ON EXPLICIT BOUNDS IN LANDAU'S THEOREM

J. A. JENKINS

1. The theorem of Landau in question may be stated in the form that if the function F(Z) is regular for |Z| < 1 and does not take the values 0 and 1, while

$$F(Z) = a_0 + a_1 Z + \dots$$

is its Taylor expansion about Z=0, then $|a_1|$ has a bound depending only on a_0 . In fact $|a_1|$ has a bound depending only on $|a_0|$ and Hayman (1) gave the explicit bound

$$|a_1| \leq 2 |a_0| \{ |\log |a_0|| + 5\pi \}.$$

In a recent paper (2) I gave a simple method for obtaining explicit bounds in Schottky's Theorem and applied it also to improving the above bound to

$$|a_1| \le 2 |a_0| \{ |\log |a_0| | + 7.77 \}.$$

Since writing that paper I have observed that by relatively small modifications of the argument that bound can still be substantially improved.

2. It is well known that, for a given a_0 , the maximum value of $|a_1|$ is attained for the function $F_0(Z)$ mapping |Z| < 1 onto the universal covering surface of the finite W-plane punctured at 0 and 1 and taking the value a_0 at Z = 0. Now |Z| < 1 is mapped conformally onto $\Re z > 0$ in such a way that if the mapping function is Z = Z(z) and we set $F_0(Z(z)) = f(z)$, then for a suitable branch of $\log f(z)$ the mapping

$$w = \log f(z) - \pi i$$

(where - or + is chosen according as $\Im a_0 \ge 0$ or $\Im a_0 < 0$) carries the domain determined by the inequalities

$$-\pi < \Im z < \pi, \ \Re z > 0, \ |z - \frac{1}{2}\pi i| > \frac{1}{2}\pi, \ |z + \frac{1}{2}\pi i| > \frac{1}{2}\pi$$

onto the strip

$$-\pi < \Im w < \pi$$

so that the boundary points $\pm \pi i$ correspond to themselves. Further, the boundary points of these domains at infinity in whose neighborhoods $\Re z$, $\Re w$ become large and positive correspond and the boundary point z=0 corresponds to the point at infinity in whose neighborhood $\Re w$ becomes large and negative. We denote the point in the z-plane corresponding to Z=0 by b. Moreover we set $\zeta=e^{-z}$, $\omega=e^{-w}$ and denote the corresponding mapping

Received August 10, 1955.

between these planes by $\zeta = \phi(\omega)$ or $\omega = \psi(\zeta)$. The function $\phi(\omega)$ is regular and univalent for $|\omega| < 1$ with $\phi'(0) = 1/16$.

Next we observe that, as was proved in (2, p. 80), in obtaining a bound of the form

$$|a_1| \leq 2 |a_0| \{ |\log |a_0| + K \},$$

it is enough to confine ourselves to the situation $|a_0| \ge 1$, $|a_0 - 1| \ge 1$. Then we use distinct arguments according as $|a_0|$ is near 1 or bounded from 1. For $|a_0|$ near 1 we use the fact that under the mapping from the z-plane to the w-plane the half-plane $\Re z > \frac{1}{2}\pi$ is mapped into the w-plane slit along the half-infinite segments $\Re w = (2n+1)\pi$, $\Re w \le 0$, n running through all integers. Comparing the inner radii of these domains with respect to b and its image with the derivative of the mapping function, namely $a_1/2a_0\Re b$, we get the bound (2, p. 81)

$$|a_1| \leq 2(|a_0| |a_0 - 1|)^{\frac{1}{2}} \log|2a_0 - 1 + 2\{a_0(a_0 - 1)\}^{\frac{1}{2}}| \Re b/(\Re b - \frac{1}{2}\pi).$$

Since the conditions $|a_0| \geqslant 1$, $|a_0 - 1| \geqslant 1$ imply $\Re b \geqslant \frac{1}{2}3^{\frac{1}{2}}\pi$ we have for $|a_0| = t$, $t \geqslant 1$

$$|a_1| \leqslant (3+3^{\frac{1}{2}}) |a_0| (1+t^{-1})^{\frac{1}{2}} \log[2t+1+2(t^2+t)^{\frac{1}{2}}] \leqslant 2|a_0| \{\log|a_0| + \Lambda(t)\}$$

where

$$\Lambda(t) = \frac{1}{2}(3+3^{\frac{1}{2}})(1+t^{-1})^{\frac{1}{2}}\log[2t+1+2(t^2+t)^{\frac{1}{2}}] - \log t.$$

Unlike the function L(t) used previously the function $\Lambda(t)$ is not monotone increasing. However direct calculation shows that on the range $t \geqslant 1$ it first decreases to a minimum and from then on increases. Thus, on an interval $1 \leqslant t \leqslant t_0$, $\Lambda(t)$ does not exceed the larger of $\Lambda(1)$ and $\Lambda(t_0)$. It proves advantageous to take the interval $1 \leqslant t \leqslant 1.84$. We readily find

$$\Lambda(1) < 5.90, \ \Lambda(1.84) < 5.94.$$

Thus for $1 \le t \le 1.84$, $\Lambda(t) \le 5.94$ and for $1 \le |a_0| \le 1.84$ we have

$$|a_1| \leq 2|a_0|\{\log|a_0| + 5.94\}.$$

Now we apply to the function $\phi(\omega)$ instead of the bound previously used (2, p. 81) the result due to Robinson (3, p. 444)

$$\left| \frac{d\zeta}{d\omega} \right| \geqslant 16|\zeta|^2 \frac{1 - |\omega|^2}{|\omega|^2}.$$

Using the fact that

$$\phi'(-a_0^{-1}) = -\frac{2a_0^2 \Re b}{a_1 e^b}$$

we get

$$|a_1| \leqslant \frac{1}{8} e^{\Re b} \Re b \frac{|a_0|^2}{|a_0|^2 - 1}.$$

Moreover (2, p. 79)

$$e^{\Re b} \leqslant 16|a_0| + 8,$$

so

$$|a_1| \le (2|a_0| + 1) \log(16|a_0| + 8) \frac{|a_0|^2}{|a_0|^2 - 1}.$$

Then for $|a_0| = t$, t > 1, we have

$$|a_1| \leq 2|a_0|\{\log|a_0| + M(t)\},$$

where

$$M(t) = (t + \frac{1}{2})t (t^2 - 1)^{-1} \log(16t + 8) - \log t.$$

Direct calculation shows that M(t) is decreasing for t > 1. Now M(1.84) < 5.93. Thus for $|a_0| \ge 1.84$ we have

$$|a_1| \leq 2|a_0|\{\log|a_0| + 5.93\}.$$

Combining this with our previous estimate we have

THEOREM 1. If F(Z) is regular for |Z| < 1, does not take the values 0 and 1 and has Taylor expansion about Z = 0

$$F(Z) = a_0 + a_1 Z + \ldots,$$

then

$$|a_1| \le 2|a_0| \{ |\log|a_0|| + 5.94 \}.$$

As Hayman has remarked in his review of (2) (Mathematical Reviews, 16 (1955), 579) the value 5.94 cannot be replaced by 4.37.

REFERENCES

- W. K. Hayman, Some remarks on Schottky's Theorem, Proc. Cambridge Phil. Soc., 43 (1947), 442-454.
- 2. J. A. Jenkins, On explicit bounds in Schottky's Theorem, Can. J. Math., 7 (1955), 76-82.
- 3. R. M. Robinson, Bounded univalent functions, Trans. Amer. Math. Soc., 52 (1942), 426-449.

University of Notre Dame