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Abstract A singularity is said to be weakly exceptional if it has a unique purely log terminal blow-up.
This is a natural generalization of the surface singularities of types Dn, E6, E7 and E8. Since this idea
was introduced, quotient singularities of this type have been classified in dimensions up to at most 4.
This note extends that classification to dimension 5.
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1. Introduction

Let G ⊂ GLn(C) be a finite group. It makes sense to study the quotient singularities on
the varieties of the form Cn/G (from now on, these are referred to as the singularities
induced by G). When studying singularities (and, in particular, quotient singularities),
one may consider the following type of birational morphisms.

Theorem 1.1 (Cheltsov and Shramov [4, Theorem 3.7]). Let (V � O) be a
germ of a Kawamata log terminal singularity. There then exists a birational morphism
π : W → V such that the following hypotheses are satisfied:

• the exceptional locus of π consists of one irreducible divisor E such that O ∈ π(E),

• the log pair (W, E) has purely log terminal singularities,

• the divisor −E is a π-ample Q-Cartier divisor.

Definition 1.2 (Kudryavtsev [8]). Let (V � O) be a germ of a Kawamata log ter-
minal singularity, and let π : W → V be a birational morphism satisfying the conditions
of Theorem 1.1. Then, π is a purely log terminal (plt) blow-up of the singularity.

This naturally leads to the following definition.

Definition 1.3 (Kudryavtsev [8]). We say that the singularity (V � O) is weakly
exceptional if it has a unique plt blow-up.
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270 D. Sakovics

Remark 1.4. This definition naturally generalizes the properties of quotients of C2

by the action of binary dihedral (also known as dicyclic), tetrahedral, octahedral and
icosahedral groups into higher dimensions.

One has the following criterion for a singularity to be weakly exceptional.

Theorem 1.5 (Cheltsov and Shramov [4, Theorem 3.15]). Take G ⊂ GLN (C)
with no quasi-reflections, and let Ḡ be its natural projection into PGLN (C). The singu-
larity CN/G is then weakly exceptional if and only if the pair (PN−1, ∆) is log canonical
for any Ḡ-invariant effective Q-divisor ∆∼Q − KPN−1 .

Corollary 1.6. If G ⊂ GLN (C) with no quasi-reflections has a semi-invariant of
degree at most N − 1, then the singularity induced by it is not weakly exceptional.

Remark 1.7. The reverse implication does not hold in general, for example, for N = 4
(see [10]).

Theorem 1.8 (Cheltsov and Shramov [4, Theorem 1.30]). Let G ⊂ GLN (C)
be a finite subgroup containing no quasi-reflections that induces a weakly exceptional
singularity. Then G is irreducible.

In fact, in dimension 2, the induced quotient singularity is weakly exceptional exactly
when the group action is irreducible. Unfortunately, this fails already in dimension 3.

It follows from the Chevalley–Shephard–Todd theorem (see [12, Theorem 4.2.5]) that,
to study the weak exceptionality of Cn/G, one can always assume that G contains no
quasi-reflections. Moreover, it follows from Theorem 1.5 that the weak exceptionality
only depends on the image of G under the natural projection to PGLn(C). So, to study
the weak exceptionality of Cn/G, it is enough to consider the case of G ⊂ SLn(C).

The classification of the groups giving rise to weakly exceptional singularities in dimen-
sion 2 is well known.

Theorem 1.9 (a rephrasing of [11, Section 5.2.3]). Let G ⊂ SL2(C) be a finite
group. Then, G induces a weakly exceptional singularity if and only if it is a non-abelian
binary dihedral, tetrahedral, octahedral or icosahedral group.

The groups giving rise to weakly exceptional singularities in dimensions 3 and 4 have
recently been classified (see [10]). Due to the large number of irreducible groups in
dimensions higher than 2, it makes more sense to look at the irreducible groups that give
rise to non-weakly exceptional singularities. In particular, in dimension 3 only finitely
many conjugacy classes do so. Unfortunately, the same is not true in dimension 4.

Example 1.10. Write the coordinates of C4 as a 2 × 2 matrix, and act on it by
left-hand and right-hand multiplication by the elements of the binary dihedral groups
D̄2k, D̄2l ⊂ SL2(C). Thus, one gets an irreducible action of an arbitrarily large finite
group, which has a semi-invariant quadric defined by the determinant of the matrix. This
in turn implies (by Corollary 1.6) that the induced singularity is not weakly exceptional.
For details, see [10].
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The purpose of this paper is to prove the following result.

