
JETSTREAM FORMATION THROUGH INELASTIC 
COLLISIONS 

DAVID C. BAXTER AND WILLIAM B. THOMPSON 
University of California, San Diego 

An inelastic collision integral is used in a Boltzmann-type equation for a 
distribution of particles in Kepler orbits. A Fokker-Planck equation is found that 
leads to radial density clustering. 

It has been suggested that in a cloud of grains moving in Kepler orbits in a 
gravitational field, inelastic collisions will cause the grains to form groups 
having similar orbits, called jetstreams (Alfve'n, 1970). One would expect that a 
Jetstream already formed would contract into a tighter Jetstream (Trulsen1) 
because the Jetstream would lose total energy because of the inelasticity of 
collisions, whereas the total angular momentum would be conserved. The 
grains would move toward a circular orbit because circular orbits have the 
lowest energy EQ for a given angular momentum L (fig. 1). We consider the 
question of whether jetstreams will form from an initially smooth distribution 
function. 

Figure l.-A Jetstream can be thought of as a group of particles filling an effective 
potential well V*(r), which arises from gravitational and centrifugal forces. As the 
particles lose energy E in inelastic collisions, they concentrate at the bottom of the 
well, m = mass of a single grain. 
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320 PHYSICAL STUDIES OF MINOR PLANETS 

THE MODEL 

The essential feature of this suggestion is the inelasticity of the collisions. 
Accordingly, we look at a particularly simple model with particularly simple 
inelastic collisions; i.e., perfectly inelastic collisions in which colliding particles 
stick together. We avoid the consideration of accretion of particles by 
considering the final velocities of colliding particles to be arbitrarily close while 
the particles maintain their distinct identities. We consider one species of 
particles moving in coplanar Kepler orbits. 

Particles in an arbitrary distribution of exactly circular orbits would never 
collide, so such a distribution would be stationary (fig. 2). A thermal 
equilibrium distribution 

f(r, 8, p, L)=A exp 
\2m 2mrz -ocL (1) 

yields a radial density distribution 

n(f) =JJffdddpdL 

Afi \2mr (ak 4- m r 2 a \ 

-A(2n)l — e x p ^ ; + ^ - j 
(2) 

which diverges exponentially at r = 0 and r = °°, where r and 6 are polar 
coordinates, p and L are the corresponding canonical momenta (radial and 
angular momentum, respectively), m is the mass of a single grain, and 
<I>(r) = -k/r is the gravitational potential energy. A distribution with minimum 

Circular Orbits Elliptical Orbits 

(noninteracting) 

Elliptical Orbits 

(interacting) 

Figure 2.-Particles in circular orbits (or in nonintersecting orbits with e + 0) experience 
no collisions. Collisional evolution only occurs when these elliptical orbits intersect. 
Kepler orbit: *(r) = -k/r. 
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energy for a given total angular momentum would be one in which a single 
grain, having all the angular momentum and almost no energy, moves very 
slowly in an orbit with very large radius, whereas all the other particles collapse 
into the central body. 

We consider an initial distribution that depends arbitrarily on angular 
momentum, has orbits of generally small eccentricity, and is axisymmetric: 

f0(r, 6, p, L) = A(e0)F(L) exp ~ (3) 
e 0 2 

where 

, , , . p2/2m+L2l2mr2-k/r + mk2l2L2 

e\r, p, L) = £ . , , . . , 
mk2j2L2 

is the spatial eccentricity of an orbit that passes through the point (r, 6, p, L) 
in phase space, and -mk2/2L2 is the energy of a circular orbit with angular 
momentum L. We assume that essentially all of the particles are orbiting in the 
same direction. We use a smooth function F(L) so that 

F ( L + 5 L ) ^ F ( L ) + 5 L f + ^ g (4) 
dL 2 dLL 

(where &L = 0(eZ,)) is a valid expression. We can rewrite equation (3) as 

f0=AF(L)exp[-l5(L)E] (5) 

which has a superficial resemblance to the equation for thermal equilibrium. 
Note that the initial axisymmetry demands that the final state will be 
axisymmetric (i.e., only circular jetstreams are possible). We will also have to 
consider the functions 

h(L) =Jfffdrdddp ^ (27i)2e0
2jAF(L) (6) 

^(eo) = N (fjjffdrdddpdtyl 

= N[fh(L)di]-i (7) 

where k(L) is the density in angular momentum space, ^4(e0) is the 
normalization constant, and TV is the total number of grains. 

https://doi.org/10.1017/S0252921100089168 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100089168


322 PHYSICAL STUDIES OF MINOR PLANETS 

THE CALCULATION 

We wish to find a differential equation that describes the evolution ofh(L), 
the distribution function in angular momentum space. The equation describing 
the time evolution of the phase space distribution function is 

dt dt V dx a 9v J{/'n (8) 

where x is the position vector, v = dx/dt, a = dv/dt, and I(f, f) is the collision 
integral. Our initial distribution/0, being a function of constants of the motion 
only, is stationary in the absence of collisions. We assume that the mean free 
path is long compared with the orbital path so that collisions are treated as a 
perturbation, whence 

/=/o + «/ (9) 

where 5/ is the perturbation distribution caused by collisions. Linearizing 
equation (8) we get 

d±-dK-Uf M 

dt dt -I(Jo>fo) 

The collision integral for completely inelastic collisions is 

(10) 

