edge conditions should be imposed at
the intersections of the ice sheet with the two channel walls and with the vertical cylinder.
In the present work, without loss of generality, case studies are made for the clamped and
free edges. The former requires zero deflection and slope at the intersection line, while the
latter requires zero bending moment and Kirchhoff shear force. Following the formulas
given in Timoshenko & Woinowsky-Krieger (1959), the edge conditions at y = ±b, z = 0
can be expressed as

∂φ

∂z
= 0,

∂2φ

∂y ∂z
= 0, Clamped,

∂3φ

∂y2 ∂z
+ ν

∂3φ

∂x2 ∂z
= 0,

∂4φ

∂y3 ∂z
+ (2 − ν)

∂4φ

∂x2 ∂y ∂z
= 0, Free.

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

The edge conditions at the intersection line of the ice sheet and the surface of the vertical
cylinder can be written as

∂φ

∂z
= 0,

∂2φ

∂r ∂z
= 0, Clamped,

B
(
∂φ

∂z

)
= 0, S

(
∂φ

∂z

)
= 0, Free,

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

where the operators B and S are defined as

B = ∇2 − 1 − ν

a

(
1
a
∂2

∂θ2 + ∂

∂r

)
,

S = ∂

∂r
∇2 + 1 − ν

a2

(
∂3

∂r ∂θ2 − 1
a
∂2

∂θ2

)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

and (r, θ) is defined in (2.1).
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z

2b

hi
O

y

H

x

Incident wave

Ice sh
eet

a

x = xc & y = yc

Figure 1. Coordinate system and sketch of the problem.

3. Solution procedure

3.1. Green function for a channel covered fully by an ice sheet
To solve the boundary value problem, the Green function G(x, y, z; x0, y0, z0) is first
derived, which is the velocity potential at point (x, y, z) due to a single source at point
(x0, y0, z0). This G should satisfy the following equation in the entire fluid domain:

∇2G + ∂2G
∂z2 = 2π δ(x − x0) δ( y − y0) δ(z − z0), (3.1)

where δ(·) denotes the Dirac delta function. The same boundary conditions in (2.4),
(2.6)–(2.10) and at far field also need to be satisfied by G. To obtain the solution, we
may apply the Fourier transform along the x-direction,

Ĝ = 1
2π

∫ +∞

−∞
G e−ikx dx (3.2)

to (3.1). The governing equation becomes

− k2Ĝ + ∂2Ĝ
∂y2 + ∂2Ĝ

∂z2 = e−ikx0 δ( y − y0) δ(z − z0). (3.3)

To derive the solution of (3.3), Ĝ can be expressed as

Ĝ = Ĝp + Ĝg, (3.4)

where Ĝp is a particular solution of (3.3) satisfying conditions in (2.4) and (2.7) – or the
solution corresponding to the problem in unbounded ocean with an ice cover – while Ĝg
is a general solution of (3.3) with zero right-hand side, which is introduced to satisfy the
remaining boundary conditions. Based on the procedure of Wehausen & Laitone (1960),
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Ĝp can be derived through the Fourier transform method as

Ĝp = −e−ikx0

2π

∫ +∞

−∞
e−iσ |y−y0| f (α, z>, z<)

α K(α, ω)
dσ, (3.5)

where

f (α, z>, z<) = [(Lα4 + ρg − miω
2)α cosh(αz>)+ ρω2 sinh(αz>)] coshα(z<+H),

(3.6)

K(α, ω) = (Lα4 + ρg − miω
2)α sinhαH − ρω2 coshαH, (3.7)

with α = (σ 2 + k2)1/2, and z> and z< are defined as z> = max{z, z0} and z< = min{z, z0}.
Here, we may denote the roots of K(α, ω) = 0 as α = ±κm (m = −2,−1, 0, . . .), where κ0
is the purely positive real root, κ−2 and κ−1 are two complex roots with positive imaginary
part, and κm (m = 1, 2, 3, . . .) are an infinite number of purely positive imaginary roots.
When κ2

0 > k2, there will be singularities in the integrand of (3.5) at σ = ±(κ2
0 − k2)1/2.

To satisfy the outgoing wave radiation condition at far field, the integration path should
pass under (over) the poles at σ = −(κ2

0 − k2)1/2 (σ = +(κ2
0 − k2)1/2). In fact, if we

deform the integration path in (3.5) downwards into the lower half of the complex plane
and use the residue theorem, then Ĝp can be expressed further in a form of eigenfunction
series as

Ĝp = ie−ikx0

+∞∑
m=−2

e−iσm|y−y0| ψm(z) ψm(z0)

2σmQm
, (3.8)

where

ψm(z) = cosh κm(z + H)
cosh κmH

, (3.9)

Qm = 2κmH + sinh 2κmH

4κm cosh2 κmH
+ 2Lκ4

m

ρω2 tanh2 κmH, (3.10)

and σm = −i(k2 − κ2
m)

1/2. The details of the derivation of (3.8) can be found in
Appendix A.

The general solution Ĝg can be determined through a variable separation procedure (Li
et al. 2020) as

Ĝg( y, z) = e−ikx0

+∞∑
m=−2

ϕm( y) ψm(z), (3.11)

where ϕm( y) is governed by

d2ϕm

dy2 + σ 2
mϕm = 0, −b ≤ y ≤ b. (3.12)

To establish the boundary conditions of ϕm( y), an orthogonal inner product proposed by
Sahoo, Yip & Chwang (2001) gives

〈ψm, ψm̃〉 =
∫ 0

−H
ψmψm̃ dz + L

ρω2

(
dψm

dz
d3ψm̃

dz3 + d3ψm

dz3
dψm̃

dz

)∣∣∣∣
z=0

= δmm̃Qm, (3.13)
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which is used here, where δij denotes the Kronecker delta function. Therefore,〈
∂Ĝ
∂y
, ψm̃

〉∣∣∣∣∣
y=±b

=
∫ 0

−H

∂Ĝ
∂y

∣∣∣∣∣
y=±b

ψm̃ dz + L
ρω2

(
∂2Ĝ
∂y ∂z

d3ψm̃

dz3 + ∂4Ĝ
∂y ∂z3

dψm̃

dz

)∣∣∣∣∣
y=±b,z=0

= e−ikx0 Qm̃

[
dϕm̃

dy

∣∣∣∣
y=±b

± e−iσm̃(b∓y0) ψm̃(z0)

2Qm̃

]
. (3.14)

Applying the impermeable condition in (2.6) to (3.14), and letting

∂2Ĝ
∂y ∂z

∣∣∣∣∣
y=±b,z=0

= e−ikx0(β3 ± β1)

2
and

∂4Ĝ
∂y ∂z3

∣∣∣∣∣
y=±b,z=0

= e−ikx0(β4 ± β2)

2
,

(3.15a,b)
where βj (j = 1, 2, 3, 4) are four unknown coefficients to be determined from the edge
conditions on channel walls, we have

dϕm

dy

∣∣∣∣
y=±b

= Lκm tanh κmH
2ρω2Qm

× [κ2
m(β3 ± β1)+ (β4 ± β2)] ∓ e−iσm(b∓y0) ψm(z0)

2Qm
.