Theorem 1.11. If G ⊂ SL5(C) is an irreducible monomial group that induces a
non-weakly exceptional singularity, then |G| � 5 · 44 · 5!, with this bound attained.

Keeping in mind Remark 1.4 and the results of [10], one gets the following corollaries.

Corollary 1.12. Take p ∈ {2, 3, 5}. Suppose that G ⊂ SLp(C) is a finite subgroup
acting irreducibly and monomially, but the singularity induced by G is not weakly excep-
tional. Then |G| � p(p − 1)(p−1)p!.

Corollary 1.13. Take p ∈ {2, 3, 5}. There exist only finitely many finite groups G ⊂
SLp(C) (up to conjugation) such that G acts irreducibly, but the singularity induced
by G is not weakly exceptional.

The proof of Theorem 1.11 relies on this paper’s main technical result, which one
can consider to be the structure theorem for the irreducible groups in SL5(C) inducing
non-weakly exceptional singularities (using the notation introduced in Definition 2.1
throughout).

Theorem 1.14. Let G ⊂ SL5(C) be a finite subgroup acting irreducibly. The singu-
larity of C5/G is then weakly exceptional exactly when the following hold.

(1) The action of G is primitive and G contains a subgroup isomorphic to the Heisen-
berg group of all unipotent 3 × 3 matrices over F5 (for a better classification of all
such groups, see [9]).

(2) The action of G is monomial (giving G ∼= D � T , with D an abelian group as
above and T a transitive subgroup of S5), and (using notation from § 3) none of
the following hold.

– D is central in SL5(C). In this case, G can be isomorphic to A5, S5 or to their
central extensions by Z5.

– |G| = 55 or 55 · 5 with |D| = 11 or 11 · 5, respectively, T ∼= Z5 ⊂ S5, and there
exists a k ∈ Z, 1 � k � 4, such that D is generated by [11, 1, 4k, 42k, 43k, 44k]
and (in the latter case) also the scalar element ζ5 Id. In this case, G is isomor-
phic to Z11 � Z5 or (Z5 × Z11) � Z5.

– |G| = 305 or 305 · 5 with |D| = 61 or 61 · 5, respectively, T ∼= Z5 ⊂ S5,
and there exists a k ∈ Z, 1 � k � 4, such that D is generated by
[61, 1, 34k, 342k, 343k, 344k] and (in the latter case) also the scalar element ζ5 Id.
In this case, G is isomorphic to Z61 � Z5 or (Z5 × Z61) � Z5.

– There exists some d ∈ {2, 3, 4} and ω with ω5 = 1, such that

∗ for all g ∈ D, gd is a scalar,
∗ |D| ∈ {dk, 5dk} (depending on whether D contains any non-trivial scalar

elements) with 1 � k � 4,
∗ the polynomial xd

1 + ωxd
2 + ω2xd

3 + ω3xd
4 + ω4xd

5 is G-semi-invariant.
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Proof. Let G ⊂ SL5(C) be a finite group. Since 5 is a prime, G is either primitive
or monomial. This means that the result follows immediately from Lemma 2.4 and the
considerations in § 3. �

Proof of Theorem 1.11. This proof follows directly from Theorem 1.14. The bound
is attained by a group G = D � T with D = Z5 × Z4

4 acting by scalar multiplication of
coordinates of C5, and T ∼= S5 acting by permuting the basis. Here, Z(G) = Z5. This
group preserves the polynomial

∑5
i=1x

4
i . �

This leads to the following conjecture.

Conjecture 1.15. For any prime p, there exist only finitely many finite groups G ⊂
SLp(C) (up to conjugation) such that G acts irreducibly, but the singularity induced
by G is not weakly exceptional.

It seems that an even stronger result holds: take any prime p and suppose that G ⊂
SLp(C) is a finite subgroup acting irreducibly and monomially, but the singularity induced
by G is not weakly exceptional. Then |G| � p(p − 1)(p−1)p!.

Note that Conjecture 1.15 can easily be shown to fail for infinitely many compos-
ite dimensions, as the construction in Example 1.10 can easily be generalized to any
dimension n = k2.

2. General considerations

Definition 2.1 (Höfling [7, §2]). Given a representation of a group G on a space V ,
a system of imprimitivity for the action is a set {V1, . . . , Vk} of distinct subspaces of
V = V1 ⊕ · · · ⊕ Vk such that, for all i and for all g ∈ G, there exists j with g(Vi) = Vj .
Clearly, {V } will always be one such system. If this is the only system of imprimitivity
for this action, this action is called primitive. If there exists a system where all the Vi are
one dimensional, then the action is called monomial. If, for any system of imprimitivity
{V1, . . . , Vk}, and any 1 � i, j � k, there exist gi,j ∈ G such that gi,j(Vi) = Vj , then the
action is called irreducible.