I(f, f) = ff-teW ft, 0, p, L)f(r, d,p+p',L+L') 

-Ar.e.p- —,L Jf\r,e,p+ —,L+ -J dL'dp' (11) 

where p andL' are relative momenta between colliding grains, 

g = 

1/2 

(12) 

is the relative speed between the two grains, and a(g) is the collisional cross 
section. (Note that a (p, L); (p+p\ L +Z,') collision scatters a particle out of 
the phase space volume element at (r, 0, p, L) and a (p - p'/2, L - Z//2); 
(p + p'/2, L + L'/2) collision scatters two particles into a phase space volume 
element at (r, 8, p, L).) 
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Inserting equation (3) into equation (11), Taylor-expanding F(L), assuming 
that o(g) is a constant, and integrating over p andL', we get 

df o e0
2k 

—(r, 6, p, L) = eQ
2mk - \ -}L— A2 

dt r V mr 

X <EF2(L) + 
H2 

B 
d2F IdF 

dh2 \dL, 

/ 2e2> 

/ e0L\ dF2 

CF2(L)+ JDSL + G — 
\ 2 / dL 

1 / . e0L0 e 0
2 L Q 2 \ d2F2 

2 \ 2 A dL2 

+ - f ^ 5 L 2 + # S L — + J° 

2Z,n
2\ IdF^ e 0 ^ 0 

i d i , 
exp l -

V 
(13) 

where SZ, = Z, - L Q ; L 0
= Vmfcr is the angular momentum of the circular orbit 

at radius r; E and B are constants; and C, D, G, N, J, K, M, N, and P are 
polynomials in e/e0 with coefficients of order unity. The expressions e0

2mk 
and yeQ

2k/mr can be thought of as effective available relative momentum 
space and mean relative velocity, respectively. To find 

j, - fin*"* • iff**®*** °4) 

we transform (r, p) to (e2, x) where x is the orientation of the major axis of 
the ellipse through the point (r, 9, p, L) in phase space: 

L2 

r = — [ l + ecos(0- x)]"1 

mk 

mk 
p= — e sin (6 - \) 

(15) 
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The Jacobian is 

90-. P) L 
——— =- - [ l + e c o s ( 0 - X ) r 2 

3(e2,x) 2 

so 

dh L C de2dd df 
— = 2 T T - / — 
dt 2 J (l + ecos0)2 rfr 

= - 2TreQ2mka 
mrn 2 

) „ e0L dF2 e0
2L2 

X<aF2(L)+ —b — + 
2 dL 8 

c/2F2 / dF) 

dL2 \dL 
(16) 

where a, b, c, and d are polynomials in en. Because the total number of 
particles and the total angular momentum are conserved, we have 

/

dh f d 

— dL=0 I L — h(L)dL=0 (17) 
dt J dt with the result that 

a = b=0 

therefore 

dh e0
4 d2 

— =- TTe[)
2m2k2aerik — c A2F2 

dt ° ° 8 dL2 

It can be shown that c > 0. Using equation (6), we find that 

dh e0
3m2fc3a d2 (h2 

dt 327T3 dL2\L2 

(18) 

(19) 

(20) 

CONCLUSION AND INTERPRETATION 

Equation (20) looks something like a diffusion equation with a negative 
diffusion coefficient. Thus h(L) grows at maxima of L~2h2(L) and decreases 
where L~2h2(L) is at a minimum as shown in figure 3(a). Note that this 
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t t 
h(L) 
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Figure 3.-(a) Initial smooth distribution function with local maxima separated by 
approximately CQL. (b) A distribution function in which most of the particles are in 
groups, separated in angular momentum by about e^L. 

equation will never allow h(L) to become negative. The fastest growth is 
experienced by the narrowest peaks. These fine scale peaks eventually 
dominate the distribution function, and the particles concentrate at the angular 
momenta where the narrowest peaks were originally, as in figure 3(b). We 
initially used a distribution function that was smooth on a scale length e ^ 
(i.e., initial peaks in F(L) and, consequently, in h(L) and h2(L) were separated 
in angular momentum by distances e ^ ) . Because e0 is small compared to 
unity, L is slowly varying by comparison and peaks inL~2h2(L) are separated 
by €QL. Thus grains concentrate in orbits separated in angular momentum by 
€QL; these jetstreams must be circular because of the initial axisymmetry of 
our distribution. As the grains lose energy because of inelastic collisions, the 
orbits themselves become more circular. 

A finer grain distribution function would have finer scale peaks, but our 
result would not necessarily apply in that case because the calculation 
depended critically on the Taylor expansion of the original distribution. The 
fine scale peaks might evolve into distinct subjetstreams, or they might merge 
into a single Jetstream. 

Now consider what effect this has on the radial density distribution. 
Because the radius of a circular orbit is related to its angular momentum by 

£2 

mk 
(21) 

then the radial separation is given by 

5r 5L 
- = 2 — = 2e, 
r L 

0 
(22) 

(In our solar system brjr is roughly 0.4 to 0.6 corresponding to 
e0 a 0.25 ±0.05 (Jeans, 1944).) 

There are many other properties that may influence the collisional evolution 
of an orbiting cloud of grains. Although we have neglected size, shape, and 
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mass differences among grains, effects of rotational degrees of freedom, self-
gravitation, actual accretion, or even shattering of particles, our calculation 
indicates that the inelasticity tends to cause jetstreams. 
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