(3.16)
Based on (3.12) and (3.16), ϕm can be found as

ϕm( y) = ϕ(1)m ( y)+ ϕ(2)m ( y), (3.17)

where

ϕ(1)m ( y) = ψm(z0)

Qm
×
[

cos σm( y + y0)+ e−2iσmb cos σm( y − y0)

2σm sin 2σmb

]
, (3.18a)

ϕ(2)m ( y) = Cm cos σmy + Dm sin σmy, (3.18b)

with

Cm = − L
ρω2 × tanh κmH

Qmσm sin σmb
× (κ3

mβ1 + κmβ2), (3.19a)

Dm = L
ρω2 × tanh κmH

Qmσm cos σmb
× (κ3

mβ3 + κmβ4). (3.19b)

In fact, it can be seen from (3.18) and (3.19) that ϕ(1)m is introduced to satisfy the
impermeable condition on the channel walls, while ϕ(2)m is introduced for edge conditions
at y = ±b & z = 0. To obtain βj (j = 1, 2, 3, 4), we may apply the edge conditions given
in (2.8) to Ĝ, and use (3.4), (3.8), (3.11) and (3.17)–(3.19). A system of linear equations of
the following form can be established:⎡

⎢⎣
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎤
⎥⎦
⎡
⎢⎣
β1
β2
β3
β4

⎤
⎥⎦ =

⎡
⎢⎣

B1
B2
B3
B4

⎤
⎥⎦ , (3.20)

where the expressions for elements Aij, Bj and the solution βj (i, j = 1, 2, 3, 4) are given in
Appendix B. Substituting βj in (B8) and (B9) into (3.18b), and using (B1) and (B3), ϕ(2)m
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can be written as

ϕ(2)m ( y) =
+∞∑

m′=−2

ImIm′ ψm′(z0)

QmQm′

[
cos σmy cos σm′y0

FS(k, ω) sin σmb sin σm′b

+ sin σmy sin σm′y0

FA(k, ω) cos σmb cos σm′b

]
, (3.21)

where

Im(k) = ζm(k)× κm tanh κmH
σm

, (3.22)

FS(k, ω) = −2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm
× ζ 2

m(k)
tan σmb

, (3.23a)

FA(k, ω) = 2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm
× ζ 2

m(k)
cot σmb

(3.23b)

and

ζm(k) =
{

1, clamped–clamped,
σ 2

m(k)+ νk2, free–free.
(3.24)

Once Ĝp and Ĝg are found, the Green function G can be obtained by performing the inverse
Fourier transform. Using (e.g. Linton et al. 1992)∫ +∞

−∞
eik(x−x0)−iσm|y−y0|

σm
dk = −πH (1)

0 (κmR), (3.25)

where R = [(x − x0)
2 + ( y − y0)

2]1/2 and H (1)
n denotes the nth-order Hankel function of

the first kind, we have the Green function

G(x, y, z; x0, y0, z0) = − iπ
2

+∞∑
m=−2

ψm(z) ψm(z0)

Qm
H (1)

0 (κmR)

+
+∞∑

m=−2

ψm(z) ψm(z0)

Qm

∫ +∞

0

[
cos σm( y + y0)+ e−2iσmb cos σm( y − y0)

σm sin 2σmb

]
cos k(x − x0) dk

+
+∞∑

m=−2

+∞∑
m′=−2

2ψm(z) ψm′(z0)

QmQm′

∫
L

ImIm′

⎡
⎢⎢⎣

cos σmy cos σm′y0

FS(k, ω) sin σmb sin σm′b

+ sin σmy sin σm′y0

FA(k, ω) cos σmb cos σm′b

⎤
⎥⎥⎦ cos k(x − x0) dk.

(3.26)

In (3.26), there will be singularities in the integrand when FS(kj, ω) = 0 or FA(kj, ω) = 0
(j = 1, 2, . . . ,Ns), where kj denotes all the corresponding purely positive real roots with
k1 < k2 < · · · < kNs , and Ns is the number of roots. To satisfy the radiation condition
at far field, which requires the disturbed waves to propagate away from the source, the
integration path L in (3.26) from 0 to +∞ should pass over all the poles at kj. In fact,
FS(k, ω)× FA(k, ω) = 0 corresponds to the dispersion equation (Ren et al. 2020), or
relationship between wavenumber and frequency for the propagating wave in the channel.
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Furthermore, it can be observed (3.26) that FS(k, ω) is combined with cos σmy, which
means that FS(kj, ω) corresponds to a symmetric progressing wave about y = 0 with
wavenumber kj, while FA(k, ω) with sin σmy corresponds to antisymmetric waves.

3.2. The velocity potential of the incident wave
For the problems in the free surface channel, one form of the incident wave could be
assumed as two-dimensional along the channel length and has no transverse variation.
However, in the ice-covered channel, such a form is not possible due to the physical
constraints at the ice sheet edges. The propagating wave will be always three-dimensional
(Ren et al. 2020), and there is always variation in the transverse direction. In fact, there
are an infinite number of modes in the y-direction, and all these modes are coupled. Here,
when the edge conditions on channel walls are the same, we may consider an incident
wave symmetric about y = 0. Following a similar procedure for solving the Green function
shown above, φI can be obtained by finding the non-trivial solution of the homogeneous
problem, which provides

φI = −i
Ag

ω χ(λ)
× eiλ(x−xc) ×

+∞∑
m=−2

Im(λ) ψm(z)
Qm

cos[σm(λ) y]
sin[σm(λ) b]

, (3.27)

where A is a parameter related to the amplitude of the incident wave, σm(λ) = −i(λ2 −
κ2

m)
1/2, λ is the wavenumber along the x-direction, or the solution of the dispersion

equation which also requires FS(λ, ω) = 0. Similar to the problem in the free surface
channel, λ is taken as the largest positive real root here, or λ = kNs . Now, χ(λ) in (3.27)
can be expressed as

χ(λ) = 1
κ0 tanh κ0H

+∞∑
m=−2

Im(λ) κm tanh κmH
Qm sin[σm(λ) b]

. (3.28)

The ice sheet deflection due to the incident wave can be obtained from ηI =
−(i/ω)(∂φI/∂z)|z=0. Then, on y = 0, we have

ηI(x, 0) = −Ag
ω

× κ0 tanh κ0H × eiλ(x−xc). (3.29)

It is interesting to see that along the centre line of the tank, the expression for the incident
wave is similar to that in unbounded ocean given in Ren et al. (2018b).

3.3. Solution through the source distribution method
Once the Green function is derived, the velocity potential can be determined from a
boundary integral equation. For the problem of wave diffraction by a vertical cylinder
in a free surface channel, the boundary integral equation can be established directly
through distributing sources over the body surface (e.g. Linton et al. 1992). However, when
there is an ice sheet, the integral equation has to be re-derived, and the edge conditions
must be imposed. The detailed derivation is given in Appendix C. In the result, there
is an extra line integral along the edge L between the body surface and the ice sheet
(see (C3)), which contains terms ∂4φD/∂n ∂z3 and ∂2φD/∂n ∂z. This is similar to that in
Ren et al. (2018a); however, their procedure becomes difficult here due to the presence
of the channel walls, therefore a different one is introduced here. From the derivation
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Hydroelastic wave diffraction by a vertical circular cylinder

given in Appendix C, using (C9) and the symmetric property of the Green function, or
G(x, y, z; x0, y0, z0) = G(x0, y0, z0; x, y, z), we have

φD(x, y, z) = a
∮
L
〈G(x, y, z; x0, y0, z0), Ψ (x0, y0, z0)〉 dθ0. (3.30)

where x0 − xc = a sin θ0 and y0 − yc = a cos θ0, the operator 〈 〉 is defined in (3.13), and
Ψ is the strength of the source distributed on the body surface. To obtain φD, we may
expand Ψ into a double series as

Ψ (a, θ0, z0) = 1
2πa

+∞∑
n=−∞

+∞∑
m=−2

bn,m

Qm Jn(κma)
× ψm(z0) e−inθ0, (3.31)

where bn,m are unknown coefficients, and Jn denotes the nth-order Bessel function of the
first kind. The Green function can also be expressed in the cylindrical coordinate system.
Similar to Wu (1998), we may define

k = κm cos γm and σm = κm sin γm. (3.32a,b)

Using the two identities (Abramowitz & Stegun 1970)

H (1)
0 (κmR) =

+∞∑
n=−∞

H (1)
n (κmr)Jn(κma) ein(θ0−θ), (3.33a)

ei[k(x−xc)±σm( y−yc)] =
+∞∑

n=−∞
Jn(κmr) ein(θ±γm), (3.33b)

(3.26) can be transferred to coordinates (r, θ, z) and (a, θ0, z0) as

G(r, θ, z; a, θ0, z0) = − iπ
2

n=+∞∑
n=−∞

+∞∑
m=−2

ψm(z) ψm(z0)

Qm
H (1)

n (κmr)Jn(κma) ein(θ0−θ)

+
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

Cn,n′,m ψm(z) ψm(z0)Jn′(κmr)Jn(κma) ei(n′θ+nθ0)

+
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

+∞∑
m′=−2

Dn,n′,m,m′ ψm′(z) ψm(z0)Jn′(κm′r)Jn(κma) ei(n′θ+nθ0),

(3.34)

where

Cn,n′,m = 1
Qm

∫ +∞

0

Gn,n′,m + Gn′,n,m
2σm sin 2σmb

dk, (3.35a)

