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WEAK AMENABILITY OF GROUP ALGEBRAS
OF LOCALLY COMPACT GROUPS

M. DESPIC AND F. GHAHRAMANI

ABSTRACT. A new proof is given for the weak amenability of the group algebras of
locally compact groups.

Let L'(G) be the group algebra of a locally compact group G. In a recent paper [7]
B. E. Johnson proved that L!(G) is weakly amenable (see also [5], [6] and [3] for ear-
lier partial results). In this paper we give a different proof of Johnson’s result, which
simplifies the technicalities in [7] but utilizes the lattice structure of L’(G).

Recall that if A is a Banach algebra, then its dual A* can be made into a Banach A-
module, with module actions defined by

(f - a,b) = (f,ab),
(a-f,b) = (f,ba), (f €A% a,bce€A).

A linear map D: A — A* is a derivation if D(ab) = D(a) - b+ a - D(b) (a,b € A). For
example, if ¢ € A*, then the map A,:a+— a- ¢ — ¢ - ais a derivation. Derivations A,
are called inner. A Banach algebra A is weakly amenable if every continuous derivation
from A into A* is inner [1].

In our proof of the weak amenability of L'(G) we make use of the fact that L>(G) is
also an M(G)-module, where the module actions are defined by

{f - m,a) ={f,uxa),
(1-f.a)=(f,axp),
(f € L®(G), 1 € M(G),a € L'(G)).

We say that a net (1;) C M(G) converges to u € M(G) in the strong operator (so)
topology if for every f € L'(G),

pixf— pxf
and

frpi—=f*p
in the norm topology of L'(G).

The following lemma is standard [cf. 4, Proposition 1.1]. We include a proof for com-
pleteness. ’
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LEMMA 1. Let D: L{(G) — L®(G) be a continuous derivation. Then:

(a) D has an extension to a continuous derivation D: M(G) — L>(G).

(b) D is continuous when M(G) is equipped with the so-topology and L™(G) is
equipped with the weak™*-topology.

PROOE. Letu € M(G), f € LY(G), and let (ey) be a bounded approximate identity
for L!(G). By Cohen’s factorization theorem, there exist fi,fo € L'(G) such that f =
fi xfo. Now

<D(N * ea)’f> = (D(N * eCl) 'fl’f2>
@) = (D(1 * eq % f1).f2) — (D(f1).fo * 1o * €a)
— (D(u * i), f2) — (D), fo * w),

so that the weak*-lim, D(u * e,) exists in L*(G).
Define
D(p) = weak™ -lim D(u * eg).
(o4

It follows from (1) that
D(u *f1) = u- D(fi) + D(p) - fi,

and similar calculations then show that D is a derivation. Finally, the so-weak* continuity
of D follows from:

(D().f) = (D(u * f1).f2) — (D). fo * ).
THEOREM 1. The group algebra L'(G) is weakly amenable.

PROOE. By Lemma 1, it suffices to show that a continuous derivation D from M(G)
into L>(G) is inner. For ¢ € G, let §, be the point mass at . Then for any x € G.

) (5,-1 -D(@y) = 5,—1 . D((S,x—l * 61:)
= (Sx—l . [6(tx—l)—l . D(&tx—l)] <oy + 6x—l - D(by).
For ¢ € L*(G), let Re(v) denote the real part of i and let
S = {Re(81 - D@y)) : t € G}.

Then S is a subset of L’(G), the vector lattice of real-valued functions in L*°(G), and
is bounded above by the constant function ||D|| in LY(G). Since L (G) is a complete
vector lattice, ¢1 = sup(S) exists in Lg’(G). Furthermore, it is easily verified that

3) Sup(0,-1 - S 6x) = 0,1 - sup(S) - 6, and
sup(Y + 5) = Y +sup(S), (x € G, v € LY(G)).

Taking sup,; of the real parts in (2), and using (3), we obtain:

@1 =041 @1+ Ox + 0, -Re(D(&X)),
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or equivalently
RC(D((Sx)) =6y 1 — @1 bx,

for all x € G. Similarly, by considering imaginary parts and taking sup,.; in (2), we
obtain a ¢, € Lg°(G) such that

Im(D()) = b: 2~ p2 b

for all x € G. Thus
D(éx)zéx'ﬂo_@'&t xe€G),

where ¢ = @) + iyp,. Since every measure pu in M(G) is the so-limit of a net (y;) with
each p; a linear combination of point masses, Lemma 1(b) gives

Dwy=p-o—¢-u (peMQG),

as required.

NON-AMENABILITY OF M(G). Using arguments of the previous section, it is possible
to show that for every continuous derivation D: M(G) — M(G)*, there exists ¢ € M(G)*
such that
D) =bs-p—p-bx (x€QG).

However, it is no longer possible to deduce that D = A,. At least, this is not the case
when G is a non-discrete, abelian group (see [2]).
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