Since any group G ⊂ GL5(C) comes with a canonical faithful representation, it makes
sense to say that the group itself, rather than that representation, is primitive, monomial
or irreducible.

Theorem 2.2 (Cheltsov and Shramov [3]). Let G be a finite subgroup in GL5(C)
that does not contain reflections. The singularity C5/G is then weakly exceptional if and
only if the group G is irreducible and does not have semi-invariants of degree at most 4.

It is worth noting that the property only depends on the projection of G into PGL5(C).
Therefore, from now on we assume that G ⊂ SL5(C). If it does not, take instead a group
G′ ⊂ SL5(C) that has the same projection into PGL5(C).

This theorem provides two possible approaches to computing the list of irreducible
groups giving rise to singularities in dimension 5 that are not weakly exceptional: either
by obtaining a list of finite groups of automorphisms of projective 3-folds of low degrees
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and seeing which of their actions descend to actions on P4, or by directly computing
which groups have semi-invariant polynomials of degree at most 4 in five variables. Since
the finite subgroups of SL5(C) fit into two small families, which are relatively easy to
work with, we have chosen to follow the second approach.

To begin with, it is easier to deal with the case of G being a primitive group, and then
to look into the monomial case.

Theorem 2.3 (Feit [5, §8.5]). If G ⊂ SL5(C) is a finite group acting primitively,
then either G is one of A5, A6, S5, S6, PSL2(11) and Sp4(F3), or G is a subgroup of the
normalizer HM of the Heisenberg group H of all unipotent 3 × 3 matrices over F5, such
that H ⊂ G ⊆ HM.

Lemma 2.4. Let G ⊂ SL5(C) be a finite primitive subgroup. Then G gives rise to
a weakly exceptional singularity if and only if it contains a subgroup isomorphic to the
Heisenberg group H.

Proof. Since there exists a very small number of such groups (see Theorem 2.3),
one can simply look at the low symmetric powers of their five-dimensional irreducible
representations. This gives the following.

• The actions of A5, S5, A6, S6 have semi-invariants of degree 2, since they are
conjugate to subgroups of GL5(R).

• The action of PSL2(11) has a semi-invariant of degree 3: the Klein cubic 3-fold
(see [1]).

• The action of Sp4(F3) has a semi-invariant of degree 4: the Burkhardt quartic 3-fold
(see [2]).

• If G contains the Heisenberg group H, then G cannot have any semi-invariants of
degree at most 4 (either apply Theorem 2.2 to [3, Theorem 1.15] or apply Lemma 3.5
to the (monomial) representations of H of dimension at most 5).

3. Monomial groups

Throughout this section, ζn is used to denote a primitive nth root of unity. This is chosen
consistently for different n, i.e. so ζm

mn = ζn.
If G ⊂ SL5(C) is a finite irreducible monomial group, then take its system of imprim-

itivity consisting of one-dimensional subspaces. Let D be the normal subgroup of G

preserving these subspaces. Then, clearly, D is abelian, and G = D � T , where T is a
transitive subgroup of S5 permuting the spaces. Moreover, there exists a basis for C5

in which D acts by multiplication by diagonal matrices, and there exists an element
τ ∈ G \ D acting by (x1, x2, x3, x4, x5) 	→ (x2, x3, x4, x5, x1).

To establish non-ambiguous notation, one needs to mention that in this paper the
notation D2n means the dihedral group of 2n elements, and

GA(1, 5) = 〈(1 2 3 4 5), (2 3 5 4)〉 ⊂ S5
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is the general affine group with parameters (1, 5). Furthermore, for any g ∈ G and any
polynomial f , write g(f) = f ◦ g.

Remark 3.1 (see, for example, the appendix of [13]). If G is not generated
by D and τ , then Z5 � T ⊆ S5, so it is a well-known fact that T must be one of D10,
GA(1, 5), A5 and S5, (up to choosing τ) generated by (1 2 3 4 5) (corresponding to τ)
and (2 5)(3 4), (2 3 5 4), (1 2 3) or (1 2), respectively.