Dn,n′,m,m′ = 1
QmQm′

∫
L

ImIm′

⎡
⎢⎢⎢⎣
(−1)n

′
En,mE−n′,m′ + (−1)nE−n,mEn′,m′

FS(k, ω) sin σmb sin σm′b

+ (−1)n
′
Fn,mF−n′,m′ + (−1)nF−n,mFn′,m′

FA(k, ω) cos σmb cos σm′b

⎤
⎥⎥⎥⎦ dk,

(3.35b)
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with

Gn,n′,m(k) = (−1)n
′
cos[2σmyc + (n − n′)γm] + e−2iσmb(−1)n

′
cos(n + n′)γm, (3.36a)

En,m(k) = cos(σmyc + nγm), (3.36b)

Fn,m(k) = sin(σmyc + nγm). (3.36c)

Substituting (3.31) and (3.34) into (3.30), we obtain

φD(r, θ, z) = − iπ
2

+∞∑
n=−∞

+∞∑
m=−2

bn,m

Qm
H (1)

n (κmr) ψm(z) e−inθ

+
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

bn,m Cn,n′,m Jn′(κmr) ψm(z) ein′θ

+
+∞∑

n=−∞

+∞∑
n′=−∞

+∞∑
m=−2

+∞∑
m′=−2

bn,m Dn,n′,m,m′ Jn′(κm′r) ψm′(z) ein′θ . (3.37)

Similarly, φI can be expressed in the cylindrical coordinate system by applying
(3.33b)–(3.27). This gives

φI(r, θ, z) = − iAg
ω χ(λ)

+∞∑
n=−∞

+∞∑
m=−2

Im(λ)En,m(λ)

Qm sin[σm(λ) b]
Jn(κmr) ψm(z) einθ . (3.38)

To obtain bn,m, applying the inner product in (3.13) to ∂φ/∂r and ψm̃ on r = a, we have

〈
∂φ

∂r
, ψm̃

〉∣∣∣∣
r=a

=
∫ 0

−H

〈
∂φ

∂r
ψm̃

〉∣∣∣∣
r=a

dz + L
ρω2

(
∂2φ

∂r ∂z
d3ψm̃

dz3 + ∂4φ

∂r ∂z3
dψm̃

dz

)∣∣∣∣
r=a,z=0

.

(3.39)
Substituting the impermeable condition on r = a (2.5) into (3.39) and letting

∂2φ

∂r ∂z

∣∣∣∣
r=a,z=0

= −
+∞∑

n=−∞
cn einθ and

∂4φ

∂r ∂z3

∣∣∣∣
r=a,z=0

= −
+∞∑

n=−∞
dn einθ , (3.40a,b)

a system of linear equations of the following form can be obtained:

iπ
2
(−1)n+1H (1)′

n (κma)
Qm J ′

n(κma)
b−n,m +

+∞∑
n′=−∞

Cn′,n,m bn′,m +
+∞∑

n′=−∞

+∞∑
m′=−2

Dn′,n,m′,m bn′,m′

+ L tanh κmH
ρω2Qm J ′

n(κma)
(κ2

mcn + dn) = iAg
ωχ(λ)

Im(λ)En,m(λ)

Qm sin[σm(λ) b]
, (3.41)

where −∞ < n < +∞ and −2 ≤ m < +∞, and H (1)′
n (z) and J ′

n(z) denote the
derivatives of H (1)

n (z) and Jn(z), respectively. In addition to the imposed impermeable
condition on the body surface, the edge conditions also need to be applied to φ. Here, we
may give an example of the clamped edge at the intersection line of the ice sheet and the
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body surface L, and other conditions can be treated in a similar way. Substituting (3.37)
and (3.38) into (2.9), the condition of zero deflection provides

iπ
2

+∞∑
m=−2

(−1)n+1H (1)
n (κma) κm tanh κmH

Qm
b−n,m

+
+∞∑

n′=−∞

+∞∑
m=−2

Cn′,n,m Jn(κma) bn′,mκm tanh κmH

+
+∞∑

n′=−∞

+∞∑
m=−2

+∞∑
m′=−2

Dn′,n,m′,m Jn(κma) bn′,m′κm tanh κmH

= iAg
ωχ(λ)

+∞∑
m=−2

Im(λ)En,m(λ)Jn(κma) κm tanh κmH
Qm sin[σm(λ) b]

, −∞ < n < +∞. (3.42)

The condition of zero slope gives

cn = 0, −∞ < n < +∞. (3.43)

In the numerical computation, the infinite series in (3.41) and (3.42) are truncated
at n = ±N and m = M, respectively. We have (2N + 1)(M + 5) unknowns in total,
(2N + 1)(M + 3) of which are bn,m, and (2N + 1) are cn and dn. From (3.41), we obtain
(2N + 1)(M + 3) equations, while (3.42) and (3.43) provide an additional 2 × (2N + 1)
equations. Thus there is a total of (2N + 1)(M + 5) equations, which is the same as the
number of unknowns.

After the coefficients bn,m, cn and dn are found, substituting (3.41) into (3.37) and (3.38),
the total velocity potential φ can be further expressed as

φ(r, θ, z) = − iπ
2

+∞∑
n=−∞

+∞∑
m=−2

bn,m

Qm

[
H (1)

n (κmr)
Jn(κmr)

− H (1)′
n (κma)
J ′

n(κma)

]
Jn(κmr) ψm(z) e−inθ

− L
ρω2

+∞∑
n=−∞

+∞∑
m=−2

(κ2
mcn + dn) tanh κmH

Qm

Jn(κmr)
J ′

n(κma)
ψm(z) einθ . (3.44)

3.4. Hydrodynamic forces and vertical shear forces on the vertical cylinder
Once the velocity potential is found, the hydrodynamic forces on the vertical cylinder
can be obtained through the integration of hydrodynamic pressure over the body surface,
which can be expressed as

Fj = iωρ
∫∫

SB

φnj dS, j = 1, 2, 3, 4, (3.45)

where j = 1, 2 correspond to the forces Fx and Fy, and j = 3, 4 correspond to the
moments Mx and My about the bottom of the channel on z = −H; also, (n1, n2, n3, n4) =
(nx, ny,−(z + H)ny, (z + H)nx). For the present case of a vertical circular cylinder, we
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have nx = − sin θ = −(eiθ − e−iθ )/2i and ny = − cos θ = −(eiθ + e−iθ )/2. Substituting
these and (3.44) into (3.45), we obtain[

Fx
Fy

]
= πωρa ×

[
1 −1
i i

]

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
a

+∞∑
m=−2

tanh κmH
κ2

mQm J ′
1(κma)

×
[

b1,m
−b−1,m

]

+ L
ρω2

+∞∑
m=−2

J1(κma) tanh2 κmH
κmQm J ′

1(κma)
×
[
κ2

mc−1 + d−1
κ2

mc1 + d1

]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (3.46a)

[
Mx
My

]
= −πωρa ×

[
i i

−1 1

]

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
a

+∞∑
m=−2

κmH sinh κmH − cosh κmH + 1
J ′

1(κma) κ3
mQm cosh κmH

×
[

b1,m
−b−1,m

]

+ L
ρω2

+∞∑
m=−2

J1(κma) (κmH sinh κmH − cosh κmH+1)
J ′

1(κma) κ2
mQm cosh κmH coth κmH

×
[
κ2

mc−1+d−1
κ2

mc1+d1

]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

(3.46b)

When the ice sheet is clamped to the surface of the cylinder, there will be a vertical shear
force on the body. The total vertical shear force V can be obtained from

V =
∫ 2π

0
τ(θ) a dθ, (3.47)

where τ(θ) is the shear stress distribution along the intersection line, which can be
expressed as (Ugural 1999)

τ(θ) = −i
L
ω

∂

∂r

(
∇2 ∂φ

∂z

)∣∣∣∣
r=a,z=0

= i
L
ω

∂4φ

∂r ∂z3

∣∣∣∣
r=a,z=0

= −i
L
ω

+∞∑
n=−∞

dn einθ . (3.48)

Substituting (3.48) into (3.47), we have

V = −i
2πaL
ω

d0. (3.49)

3.5. Behaviour of the solution at the natural frequencies
For a given ω, the residual in (3.26) at a singularity FS(k, ω) = 0 (FA(k, ω) = 0) can be
obtained from the standard method in complex analysis. The result contains F ′

S(k, ω) =
0 (F ′

A(k, ω) = 0) in the denominator, where the prime represents the derivative with
respect to k. At some ω, F ′

