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1. Introduction

This paper discusses the relationship between two equivalence relations
on the class of finite nilpotent groups. Two finite groups are confortnal if
they have the same number of elements of all orders. (Notation: G f& H.)
This relation is discussed in [4] pp 107—109 where it is shown that con-
formality does not necessarily imply isomorphism, even if one of the groups
is abelian. However, if both groups are abelian the position is much simpler.
Finite conformal abelian groups are isomorphic.

The other equivalence relation to be discussed is that of p-isomorphism
(for prime p). Two finite groups G, H are p-isomorphic if there is a 1 — 1
correspondence between them which preserves ^-th powers. (Notation:
GyH.)

Before stating the theorems proved in this paper we define a relation
p on the set of primes by p p q if and only if there is a positive integer u
such that q\pu—1 and q*\pu—\.

THEOREM A. Suppose m = YYi-i 9t' where q1,'
%',qr are distinct

primes and alt • • •, ar are positive integers. A necessary and sufficient condition
that all pairs of p-isomorphic nilpotent groups of order m are conformal is
that for each i in {1, • • -,r} at least one of the following conditions holds:

(1) a{ = 1

(2) q? = 'LandpPqt

(3) q^2 and ppqt

(*) 9i=P

THEOREM B. Let G, H be two conformal groups at least one of which is
nilpotent. If for some prime p the Sylow p-subgroups of G, H are regular, then
G and H are p-isomorphic.

These main theorems sum up fairly completely the conditions under
which ^-isomorphism and conformality imply each other for finite nilpotent
groups. Two other theorems for />-groups which will be proved are:
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THEOREM C. A regular finite p-group is p-isomorphic with an dbelian
group.

THEOREM D. Lattice isomorphic finite p-groups are p-isomorphic.
The author wishes to acknowledge the assistance of Professor G. E. Wall,

Dr D. W. Barnes and the referee in the simplification and presentation of
some of the proofs.

2. Conditions under which conformality implies p-isomorphism

We first prove a lemma proving that conformality and ^-isomorphism
of finite nilpotent groups are equivalent to the same relation between cor-
responding Sylow subgroups. For the proof of this lemma we need the
notation Nvd(G) for the number of elements of order dividing pd— 1. Two
groups G, H of the same order prime to p are ^-isomorphic if and only if:

NVtd(G) = NPid(H) for d = 1, 2, • • •

In this case, conformality implies ^-isomorphism.

LEMMA 1. Let G, H be finite nilpotent groups of the same order
m = I J L i PV and let Git Ht, be the Sylow p(-subgroups of G, H respectively
for all i in {1, • • •, s}. Then

G{ «a Hf for all i if and only if G fa H
and

Gt ~ Hf for all i if and only if G ~ H.

PROOF. The only result needing proof here is that G ~ H implies
G( ~ Ht for all i.

Case 1 : p \ m
Suppose p = pt.
Let G' = <g>if, G,. and H' = ® j # i Ht

Then G = G, <g> G' and H = Hj <g> H'.
Suppose G ~ H and let / : G -> H be a ^-isomorphism. Clearly / maps
elements of G of order prime to p to elements of H or order prime to p,
and elements of G of ^>-power order to elements of H of />-power order.
Thus f(Gs) = Hi and F(G') = H', whence G3- ~ Hj and G' ~ H' under the
/"-isomorphisms f\Gs and f\G' respectively. We now apply Case 2 to the
groups G', H'.

Case 2 : p \ m
Suppose G ~ H. This is equivalent to saying

NVtd{G) = N,ti(H) for d = 1, 2, • • •
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Since the groups are nilpotent,

(1) TJN,,a{G<) =U^UHi) f o r aH d-

From this we will deduce:

(2) NPfi{Gt)^N9ti(Ht) for all .-,i.

Let Pi> Pi> • • •• It will suffice to prove (2) for i = 1. Now the
largest power of pt (j > 1) to divide pd—l is the largest power to divide
p*'i-i. For iipd—l = prik,p\k and r > 0 then

/><"» = l+p1p
r
jk (mod#+1)

and if r = 0 then

otherwise >̂x \Pf— 1 which is impossible as p1 > py
Thus

^, ,d , 1 (^) = N9tt(Gt) for / = 2, 3, • • -, s.