Since G is a finite group, any g ∈ D must multiply the coordinates by roots of unity.
From now on, write [n, a1, a2, a3, a4, a5] for the element acting as

(x1, x2, x3, x4, x5) 	→ (ζa1
n x1, ζ

a2
n x2, ζ

a3
n x3, ζ

a4
n x4, ζ

a5
n x5).

It is clear that
[n, a1, a2, a3, a4, a5] = [kn, ka1, ka2, ka3, ka4, ka5]

for any k ∈ Z>0, so it will always be assumed that the presentation has the minimal
possible n ∈ Z>0. Note that, since g ∈ SL5(C), it must be true that

∑
iai = nk for some

k ∈ Z. Also note that replacing ai by ai ± n gives the same element.

Lemma 3.2. If all the elements of D are scalar, then the singularity induced by G is
not weakly exceptional.

Proof. In this case, G must be either one of the groups mentioned in Remark 3.1 or a
central extension of one of them by Z5. On this list, the only groups that have irreducible
five-dimensional representations are A5, S5 and their central extensions by Z5. It is easy
to see that all of these have semi-invariants of degree 2. �

From now on, one can assume that D contains a non-scalar element.

Lemma 3.3. Let g ∈ D be a non-scalar element of order pq for some integers p, q > 1.
Then either p = 5, or there exists g′ ∈ D, a non-scalar element of order p.

Proof. Set g′ = gq. Scalar elements in SL5(C) have order 1 or order 5, so either p = 5
or g′ is not a scalar. �

Proposition 3.4. Define the following monomials in five variables x1, . . . , x5, as in
Table 1.

Any polynomial f of degree at most 4 that is semi-invariant under the action of τ must
then be one of

A1

4∑
j=0

ωjτ j(m1,1),
3∑

i=1

[
Bi

4∑
j=0

ωjτ j(m2,i)
]
,

7∑
i=1

[
Ci

4∑
j=0

ωjτ j(m3,i)
]
,

14∑
i=1

[
Di

4∑
j=0

ωjτ j(m4,i)
]
,

where A1, Bi, Ci, Di ∈ C and ω is some (not necessarily primitive) fifth root of 1.
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Table 1. Representatives of τ -orbits of monomials.

m1,1 = x1

m2,1 = x2
1 m2,2 = x1x2 m2,3 = x1x3

m3,1 = x3
1 m3,2 = x2

1x2 m3,3 = x2
1x3 m3,4 = x2

1x4

m3,5 = x2
1x5 m3,6 = x1x2x3 m3,7 = x1x2x4

m4,1 = x4
1 m4,2 = x3

1x2 m4,3 = x3
1x3 m4,4 = x3

1x4

m4,5 = x3
1x5 m4,6 = x2

1x
2
2 m4,7 = x2

1x
2
3 m4,8 = x2

1x2x3

m4,9 = x2
1x2x4 m4,10 = x2

1x2x5 m4,11 = x2
1x3x4 m4,12 = x2

1x3x5

m4,13 = x2
1x4x5 m4,14 = x1x2x3x4

Proof. The polynomial f is semi-invariant under the action of τ , so set ω = f/τ(f).
We have that τ5 = id, so ω5 = 1. �

Any polynomial that is τ -semi-invariant and contains a monomial m must contain
all the monomials from the τ -orbit of m. It is easy to check that the md,i above are
representatives of all orbits of monomials of degree d � 4 in 5 variables; the result
follows. �

Now look at how the elements of D act on these polynomials. Since D preserves the
basis of C5, all the monomials are D-semi-invariant, so every τ -invariant polynomial must
be preserved. Applying g = [p, a1, . . . , a5] (p prime, 0 � ai < p, ai not all equal), we get
the following.

Lemma 3.5. For any g = [n, a1, . . . , a5] ∈ D, ai not all equal (i.e. g is not scalar),
the expressions in Table 2 hold (replacing g by its scalar multiple if necessary) for some
parameter a ∈ Z (0 � a � n).

Proof. The proof relies on fairly straightforward algebra and using the fact that∑
iai = 0 (modn). All these calculations are almost identical, so only one of them (for

D2 
= 0) is shown here.
If D2 
= 0, then the semi-invariance suggests that

3a1 + a2 ≡ 3a2 + a3 ≡ 3a3 + a4 ≡ 3a4 + a5 ≡ 3a5 + a1 (mod n).

This immediately implies that n 
= 3 (otherwise, we get that a1 ≡ · · · ≡ a5 (mod n),
making g a scalar), and, hence, by Lemma 3.3, n is not divisible by 3. Furthermore, it is
easy to see that

3a1 ≡ 2a2 + a3, 3a2 ≡ 2a3 + a4, 3a3 ≡ 2a4 + a5,

3a4 ≡ 2a5 + a1, 3a5 ≡ 2a1 + a2 (mod n).
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Table 2. Conditions for semi-invariance.