S(k, ω) (F ′
A(k, ω)) is also equal to zero when FS(k, ω) = 0

(FA(k, ω) = 0), and then the Green function G will be infinite. Physically, ω in this
case is the natural frequency of the ice-covered channel. In fact, from (3.23), k = 0 is
always the solution of F ′

S(k, ω) = 0 (F ′
A(k, ω) = 0). At a given ω, if we further have

F ′
S(k, ω) = 0 (F ′

A(k, ω) = 0), then this ω will be a natural frequency. This is similar to
κ0 = iπ/2b and ω = [(iπ/2b) tanh(iπH/2b)]1/2 (i = 1, 2, . . .) in the free surface channel
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Hydroelastic wave diffraction by a vertical circular cylinder

(Linton et al. 1992; Wu 1998). The ice-covered channel also has an infinite number of
natural frequencies, which are denoted as ω(i)c (i = 1, 2, . . .) here, with ω(1)c < ω

(2)
c <

ω
(3)
c < · · · In particular, even i corresponds to FS(0, ω

(i)
c ) = 0, while odd i corresponds to

FA(0, ω
(i)
c ) = 0. The results near the natural frequencies can change rapidly. Here, we will

show that even though the Green function is infinite at one of the natural frequencies, the
velocity potential φ and hydrodynamic force may remain finite. We may consider the even
modes 2i as an example, and the odd modes 2i − 1 can be done in a similar way. When
ω → ω

(2i)
c , FS(k, ω) at k → 0 can be expressed asymptotically as

FS(k, ω) → FS,asy(k, ω) = FS(0, ω)+ 1
2F ′′

S (0, ω)ik
2, k → 0, (3.50)

where FS(0, ω) → 0± when ω → ω
(2i)
c + 0±, and F ′′

S (0, ω) < 0, which can be confirmed
from (3.23a). For the integrand as G(k)/FS(k, ω) in (3.35b), we may re-express
it as [G(k)/FS(k, ω)− G(0)/FS,asy(k, ω)] + G(0)/FS,asy(k, ω). Then the first term is
non-singular, and the second term can be integrated explicitly. Also, Dn,n′,m,m′ in G can
be written as

Dn,n′,m,m′ = 2π

Δ

Im(0) Im′(0)En,m(0)En′,m′(0)
QmQm′ sin κmb sin κm′b

+ D̃n,n′,m,m′ + O(Δ), Δ → 0, (3.51)

where Δ = μ× |2F ′′
S (0, ω)FS(0, ω)|, and μ is a constant depending on whether ω(2i)

c

is approached from the left- or right-hand side. When ω → ω
(2i)
c + 0−, μ = 1 and the

singular term in Dn,n′,m,m′ is from the principal value integration. When ω → ω
(2i)
c + 0+,

μ = −i and the singular term is from the residue term. Also, D̃n,n′,m,m′ ∼ O(1) in (3.51)
is the leading term of the remaining regular part of the Green function. To analyse the
behaviour of the velocity potential ϕ at natural frequencies, we may employ a procedure
similar to that used by Liu & Yue (1993) for the forward speed problem in free surface
flow. Substituting (3.51) into (3.41) and rearranging the equation, we obtain

b−n,m + 4i
Δ

×Λ× (−1)nJ ′
n(κma) Im(0)En,m(0)

H (1)′
n (κma) sin κmb

= ξn,m + O(Δ), (3.52)

where

Λ =
+∞∑

n′=−∞

+∞∑
m′=−2

Im′(0)En′,m′(0)
Qm′ sin κm′b

bn′,m′, (3.53)

ξn,m = 2i(−1)nJ ′
n(κma)

πH (1)′
n (κma)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

iAg
ω χ(λ)

Im(λ)En,m(λ)

Qm sin[σm(λ) b]
−

+∞∑
n′=−∞

Cn′,n,m bn′,m

−
+∞∑

n′=−∞

+∞∑
m′=−2

D̃n,n′,m,m′ bn′,m′ + L tanh κmH
ρω2Qm J ′

n(κma)
dn

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(3.54)

In (3.52), cn = 0 in (3.43). Multiplying (3.41) by κm tanh κmH, taking summation with
respect to m from −2 to +∞, and subtracting (3.42) from the result, dn can be further
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expressed using bn,m as

dn = −ρω
2

La
×

+∞∑
m=−2

tanh κmH
Qm

× b−n,m

J ′−n(κma)

+∞∑
m=−2

κm tanh2 κmH
Qm

× Jn(κma)
Jn′(κma)

, (3.55)

which indicates that dn has the same magnitude as bn,m. Substituting (3.52) into (3.53), Λ
can be represented as

Λ = Δ

Δ+ 4Γ i
×

+∞∑
n′=−∞

+∞∑
m′=−2

(−1)n
′
Im′(0)En′,m′(0)

Qm′ sin κm′b
ξn′,m′ + O(Δ2), (3.56)

where

Γ =
+∞∑

n=−∞

+∞∑
m=−2

I2
m(0)E2

n,m(0)

Qm sin2 κmb
× J ′

n(κma)

H (1)′
n (κma)

. (3.57)

At the natural frequency, we will first check whether Γ = 0. When Γ /= 0, we may
substitute (3.57) back into (3.52) and let Δ = 0, then a modified matrix equation can be
obtained as

b−n,m+ 1
Γ

(−1)nJ ′
n(κma) Im(0)En,m(0)

H (1)′
n (κma) sin κmb

+∞∑
n′=−∞

+∞∑
m′=−2

(−1)n
′
Im′(0)En′,m′(0)

Qm′ sin κm′b
ξn′,m′ =ξn,m.

(3.58)
This equation is not singular and can be used at natural frequencies. It can be seen from
(3.43), (3.55) and (3.58) that the solutions bn,m, cn and dn are bounded at the natural
frequencies. Furthermore, using (3.44), (3.46) and (3.49), the velocity potential φ and
forces are also non-singular at natural frequencies. However, whether Γ could be 0 in
some cases, and the corresponding solution could be singular, needs further investigation.

4. Numerical results and discussion

In the following calculations, the typical physical parameters of the ice sheet and the fluid
are chosen to be the same as those in Ren et al. (2020), i.e.

ρi = 917 kg m−3, E = 4.2 × 109 N m−2, ν = 0.3,
ρ = 1000 kg m−3, g = 9.8 m s−2, H = 5 m.

}
(4.1)

It should be noted that all the variables below are presented in non-dimensionalized forms.
The numerical results are obtained by truncating the infinite series in (3.41)–(3.43) at finite
numbers, namely N = 8 and M = 8, which has been found to provide converged results.

4.1. Verification of the dispersion equation
As discussed in § 3.1, FS(k, ω)× FA(k, ω) = 0 corresponds to the dispersion relation
for propagating waves in an ice-covered channel. To verify this, a comparison with the
dispersion relation obtained by Ren et al. (2020) through a different approach is presented
in figure 2, and very good agreement can be found. For a given k, Ren et al. (2020) pointed

941 A13-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.284


Hydroelastic wave diffraction by a vertical circular cylinder

out that there is an infinite number of solutions ω. Here, we may denote each root ω as
ωi(k) (i = 0, 1, 2, . . .), with ω0(k) < ω1(k) < ω2(k) < · · · , where the points on curves
ω2i(k) (i = 0, 1, 2, . . .) are solutions of FS(k, ω) = 0 and correspond to waves symmetric
about y = 0, while those on ω2i+1(k) are the roots of FA(k, ω) = 0 and correspond to
waves antisymmetric about y = 0. As discussed in § 3.5, the points on the vertical axis or
ωi(0) = ω

(i)
c (i = 1, 2, 3, . . .) are the natural frequencies of the channel.