Combining this with (1),

Continuing this process we get:

(3) ^ , ^ ( ^ ) = A ^ g l l f o r a U ,

If ^ - 1 ^ 0 (mod A) then N^Gj) = NPtd{Hj) = 1. If ^ " - 1 = 0
(mod/)!) then for large enough r, the left hand side of (3) becomes
\GJ\I\HJ\ = 1. Thus

(4) tf,,,i(Gi)=tf,.,(ffi) for all rf.

Dividing (1) by (4) we have that

f[N,.t(Gt) =r i^ , d (^ i ) for aU d
i=2 i=2

and continuing the process we deduce (2) which is equivalent to the state-
ment: G{ ~ Ht, i = 1, 2, • • •, s.

PROOF OF THEOREM A. Necessity: To prove the necessity we suppose
that for some i none of the conditions hold. Then p =£ qt, a{^ 1 and either
(i) p p qt is false or (ii) qi = 2 and «< = 3 or (iii) q( = 2 and a4 > 3. In each
case we exhibit two />-isomorphic, non conformal groups of order m. They
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are the direct products of the cyclic group of order mjtfi* with each of the
following groups:

Case (i) The abelian groups of order $' and types (?<,?<,"• •, q() and
(ql qt.--.qt)-

Case (ii) The cyclic group of order 23 and the Quaternion group.

Case (Hi) The abelian groups of order 2°< and types (22, 22, 2, • • •, 2) and
(23, 2, • • -, 2).

Sufficiency: Suppose that G ~ H

Case I r = 1. Write q = qt, a = at.
(i) If a = 1 the theorem is obvious.

(ii) If qa = 4 and <7/ô >, then for some «, q\pu—1 but ?2f/>u—1.
Elements of G of order 2 and the identity are fixed under the operation
of raising to exponent p* while elements of order 4 are not. This property
carries over to H and hence G <& H.

(iii) If q # 2 and #p/> then for some «, ?|/>"—1 but q2 \pu—1. This
implies that <7<+1|̂ >u<I<—1 but qi+z-\ pU1'—\ for all positive integers *
(see [3] p. 114).

But Nj,uti(G) = Nv ugt(H) for all positive integers i and so G and .ff
are conforms!

(iv) If q = p, then suppose that / is a ^-isomorphism from G onto H.
It follows that

*»' = l o /(*>') = /(i) o. [/(*)]»' = 1.

Case II r > 1.
By the lemma, G^ H implies Gt ~ /?< for i = 1, 2, • • •,. We may apply

Case I to each of the corresponding pairs of Sylow subgroups and obtain
G{ n& Hf for 1, 2, • • •,. Again by the lemma we have that G t>a H.

If p = 2 in Theorem A then condition (2) may be dropped as (2) => (4).
The conditions may be written as:

2 ppt or a{ = 1 for * = 1, 2, • • •, r.

Empirically it has been found that 2 p p for all primes p less than 100.
Thus 2-isomorphism implies conformality for all nilpotent groups of order
less than or equal to 10, 200. There are, however, 2-isomorphic non con-
formal finite nilpotent groups since 2 p 1093 is false (see [2] p. 72—73).

3. Conditions under which p- isomorphism implies conformality

LEMMA 2. Finite groups which are conformal with a nilpotent group are
themselves nilpotent.
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PROOF. Let G, H be conformal and suppose H is nilpotent. For any
prime p dividing the common group order, G has the same number of
elements of />-power order as H. Since H is nilpotent the number of elements
of />-power order is equal to the order of the Sylow />-subgroups of G, H.
Thus G contains only one Sylow ^-subgroup for each prime dividing the
group order and hence G is nilpotent (see [1] page 155).

PROOF OF THEOREM B. By the lemma we may assume that both G,
H are nilpotent. Let the Sylow subgroups of G be G1, G2, • • •, Gn and of
H be Hlt Ha, • • •, Hn where Gt, # , are the Sylow p( subgroups of G, H
respectively. Moreover suppose that p = pt. Since G <*& H we have that
G{ f& Ht for all i = 1, 2, • • •,. If i > 1, G(, Hf have order prime to p and
hence G, ^ Ht. We now prove that conformal regular p groups are p-
isomorphic.