A1 = 0

B1 = 0 or n = 2 B2 = B3 = 0

C1 = 0 or n = 3 C2 = 0 or g = [11, a, 43a, 46a, 49a, 412a]
C3 = 0 or g = [11, a, 44a, 48a, 412a, 416a] C4 = 0 or g = [11, a, 41a, 42a, 43a, 44a]
C5 = 0 or g = [11, a, 42a, 44a, 46a, 48a] C6 = C7 = 0

D1 = 0 or n ∈ {2, 4} D2 = 0 or g = [61, a, 342a, 344a, 346a, 348a]
D3 = 0 or g = [61, a, 341a, 342a, 343a, 344a] D4 = 0 or g = [61, a, 344a, 348a, 3412a, 3416a]
D5 = 0 or g = [61, a, 343a, 346a, 349a, 3412a] D6 = D7 = 0 or n = 2
D8 = 0 or g = [11, a, 41a, 42a, 43a, 44a] D9 = 0 or g = [11, a, 42a, 44a, 46a, 48a]

D10 = D11 = 0 D12 = 0 or g = [11, a, 43a, 46a, 49a, 412a]
D13 = 0 or g = [11, a, 44a, 48a, 412a, 416a] D14 = 0

Since a1 + · · · + a5 ≡ 0 (mod n), we get that

0 ≡ 2(a1 + · · · + a5) ≡ 2a1 + (2a2 + a3) + a3 + (2a4 + a5) + a5 (mod n)

≡ 2a1 + 3a1 + a3 + 3a3 + a5 ≡ 5a1 + 4a3 + a5 (mod n)

≡ 5a1 + 4a3 + (3a3 − 2a4) ≡ 5a1 + 7a3 − 2(3a2 − 2a3) (mod n)

≡ 5a1 + 11a3 − 3(2a2) ≡ 5a1 + 11a3 − 3(3a1 − a3) ≡ 14a3 − 4a1 (mod n),

giving that 4a1 ≡ 14a3 (mod n). Similarly, we get that

4a1 ≡ 14a3, 4a2 ≡ 14a4, 4a3 ≡ 14a5, 4a4 ≡ 14a1, 4a5 ≡ 14a2.

Since n is not a multiple of 3, 3 is invertible (modn), and so, writing

9a1 ≡ 2(3a2) + 3a3 ≡ 7a3 + 2a4 (mod n),

27a1 ≡ 20a4 + 7a5 (mod n),

81a1 ≡ 61a5 + 20a1 (mod n),

one deduces that either 61|n or a1 ≡ a5 (mod n). By symmetry (or repeating the calcu-
lation for a2, . . . , a5) one sees that

61a1 = 61a2 = 61a3 = 61a4 = 61a5 (mod n),

and since n, a1, . . . , a5 are assumed not to all have a common divisor, one sees that either
n = 61 or g is a scalar. Since 14 ≡ 34 · 4 (mod 61), the result follows. �

Corollary 3.6. Let G ⊂ SL5(C) be a finite irreducible monomial group that induces
a non-weakly exceptional singularity. Then either |D| or |D|/5 is in {2k, 3k, 11k, 61k} for
some positive integer k.

One now needs to look at the possible isomorphism classes of T . The remainder of
this section completes the proof of the main technical theorem by excluding most of the
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possibilities for T . In particular, Corollary 3.8 deals with the case where the size of D is
divisible by 11 or 61, and Proposition 3.9 shows that the remaining groups only need to
be checked against the diagonal hypersurfaces.

Corollary 3.7. Let G ⊂ SL5(C) be a finite irreducible monomial group that induces a
non-weakly exceptional singularity, and there exists g ∈ G, an element of order 11 or 61.
Then G = D � Z5 (with D as above).

Proof. It is easy to see that D � Z5 ⊆ G. Assume that the inequality is strict. By
looking at the action of G on the polynomials, it is then clear that Ci, Cj 
= 0 for some
2 � i 
= j � 5. Any elements of D must then be of the form specified in Lemma 3.5.
However, it is easy to see that an element being in two of the forms at the same time
means (in the notation of Lemma 3.5) that a = 0, and so this is the identity element,
leading to a contradiction. A similar argument works for the relevant Di. �

Corollary 3.8. If G contains an element of order 11 or 61 but induces a singularity
that is not weakly exceptional, then G belongs to one of 16 conjugacy classes given in
Theorem 1.14 (2) (defined by the choice of a primitive root of unity modulo 11 or 61,
respectively, and by whether or not G contains non-trivial scalars).