Figure 2 verifies the present method and equation numerically. In fact, we can further
show that although the present expression for the dispersion relation is different from that
in Ren et al. (2020), they are identical mathematically. To do that, we may first construct
a function of the form

h(α) = α2 sinhαH
K(α, ω)

× ζ 2(α)

σ tan σb
(4.2)

in the complex plane α, where σ = −i(k2 − α2)1/2 and

ζ(α) =
{

1, clamped–clamped,
σ 2 + νk2, free–free. (4.3)

Consider the integral of h(α) along a circle CR of radius R → +∞ and centred at the
origin in the complex plane. Applying the residue theorem at singularities of K(α, ω) and
σ tanh σb, we have

1
2πi

∮
CR

h(α) dα = 2

⎡
⎣ +∞∑

m=−2

κ2
m sinh κmH
K′(κm, ω)

ζ 2
m(k)

σm tan σmb
+

+∞∑
n=0

α2n sinhα2nH
K(α2n, ω)

ζ 2(α2n)

b(1 + δn0)

⎤
⎦ ,

(4.4)
where αn = (k2 + n2π2/4b2)1/2. When R → +∞, |h(α)| ∼ O(1/R4) for clamped–clamped
edges and |h(α)| ∼ O(1/R2) for free–free edges. Thus the integral in (4.4) tends to zero.
Then, using (A4) and (3.23a), we further obtain

FS(K, ω) = −2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm

ζ 2
m(k)

tan σmb
= 4ρω2

b

+∞∑
n=0

α2n sinhα2nH
K(α2n, ω)

ζ 2(α2n)

(1 + δn0)
.

(4.5)
Similarly, FA(K, ω) in (3.23b) can be expressed as

FA(K, ω) = 2
+∞∑

m=−2

κ2
m tanh2 κmH

Qmσm

ζ 2
m(k)

cot σmb
= 4ρω2

b

+∞∑
n=0

α2n+1 sinhα2n+1H
K(α2n+1, ω)

ζ 2(α2n+1).

(4.6)
The system of linear equations in (2.24) in Ren et al. (2020) can be split into those
for symmetric and antisymmetric modes, respectively. Noticing that coefficient Δn in
(2.20a) in their work can be linked to K(α, ω) in (3.7) here asΔn = −16b4 K(αn, ω)/n4π4

(n > 0), through some algebra, it can be shown that det(A) = 0 in (2.25) of Ren et al.
(2020) gives the same series as those on the right-hand sides of (4.5) and (4.6). The above
analysis shows that the two different methods give the same dispersion relation, while the
present formulations in (4.5) and (4.6) are in a much neater and direct forms. It should also
be noted that the other edge conditions can be dealt with in a similar way.

941 A13-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.284


Y.F. Yang, G.X. Wu and K. Ren

20

15

10

5

0 1 2 3 4

15

10

5

0 1 2 3 4

FS (k, ω) = 0

FA (k, ω) = 0

Ren et al. (2020)

kH kH

ω4

ω3

ω2

ω1ω0

ω4

ω3

ω2ω1ω0

ω
(H

/g
)1

/2

(a) (b)

Figure 2. Dispersion relations of the ice-covered channel: (a) clamped–clamped edges; (b) free–free edges.
Here, b/H = 2 and hi/H = 1/50.
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Figure 3. Natural frequencies of the ice-covered channel under free–free edges: (a) variation with b at
hi/H = 1/50; (b) variation with hi at b/H = 2.

4.2. The natural frequencies at different channel widths and ice sheet thickness

It may also be interesting to investigate how the natural frequencies ω(i)c vary with the
channel width b and ice sheet thickness hi. As an example, ω(i)c (i = 1, 2, 3, 4) under
free–free edges are given in figure 3. It can be seen from figure 3(a) that all the ω(i)c

decrease as b increases. At sufficiently large values of b/H, all the ω(i)c (i = 1, 2, 3, 4) will
tend to zero. The natural frequencies at different hi are given in figure 3(b), and values
at hi/H = 0 correspond to those of the free surface channel. It can be observed that ω(1)c

is hardly affected by hi. The effect of ice sheet thickness on ω(i)c becomes more apparent
when i increases.

4.3. Forces on a cylinder standing at the centre of the channel
Hydroelastic wave diffraction by a vertical circular cylinder standing at the centre of the
channel is considered in this subsection. Since the problem is symmetric about y = 0, we
have bn,m = b−n,m in (3.37). In such a case, the infinite series in (3.41)–(3.43) about n and
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n′ need to be considered only from 0 to +∞. Also, the coefficients Cn,n′,m and Dn,n′,m,m′
given in (3.35) can be further simplified as

Cn,n′,m = (−1)n + (−1)n
′

Qm(1 + δn0)(1 + δn′0)

∫ +∞

0

e−iσmb cos nγm cos n′γm

σm sin σmb
dk, (4.7a)

Dn,n′,m,m′ = 2[(−1)n + (−1)n
′
]

QmQm′(1 + δn0)(1 + δn′0)

∫
L

ImIm′ cos nγm cos n′γm′

FS(k, ω) sin σmb sin σm′b
dk. (4.7b)

As expected, FA(k, ω) does not appear here. Its singularities have no effect
or there will be no wave antisymmetric about y = 0. Furthermore, noticing
that C2n,2n′+1,m = C2n+1,2n′,m = D2n,2n′+1,m,m′ = D2n+1,2n′,m,m′ (n, n′ = 0, 1, 2, . . .), the
unknown coefficients b2n,m, c2n and d2n in (3.41)–(3.43) are completely independent of
b2n+1,m, c2n+1 and d2n+1.

We first investigate the hydrodynamic forces and vertical shear force at different channel
widths when the ice sheet is clamped to the surface of the vertical cylinder. The numerical
results for wave forces are shown in figure 4, where the black solid lines correspond to
forces on a single vertical circular cylinder standing in the unbounded ocean with an ice
cover, which is calculated using the method in Ren et al. (2020) (as below). Here, F∗

x is
defined as F∗

x = Fx/ρga2A; similarly, M∗
y = My/ρga3A and V∗ = V/ρgaA. When b/a =

5, it can be seen that F∗
x values in two different sets of edge conditions along the tank walls

are both significantly different from that in the unbounded ice-covered ocean. In particular,
as shown in figure 4(b) for channels with clamped–clamped edges, a couple of peaks can
be observed in the curve of F∗

x versus κ0a. By contrast, there is only one obvious peak
in the curve given in figure 4(a) for free–free edges. As b increases, the peaks decrease
and gradually become less visible. The curve of F∗

x versus κ0a generally shows a variation
trend similar to that in the unbounded ocean but with a continuous fluctuation, where the
amplitude of fluctuation becomes smaller as b increases. When b is sufficiently large, the
results in both cases tend to that in the unbounded ice-covered ocean, which shows that
the effects from two side walls and edge conditions at y = ±b on the hydrodynamic forces
become very insignificant. In addition to F∗

x , similar phenomena can also be observed in
the curve of M∗

y shown in figure 5.
The results for the vertical shear forces on the cylinder are shown in figure 6. It may seem

to be a surprise that the variation trend of V∗ versus κ0a is quite different from that of F∗
x

and M∗
y given in figures 4 and 5. As κ0a increases, V∗ in the unbounded ice-covered ocean

varies smoothly. However, the results in the ice-covered channel oscillate persistently. In
particular, rapid changes can be observed when κ0a is close to one of natural frequencies of
the channel. This rapid change always exists even when b is sufficiently large, which means
that the results for V∗ will always be different from those in the unbounded ice-covered
ocean. The difference between two neighbouring natural frequencies becomes smaller
when b is larger. Correspondingly, more oscillatory behaviour of the curves at larger b
can be observed in figure 6.

To explain the differences between the behaviours of F∗
x (M

∗
y ) and V∗ when κ0a is near

a natural frequency, we may have a closer look at the behaviour of coefficient Dn,n′,m,m′
in (4.7b), which is from the Green function in (3.34). It can be seen from (3.46) and
(3.49) that F∗

x (M
∗
y ) is related to b±1,m, c±1 and d±1, while V∗ is related to d0. As

mentioned above, the system of linear equations for b2n,m, c2n and d2n is independent of
that of b2n+1,m, c2n+1 and d2n+1. Thus F∗

x (M
∗
y ) is in fact related only to D2n+1,2n′+1,m,m′

(n, n′ = 0, 1, 2 . . .), while V∗ is related only to D2n,2n′,m,m′ . From (4.7b), when ω = ω
(2i)
c
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Figure 4. Wave forces in the x-direction on the cylinder at the centre of the channel with different widths, when
the ice sheet is clamped to the cylinder: (a) channel with free–free edges; (b) channel with clamped–clamped
edges. Here, H/a = 5 and hi/a = 1/10.
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Figure 5. Moments in the y-direction on the cylinder at the centre of the channel with different widths, when
the ice sheet is clamped to the cylinder: (a) channel with free–free edges; (b) channel with clamped–clamped
edges. Here, H/a = 5 and hi/a = 1/10.