Let G, H be two conformal regular p groups.
Write

and for geG* write

and
n (G-C).

with similar notation in H. Finally denote the number of elements of G
(or of H) with order at most p" by ra.

Since G, H are regular they have the property P where M has the
property P means that for each r = 0, 1, 2, • • •, AP' is a subgroup of M
such that every element has either no ^-th roots in Mp' or exactly as many
p-th roots as there are elements of order/) in ilf*'. (See [1] p. 186).

We prove that G ̂  H by induction on the group order. It is clearly
true if the group order is 1. Suppose now that G, H have order greater than 1.
Then Gp and H" each have ra+1fr1 elements of order p". Thus Gp ?* Hp.
Also G" and W are subgroups of G, H (proper subgroups since \G\ = \H\ > 1)
themselves having property P. By the induction hypothesis G* ~ Hp.
Let <f> : G' -*• Hp be a ^-isomorphism. Every element g eGp has as many
p-th roots in G" as <f>(g) in H". But g, <f>(g) each have rx p-th roots in G, H
respectively. Hence by subtraction,

\Wg)\ = W(<Hg))\ for all geG*.

We may now define in a number of ways a mapping / : G -> H satis-
fying the conditions:

(a) / | G* = $
(b) for eachgeG", f maps R*(g) 1 — 1 onto R*(<f>{g)).

https://doi.org/10.1017/S1446788700005541 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005541


170 C. D. H. Cooper [6]

It is clear that such a map is a ^-isomorphism. Thus G1^1 H. Applying
this result to the Sylow px subgroups of G, H we have that G±~ Hr. But
G{ 7 H{ for i = 2, 3, • • •, n. Thus by Lemma 1, G ~ H.

The assumption that the Sylow ̂ -subgroups be regular can be weakened
to the requirement that they each satisfy the condition P which is actually
used in the proof of the theorem. There are in fact non regular ^-groups
which have this property. An example of such a />-group is the group of
order 2* with generators a, b and defining relations a8 = b2 = 1, bab*1 = as.

4. p-isomorphisms in p-groups

PROOF OF THEOREM C. We prove that a regular p-growp G is conformal
with an abelian group by induction on the group order. The ^-isomorphism
between the groups follows from Theorem B. If \G\ = 1, G is clearly con-
formal with an abelian group viz. itself. Suppose now that \G\ > 1 and
that Gp is conformal with an abelian group, say with the group of type
(PH, pH, " " '»Pe')- Since G is regular, Gv is a subgroup of G and |G : Gv\ is
equal to the number of p-th roots of 1 in G. It follows that pr, which is the
number of p-th roots of 1 in Gv is less than or equal to \G: Gp\. Thus there
exists an abelian group of order |G| and of type (p°1+1, p'%+1, • • •, per+1,
p, • • •, p). This group will clearly be conformal with G.

As in Theorem B we do not require G to be regular. It is sufficient if
G satisfies property P in Theorem B. We can however extend the first
part of Theorem C (that G is conformal with an abelian group) to groups
G such that for r = 1, 2, • • •, Gp' is a subgroup of G such that the number
of elements of G"T with order p is greater than or equal to the index of
Gv" in G*'-1.

PROOF OF THEOREM D. Let G, H be finite lattice isomorphic />-groups.
Let (j> be an isomorphism of the lattice of subgroups of G onto the lattice
of subgroups of H. Let Cx = (= {1}), C2, • • •, C, be the cyclic subgroups
of G arranged so that \C(\ ^ JCt-_1 j for all i. We define a mapping / : G -> H
by the rules:

(i) /(I) = 1.
(ii) if f\Ct has been defined for i = 1, • • •, k—1, then f\Ch is any

isomorphism of Ck onto<j>(Ck) which extends the already defined isomorphism

Then / is a well defined mapping such that /1 C maps C isomorphically
onto (j>(C) for every cyclic subgroup C of G. Clearly / is a/"-isomorphism.
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