In Corollary 3.8, the groups with elements of order 11 are automorphisms of the well-
known Klein cubic 3-fold (see [1]). Similarly, the groups with elements of order 61 are
automorphisms of the Klein quartic 3-fold (see [6, § 4.3]).

Proposition 3.9. Let G be a finite monomial group as described above, preserving
the polynomial

h(x1, . . . , x5) = D6(x2
1x

2
2 + ωx2

2x
2
3 + ω2x2

3x
2
4 + ω3x2

4x
2
5 + ω4x2

5x
2
1)

+ D7(x2
1x

2
3 + ωx2

2x
2
4 + ω2x2

3x
2
5 + ω3x2

4x
2
1 + ω4x2

5x
2
2),

semi-invariant for some values of D6, D7 not both 0, and some ω a fifth root of 1. Then
ω = 1, and the polynomial f(x1, . . . , x5) = x2

1 +x2
2 +x2

3 +x2
4 +x2

5 is also G-semi-invariant.

Proof. Decompose G = D � T , τ ∈ T as above. Lemma 3.5 implies that, for any
g ∈ D, g2 is a scalar, and so such a group D also leaves f semi-invariant. Therefore, it
remains to check that the representatives of generators of T leave f semi-invariant. This
is obviously true if T ∼= Z5 (then T is generated by the image of τ).

Therefore, it remains to show that the proposition holds for Z5 � T ⊆ S5. Looking
at the subgroups of S5, this means that D10 ⊆ T ⊆ S5. In particular, there exists
δ ∈ G \ D, such that the image of δ is (up to conjugation and choosing τ appropriately)
(2 5)(3 4) ∈ D10 ⊆ T ⊆ S5. Therefore, there exist λi ∈ C \ 0 such that g is defined by
(x1, x2, x3, x4, x5) 	→ (λ1x1, λ5x5, λ4x4, λ3x3, λ2x2).

Applying this to h and solving the resulting equations, we get that λ2
2 = λ2

1ω
4, λ2

3 =
λ2

1ω
3, λ2

4 = λ2
1ω

3, λ2
5 = λ2

1ω. By the definition of the semi-direct product, we have δ2 ∈ D,
so λ2

1 = C(−1)a1 , λ3λ4 = C(−1)a3 . This, and the fact that (by construction) ω5 = 1,
implies that ω = 1, and, hence, λ2

1 = λ2
2 = λ2

3 = λ2
4 = λ2

5, making f semi-invariant under
the action of δ.
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Hence, the proposition holds unless D10 � T ⊆ S5. Doing the same calculation (sim-
plified, as ω = 1) for the elements of G \ D that are preimages of (1 2 3) ∈ A5 ⊂ S5 and
(2 3 5 4) ∈ GA(1, 5) ⊂ S5 excludes the remaining three possibilities for T . �

This concludes the proof of the main technical result of this note, showing that a
group whose size is not divisible by 11 or 61 need only be checked against the diagonal
hypersurfaces. The final result estimates the maximal size and the number of groups
preserving such hypersurfaces, thus completing the proof of the paper’s main result.

Proposition 3.10. Assume that G is a monomial group leaving the polynomial

f(x1, . . . , x5) = xd
1 + ωxd

2 + ω2xd
3 + ω3xd

4 + ω4xd
5

(for some d � 4) semi-invariant. Then, G belongs to one of finitely many conjugacy
classes.

Proof. Since for all gD ∈ D, g5d
D = id (as gd

D is a scalar), there exist only finitely
many possibilities for D up to choice of basis (in fact, at most 5d4). The element τ has
been chosen explicitly, so one need only worry about elements of G not generated by D

and τ . But, since Z5 ⊆ T ⊆ S5, by Remark 3.1, G must be generated by D, τ and one
more element δ, with the projection of δ into S5 being one of the four known elements.
Set δ(f) = ψf .

Since δ ∈ S5, δk = id for some k � 6, and so ψk = 1. Furthermore, for all i � 5, there
exist j, l � 5 such that δ(xd

i ) = ψωlxd
j (as f is preserved), so any non-zero entries in the

matrix of δ must be roots of 1 of degree at most 5kd � 30d � 120.
Therefore, there exist only finitely many possible conjugacy classes for G. �
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