(i = 1, 2, 3 . . .), the residue term of D2n+1,2n′+1,m,m′ corresponding to wave component
k = 0 gives

lim
k→0

Im(k) Im′(k) cos(2n + 1)γm cos(2n′ + 1)γm′

F ′
S(k, ω

(2i)
c ) sin σmb sin σm′b

= 0, (4.8)

where γm → π/2 when k → 0, which can be seen from (3.32a,b), and F ′
S(k, ω

(2i)
c ) ∼

O(k) Thus D2n+1,2n′+1,m,m′ is bounded at natural frequencies. However, for the residue
term of D2n,2n′,m,m′ , we obtain

lim
k→0

Im(k) Im′(k) cos 2nγm cos 2n′γm′

F ′
S(k, ω

(2i)
c ) sin σmb sin σm′b

= (−1)n+n′
Im(0) Im′(0)

sin κmb sin κm′b
1

F ′
S(0, ω

(2i)
c )

→ ∞. (4.9)

This indicates that D2n,2n′,m,m′ are singular at natural frequencies. Since the behaviours of
D2n,2n′,m,m′ and D2n+1,2n′+1,m,m′ at natural frequencies are different, one is regular and the
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Figure 6. Vertical shear forces on the cylinder at the centre of the channel with different widths, when the ice
sheet is clamped to the cylinder: (a) channel with free–free edges; (b) channel with clamped–clamped edges.
Here, H/a = 5 and hi/a = 1/10.

b/a = 10 b/a = 20

i ω
(2i)
c (H/g)1/2 κ0a V∗ ω

(2i)
c (H/g)1/2 κ0a V∗

1 1.267 0.289 2.389 0.720 0.156 0.270
2 3.697 0.568 12.685 1.321 0.300 3.158
3 9.965 0.879 17.550 2.298 0.444 8.372
4 20.775 1.193 21.444 4.119 0.598 12.668
5 36.638 1.506 17.969 6.941 0.754 15.592
6 58.003 1.820 12.025 10.842 0.911 18.762

Table 1. Vertical shear forces at natural frequencies when the ice sheet is clamped to the surface of cylinder
but free–free on two side walls. (Here, H/a = 5 and hi/a = 1/10).

other singular, the behaviours of F∗
x (M

∗
y ) and V∗ are also not expected to be the same. On

the other hand, as shown in § 3.5, although singular terms existing in the original boundary
integral equation, it can be modified into a regular equation and the solution φ is still finite
when Γ /= 0. For this case, it is found that Γ is indeed non-zero over the full range of
κ0a in figure 6. Thus at the natural frequencies, we may use the modified equation given
in (3.58) to find the vertical shear force V∗. The results at several natural frequencies for
b/a = 10 and 20 are presented in table 1. It is also interesting to see the effect of the edge
conditions at the channel walls on V∗. When the channel is relatively narrow or b/a = 5
and 10, significant differences in the curves of V∗ can be observed in figures 6(a) and 6(b),
which indicates that the effect of edge conditions at the channel walls on V∗ is very strong.
As b increases, this effect gradually becomes weaker, and the curves in these two cases
show a closer trend.

We next consider the cases with different combinations of ice edge conditions on the
channel walls and on the cylinder surface. The results for F∗

x and M∗
y are given in figure 7

as an example. It can be observed that the curves of wave force and moment vary relatively
smoothly when the ice edge is free both on the cylinder surface and on the two channel
walls, while there are obvious peaks in the curves of the other three cases. When κ0a is
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Figure 7. Wave forces and moments on the cylinder under different types of edge conditions: (a) wave forces;
(b) moments. Here, X and Y in X-Y refer the edge conditions on the channel walls and cylinder, respectively,
where F means free edge, and C means clamped edge. Here, b/a = 5, H/a = 5 and hi/a = 1/10.

small, the influence of edge conditions on F∗
x and M∗

y is relatively weak, while it is very
strong when κ0a is relatively large.

We then consider the hydrodynamic forces at different ice sheet thicknesses. A
comparison with the hydrodynamic force in the free surface case is given in figure 8,
where the corresponding results are calculated through the procedures given in Linton
et al. (1992). In figure 8(a), the ice edge is free at all boundaries. When hi/a = 1/10,
some difference from the result of the free surface case can be observed. As hi decreases,
the difference is very much reduced. When hi/a = 1/1000, the difference between the
two curves becomes hardly visible. By contrast, the results in figure 8(b) for the ice edges
clamped into all boundaries are quite different. Here, F∗

x is significantly influenced by
hi. There are obvious local peaks in the curve of hi/a = 1/10. These peaks decrease or
become hardly visible when hi/a = 1/100 and 1/1000. Furthermore, even when the ice
sheet becomes very thin at hi/a = 1/1000, there are still some visible differences between
the results of this case and the free surface case. This indicates that the cases with free
edges may resemble the free surface case better when the ice sheet thickness decreases. A
similar phenomenon is also reported by Ren et al. (2020) for the wave diffraction problem
of multiple circular cylinders in the unbounded ocean with ice cover.

4.4. Forces on a cylinder standing in off-centre positions of the channel
Computations are also carried out to investigate the forces on a vertical cylinder standing in
off-centre positions of the channel. In such a case, both the poles caused by the symmetric
modes or FS(k, ω) = 0, and the antisymmetric modes or FA(k, ω) = 0, will exist in the
coefficients Dn,n′,m,m′ given in (3.35b). Here, we may give an example of the case when
the ice sheet is free along two side walls and is clamped into the surface of the cylinder.
The numerical results for hydrodynamic forces are presented in figure 9. In figure 9(a),
the curves of F∗

x versus κ0a show small differences only at yc/a = 0, 2 and 4. However,
if the cylinder moves to the channel wall further, or at yc = 6 and 8, F∗

x at some κ0a is
significantly increased. Similar to the case at yc = 0, F∗

x still varies relatively smoothly
when yc /= 0. By contrast, obvious local peaks and rapid changes can be observed in
the curves of F∗

y shown in figure 9(b) when κ0a approaches the values corresponding
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Figure 8. Wave forces in the x-direction on the cylinder at the centre of the channel with different thicknesses
of the ice sheet: (a) edge conditions FF-F; (b) edge conditions CC-C. Here, b/a = 5 and H/a = 5.

to the natural frequencies of the channel. A similar phenomenon also occurs in the
vertical shear force provided in figure 10. Compared with the results at yc = 0, since both
ω
(2i)
c and ω(2i−1)

c (i = 1, 2, 3, . . .) will affect V∗, more peaks in V∗ can be seen. In fact,
if we define b±

n,m = bn,m ± (−1)nb−n,m, c±
n = cn ∓ (−1)nc−n and d±

n = dn ∓ (−1)nd−n
(n = 0, 1, 2, . . .), the matrix equation in (3.41)–(3.43) for bn,m, cn and dn can be further
converted into two independent submatrix equations. The one for b+

n,m, c+
n and d+

n has
singular terms at natural frequencies, and it is related to F∗

y and V∗. The other, for b−
n,m, c−

n
and d−

n , is regular and related to F∗
x . Thus different behaviours are observed from F∗

x and
F∗

y & V∗ in figures 9 and 10 when ω is near a natural frequency.

4.5. Wave patterns and principal strain distributions in the ice-covered channel
The wave elevation or ice sheet deflection can be obtained from η = −(i/ω)(∂φ/∂z)|z=0,
together with (3.44). We have

η(r, θ)=− π

2ω

+∞∑
n=−∞

+∞∑
m=−2

bn,mκm tanh κmH
Qm

[
H (1)

n (κmr)
Jn(κmr)

− H (1)′
n (κma)
J ′

n(κma)

]
Jn(κmr) e−inθ

+ iL
ρω3

+∞∑
n=−∞

+∞∑
m=−2

(κ2
mcn + dn)κm tanh2 κmH

Qm

Jn(κmr)
J ′

n(κma)
einθ . (4.10)

An example of |η|/A at κ0a = 0.8 under four different combinations of edge conditions is
provided in figure 11, where the vertical cylinder is located at the centre of the channel.
It can be seen that the wave pattern is affected significantly by the edge conditions. In
figure 11(a), when the ice edges are free at all boundaries, the maximum amplitude may
occur at the front surface of the vertical cylinder or at two side walls. In figure 11(b), if the
ice sheet is clamped to the cylinder, then the wave amplitude on its surface will be zero,
and then the maximum amplitude may occur at the region in front of the cylinder or at
two side walls. By contrast, when the ice edges are clamped to two channel walls, as given
in figures 11(c) and 11(d), the maximum wave amplitude may appear only on the front
surface or front region of the cylinder.
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(a) (b)

Figure 9. Wave forces on the cylinder at various off-centre positions of the channel, for edge conditions
FF-C: (a) force in the x-direction; (b) force in the y-direction. Here, b/a = 10, H/a = 5 and hi/a = 1/10.

70

60

50

40

30
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0 0.3 0.6 0.9 1.2 1.5
κ0a

V ∗

yc/a = 0

yc/a = 2

yc/a = 4

yc/a = 6

yc/a = 8

Figure 10. Vertical shear forces on the cylinder at various off-centre positions of the channel, for edge
conditions FF-C. Here, b/a = 10, H/a = 5 and hi/a = 1/10.

The strain of the ice sheet is also a very important physical parameter related to the
fracture and breakup of the ice. The principal strain ε can be calculated by determining
the eigenvalues of the strain tensor matrix (Fung 1977)

ε = hi

2

[
εrr εrθ
εrθ εθθ

]
= hi

2

⎡
⎢⎢⎣

∂2W
∂r2

∂2W
r ∂r ∂θ

− ∂W
r2 ∂θ

∂2W
r ∂r ∂θ

− ∂W
r2 ∂θ

∂W
r ∂r

+ ∂2W
r2 ∂θ2

⎤
⎥⎥⎦ , (4.11)

where the ice sheet deflection W(r, θ, t) can be expressed as

W(r, θ, t) = Re{η(r, θ) eiωt} = Re{η(r, θ)} cosωt − Im{η(r, θ)} sinωt. (4.12)
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Wave direction

Wave direction Wave direction

Wave direction

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

(a)
(b)

(c) (d)

Figure 11. Wave amplitude |η|/A in the ice-covered channel at κ0a = 0.8 under different edge conditions: (a)
FF-F; (b) FF-C; (c) CC-F; (d) CC-C. Here, b/a = 10, H/a = 5 and hi/a = 1/10.

The eigenvalues ς1,2 of the strain tensor matrix ε can be obtained as

ς1,2 = hi

4

{(
∂2W
∂r2 + ∂W

r ∂r
+ ∂2W

r2 ∂θ2

)
±
[(
∂2W
∂r2 − ∂W

r ∂r
− ∂2W

r2 ∂θ2

)2

+ 4
(
∂2W

r ∂r ∂θ
− ∂W

r2 ∂θ

)2]1/2
⎫⎬
⎭ . (4.13)

Substituting (4.12) and (4.10) into (4.13), the maximum principal strain εmax at a given
location can be found as the maximum value of |ς1,2| as t varies from 0 to 2π/ω. The
distributions of εmax at κ0a = 0.8 under four different combinations of edge conditions
are given in figure 12. Compared with figure 11, the position of the largest value of εmax is
different from that of |η|/A. In figures 12(b) and 12(d), when the ice sheet is clamped to
the surface of the cylinder, the largest εmax is at the front surface of the vertical cylinder.
However, when the ice sheet is free on the cylinder surface, the largest εmax is on the left
and right sides of the cylinder, as shown in figures 12(a) and 12(c).

5. Conclusions

The problem of hydroelastic wave diffraction by a vertical circular cylinder standing in
an ice-covered channel has been studied analytically. The solution procedure is applicable
to various ice edge conditions and their combinations. The Green function satisfying all
the boundary conditions apart from that on the body surface is first derived based on
the method of eigenfunction expansion in the vertical direction. With the help of the
Green function, a general source distribution formula for surface-piercing structures with
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Figure 12. Distribution of the maximum principal strain εmax in the ice-covered channel at κ0a = 0.8
under different edge conditions: (a) FF-F; (b) FF-C; (c) CC-F; (d) CC-C. Here, b/a = 10, H/a = 5 and
hi/a = 1/10.

arbitrary shapes in fluid with an ice cover is established, which involves integrals over the
body surface and its intersection with the ice sheet. If the structure is a vertical cylinder
mounted to the bottom of the channel and has a constant cross-section along the depth
direction, then the source distribution formula can be simplified further by using an inner
product. Based on this formula, the velocity potential due to a vertical circular cylinder is
expressed explicitly as an infinite series with unknown coefficients, which can be solved
from the impermeable condition on the body surface and the conditions at the ice edge
contacting the body surface.

From the solution of the Green function, it is confirmed that the dispersion relation
obtained is identical mathematically to that in Ren et al. (2020), but the formulation in the
present work is much neater. The natural frequency of the ice-covered channel is defined
in a similar way to that of free surface channels. There are an infinite number of natural
frequencies, and at any one of them, the Green function will be singular, which further
leads to a singular term in the boundary integral equation of the velocity potential due
to a vertical circular cylinder. To treat this, a revised non-singular matrix equation with
a parameter Γ is established. The velocity potential will still be bounded at the natural
frequencies when Γ /= 0.
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Hydroelastic wave diffraction by a vertical circular cylinder

From the results of the hydroelastic wave diffraction by a vertical circular cylinder, it
is found that both the hydrodynamic forces F∗

x , F∗
y and the vertical shear force V∗ on the

cylinder are all significantly affected by the channel width b and ice sheet thickness hi, as
well as the edge conditions on the body surface and channel walls. The numerical results
are also compared with those in the unbounded ocean with an ice cover and in the free
surface channel. It is observed that F∗

x will tend to the result in the bounded ice-covered
ocean when b → +∞, and tend to the result in the free surface channel when hi → 0. The
behaviour of F∗

x is different from that of F∗
y and V∗ near the natural frequency; F∗

x varies
relatively smoothly when κ0a is near the natural frequency, because the singularity of the
Green function at the natural frequency does not affect the coefficient in the equation of
F∗

x . Obvious peaks and sudden changes near the natural frequencies can be observed in the
curves of F∗

y versus κ0a, and V∗ versus κ0a, as the singularity of the Green function does
affect the coefficients in the equation of F∗

y and V∗. However, F∗
y and V∗ are not singular

at the natural frequency when Γ /= 0. The sudden change of V∗ always exists even when b
is very large, which makes the curves of V∗ versus κ0a always different from those in the
unbounded ocean.

The present work has focused a single vertical circular cylinder. The formulation can
be extended easily to multiple vertical circular cylinders if Graf’s addition theorem for
the Bessel functions is used, as in Ren et al. (2018a). For a vertical cylinder of arbitrary
cross-section, the vertical modes for the source distribution can be still used, while
numerical discretization can be used in the circumferential direction. For a body of a
general shape, the boundary element method can be used based on the Green function
derived in the work.

Acknowledgements. Y.F.Y. is grateful to Lloyd’s Register Foundation and China Scholarships Council for
sponsoring his PhD study.

Declaration of interests. The authors report no conflict of interest.

Funding. The work is supported by Lloyd’s Register Foundation. The LRF helps to protect life and property
by supporting engineering-related education, public engagement and the application of research.

Author ORCIDs.
G.X. Wu https://orcid.org/0000-0002-3652-1970;
K. Ren https://orcid.org/0000-0002-9640-0521.

Appendix A. The series form of the Green function in unbounded problems

To convert the integral in (3.5) into a summation, we may consider the integration

IR =
∮
ΓR

e−iσ |y−y0| f (α, z>, z<)
α K(α, ω)

dσ, (A1)

where the integration loop ΓR is first along the real axis from (−R, 0) to (R, 0), and then
clockwise along a semicircle of radius R centred at the origin. The integration path at the
real axis should pass under (over) the poles at σ = −(κ2

0 − k2)1/2 (σ = +(κ2
0 − k2)1/2)

when κ0 > k. When R → +∞, the integrand decays exponentially, thus only the integral
along the real axis remains in IR, or

lim
R→+∞

IR =
∫ +∞

−∞
e−iσ |y−y0| f (α, z>, z<)

α K(α, ω)
dσ. (A2)
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Applying the residue theorem to (A1) and noticing the additional poles in the complex
plane where K(α, ω) = 0, we have

lim
R→+∞

∮
ΓR

e−iσ |y−y0| f (α, z>, z<)
α K(α, ω)

dσ = −2πi
+∞∑

m=−2

e−iσm|y−y0| f (−κm, z>, z<)
σm K′(−κm, ω)

, (A3)

where the prime denotes the derivative with respect to α. Using

K′(κm, ω) = 2ρω2 cosh2 κmH
sinh κmH

Qm, (A4a)

f (κm, z>, z<) = ρω2 cosh κm(z + H) cosh κm(z0 + H)
sinh κmH

, (A4b)

we have

∫ +∞

−∞
e−iσ |y−y0| f (α, z>, z<)

α K(α, ω)
dσ = −2πi

+∞∑
m=−2

e−iσm|y−y0| ψm(z) ψm(z0)

2σmQm
, (A5)

where ψm(z) and Qm are defined in (3.9) and (3.10), respectively. This shows that (3.5) is
identical to (3.8).

Appendix B. Elements of the matrix equation in (3.20)

The elements of matrix Aij and column Bj (i, j = 1, 2, 3, 4) in (3.20) under different edges
are given below. For clamped–clamped edges, we have

A1j = L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qmσm
×
[
−(κ

2
mδj1 + δj2)

tan σmb
+ (κ2

mδj3 + δj4)

cot σmb

]
, (B1a)

A2j = L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qmσm
×
[
−(κ

2
mδj1 + δj2)

tan σmb
− (κ2

mδj3 + δj4)

cot σmb

]
, (B1b)

A3j = L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
× [κ2

m(δj1 + δj3)+ (δj2 + δj4)], (B1c)

A4j = L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
× [κ2

m(δj3 − δj1)+ (δj4 − δj2)], (B1d)

Bj = −
+∞∑

m=−2

ψm(z0) κm tanh κmH
Qmσm sin 2σmb

× [δj1 cos σm( y0 + b)+ δj2 cos σm( y0 − b)]. (B2)
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For free–free edges, we obtain

A1j = L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×
(
σm + νk2

σm

)[
(κ2

mδj1 + δj2)

tan σmb
− (κ2

mδj3 + δj4)

cot σmb

]
,

(B3a)

A2j = L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
×
(
σm + νk2

σm

)[
(κ2

mδj1 + δj2)

tan σmb
+ (κ2

mδj3 + δj4)

cot σmb

]
,

(B3b)

A3j = − L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
× [σ 2

m + (2 − ν)k2][κ2
m(δj1 + δj3)+ (δj2 + δj4)],

(B3c)

A4j = − L
ρω2

+∞∑
m=−2

κ2
m tanh2 κmH

Qm
× [σ 2

m + (2 − ν)k2][κ2
m(δj3 − δj1)+ (δj4 − δj2)],

(B3d)

Bj =
+∞∑

m=−2

ψm(z0) κm tanh κmH
Qm sin 2σmb

×
(
σm + νk2

σm

)
[δj1 cos σm( y0 + b)+δj2 cos σm( y0 − b)].

(B4)

Using (Evans & Porter 2003) gives

L
ρω2

+∞∑
m=−2

κn
m tanh2 κmH

Qm
=
⎧⎨
⎩

0, n = 2,
1, n = 4,
0, n = 6,

(B5)

and A3j and A4j (j = 1, 2, 3, 4) can be simplified further. For clamped–clamped edges, this
gives

A3j = δj1 + δj3 and A4j = −δj1 + δj3, (B6a,b)

while for free–free edges, we have

A3j = (ν − 1)k2(δj1 + δj3)− (δj2 + δj4) and A4j = (ν − 1)k2(δj3 − δj1)− (δj4 − δj2).
(B7a,b)

From (B1)–(B4), (B6a,b) and (B7a,b), βj can be solved as

βj = −δj2

2A12

+∞∑
m=−2

ψm(z0) κm tanh κmH
Qmσm

cos σmy0

sin σmb
, j = 1, 2,

βj = δj4

2A14

+∞∑
m=−2

ψm(z0) κm tanh κmH
Qmσm

sin σmy0

cos σmb
, j = 3, 4,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B8)
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for clamped–clamped edges, while

βj = δj1 + δj2(ν − 1)k2

2[A11 + (ν − 1)k2A12]

+∞∑
m=−2

ψm(z0) (σ
2
m + νk2)κm tanh κmH

Qmσm

cos σmy0

sin σmb
, j = 1, 2,

βj = −δj3 − δj4(ν − 1)k2

2[A13 + (ν − 1)k2A14]

+∞∑
m=−2

ψm(z0) (σ
2
m + νk2)κm tanh κmH

Qmσm

sin σmy0

cos σmb
, j = 3, 4,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B9)
for free–free edges.

Appendix C. The source distribution formula for the velocity potential

Applying Green’s second identity to the diffracted velocity potential component φD and
the Green function G throughout the fluid domain, we have

2πφD(x0, y0, z0) =
‹

S

(
φD

∂G
∂n

− G
∂φD

∂n

)
dS, (C1)

where S is comprised of the bottom of the channel SH , two vertical side walls SW , the ice
sheet SI , two vertical far field boundaries S±∞, and the surface of the body SB. By using
a similar procedure given in Yang et al. (2021), only the integrals over SB and along the
intersection line L of the ice sheet with the body surface need to be kept on the right-hand
side, or

2πφD(x0, y0, z0) = L
ρω2

×
∮
L

[
∂G
∂z

∂

∂n

(
∇2 ∂φD

∂z

)
− ∂2G
∂z ∂n

(
∇2 ∂φD

∂z

)
− ∂φD

∂z
∂

∂n

(
∇2 ∂G

∂z

)

+ ∂2φD

∂z ∂n

(
∇2 ∂G

∂z

)]
dl

+
∫∫

SB

(
φD

∂G
∂n

− G
∂φD

∂n

)
dS. (C2)

Using the relationship ∇2 = −∂2/∂z2 obtained from the Laplace equation, (C2) can be
written as

2πφD(x0, y0, z0) =− L
ρω2

∮
L

[
∂G
∂z

∂4φD

∂n ∂z3 − ∂2G
∂n ∂z

∂3φD

∂z3 − ∂φD

∂z
∂4G
∂n ∂z3 + ∂

2φD

∂n ∂z
∂3G
∂z3

]
dl

+
∫∫

SB

(
φD

∂G
∂n

− G
∂φD

∂n

)
dS. (C3)

We may introduce a velocity potential ϕ(x, y, z) defined inside the vertical cylinder. On
z = 0, ϕ satisfies the ice sheet boundary condition in (2.4). We also have

ϕ = φD on SB. (C4)

At the intersection line L, the edge conditions can be expressed as

∂ϕ

∂z
= ∂φD

∂z
and

∂3ϕ

∂z3 = ∂3φD

∂z3 , at L. (C5)
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Applying Green’s second identity to ϕ and G in the inner domain, if the source point
(x0, y0, z0) is in the outer domain, then we obtain

0 = − L
ρω2

∮
L

[
∂G
∂z

∂4ϕ

∂n ∂z3 − ∂2G
∂n ∂z

∂3ϕ

∂z3 − ∂ϕ

∂z
∂4G
∂n ∂z3 + ∂2ϕ

∂n ∂z
∂3G
∂z3

]
dl

+
∫∫

SB

(
ϕ
∂G
∂n

− G
∂ϕ

∂n

)
dS. (C6)

Subtracting (C6) from (C3) and using conditions in (C4) and (C5), we obtain

φD(x0, y0, z0) = L
ρω2

∮
L

(
∂G
∂z

∂3Ψ

∂z3 + ∂3G
∂z3

∂Ψ

∂z

)
dl +

∫∫
SB

GΨ dS, (C7)

where source strength Ψ (x, y, z) on the body surface is defined as

Ψ (x, y, z) = 1
2π

[
∂ϕ(x, y, z)

∂n
− ∂φD(x, y, z)

∂n

]
. (C8)

If the body is a vertical cylinder mounted to the bottom and with a homogeneous section
along the z-direction, then we may apply the orthogonal inner product in (3.13) to (C7)
and we obtain

φD(x0, y0, z0) =
∮
L
〈G(x, y, z; x0, y0, z0), Ψ (x, y, z)〉 dl. (C9)

REFERENCES

ABRAMOWITZ, M. & STEGUN, I.A. 1970 Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, vol. 55. US Government Printing Office.

BATYAEV, E.A. & KHABAKHPASHEVA, T.I. 2015 Hydroelastic waves in a channel covered with a free ice
sheet. Fluid Dyn. 50 (6), 775–788.
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