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MIXING ON SEQUENCES
NATHANIEL A. FRIEDMAN

1. Introduction. Our aim is to study the mixing sequences of a weak
mixing transformation. An ergodic measure preserving transformation is
weak mixing if and only if for each pair of sets there exists a sequence
of density one on which the transformation mixes the sets [9]. An un-
published result of S. Kakutani implies there actually exists a single
sequence of density one on which the transformation is mixing for all
sets (see Section 3). This result motivated the general definition of a
transformation being mixing on a sequence, as well as mixing of higher
order on a sequence. Given a weak mixing transformation, there exist
sequences along which it is mixing of all degrees. In particular, this is
the case for an eventually independent sequence [7].

In Section 3 it will be shown that if T is weak mixing but not mixing,
then a sequence on which 7 is two-mixing must have upper density zero.
Thus in this case T is mixing on a sequence of density one but 7" cannot
be two-mixing on a sequence of positive density.

In Section 4 we will study the Mean Ergodic Theorem (M.E.T.) for
Césaro-averages along a mixing sequence. The Blum-Hansen Theorem
[1] states that a transformation is mixing if and only if the M.E.T. holds
along any sequence. 1t was proven by L. Jones [10] that the M.E.T. holds
for any sequence of positive lower density when the transformation is
weak mixing. An example will be given of a weak mixing transformation
T that is mixing on a certain sequence but the M.E.T. does not hcld
for T on that sequence. An inspection of the proof in [1] shows that the
M.E.T. is equivalent to a condition referred to in Section 4 as Césaro
uniform mixing. In particular, this implies the M.E.T. holds along each
sequence on which the transformation is two-mixing.

In Section 5 we will first verify a uniform version of the Blum-Hansen
Theorem which states that if 7" is mixing, then the Césaro average of
any # iterates 7%, 1 < 7 < n, is close to the integral of f if # is large.
Here n depends only on f and the closeness is uniform for all choices of k;,
1 £ 7 £ n. A corollary is that if 7" is mixing and 4 is a set of positive
measure, then the union of any # iterates of 4 has measure close to 1 for
n sufficiently large. However, if T is mixing on a sequence, then this
property can fail for iterates chosen on the sequence. The property holds
on a two-mixing sequence.
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2. Preliminaries. Let (X, &, m) be a measure space isomorphic to
the unit interval with Lebesgue measure. An invertible transformation 7°
defined on X is weak mixing if

(2.1) lim;l; }_:1 |m(T*A N B) — m(4)m(B)| =0, A,B¢ %.

n-3c0

The transformation 7 is mixing if

(2.2) limm(T"4A N\ B) = m(4A)m(B), A,B¢c &.
We will only consider transformations that are weak mixing but not
mixing.

An increasing sequence of positive integers will be denoted by s = (sy)
ors = (k:k € s). Alimitalong s will be denoted by lim;¢,. A transforma-
tion T is mixing on s if

(2.3) limge, m(T*4A N\ B) = m(A)m(B), A,Bc %H.

For each positive integer n, let n(s) be the number of terms in s not
exceeding n. Define D*(s) and D, (s) as

D*(s) = lim,,, sup n(s)/n,
D, (s) = lim,_, inf n(s)/n.

If D*(s) = D,(s) = D, then s has density D(s) = D. The following result
is proved in [9].

(2.4) THEOREM. A transformation 1" is weak mixing if and only if for
each pair of sets A, B € % there exists s = s(A, B) with D(s) = 1 and

limges m(T*4 N B) = m(4)m(B).

Since (#, m) is separable, one can use (2.4) and a diagonalization
argument to prove there exists a sequence s on which T is mixing.
Moreover, if T is mixing on a sequence, then 7" must be weak mixing.
Thus T is weak mixing if and only if 7 is mixing on s for some s. In
Section 3 it will be proved that s can be chosen to also satisfy D(s) = 1.

The sequences on which a transformation is mixing are isomorphism
invariants and can be used to distinguish certain weak mixing transforma-
tions. For example, given any increasing sequence s, one can construct
a weak mixing transformation that is not mixing on s {7]. Thus if T} is
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mixing on s, then there exists T'; not mixing on s. In particular, there
does not exist a universal mixing sequence.

The method of independent cutting and stacking [5, 6, 13] will be used
to construct examples. A brief description follows. The construction takes
place on the unit interval [0, 1) and all intervals considered will be left-
closed and right-open. A column C of height k is an ordered set of disjoint
intervals I,, 1 £ ¢ £ h, that have the same length. The base of C is
C = I, the top of Cis C = I, the width of Cis w(C) = m(I;), and the
height of Cis h(C) = h. We also let C denote the union of the intervals
in C, which we refer to as levels in C. A column C can be pictured as the
rungs on a ladder with I, above I,_;,1 < 7 < h.

The corresponding transformation I'¢ maps I,_; onto I; by a transla-
tion,1 < ¢ £ h. Thus T'¢isdefinedon C — C.

A tower G is an ordered set of disjoint columns. The fop of G is the
union of the tops of the columns in G, denoted by G. The base of G is
the union of the bases of the columns in G, denoted by G. The width of G
is w(G) = m(G) = m(G). The transformation T'g consists of T'¢ acting
on Cin G. A level in a column in G is simply called a level in G. We also
let G denote the union of levels in G. Thus T4 is defined on G — G.

Let C be a column of height % with base I. Let J be a subinterval of I.
We refer to C; = (T'¢'J :0 £ 1 < h) as a subcolumn of C. Let

p=mJ)/m() = 1.

We also refer to C; as a p-copy of C and denote C; = pC.
Givenatower G = (C;:1 £ j £ k), denote a p-copy of G as

pG = (pC;: 1 <7 < k).

Letp;, = w(Cy)/w(G),1 < j < k;hence (p1+ ...+ p») = 1. CutGinto
disjoint copies Go = .5G and .5G. Cut the latter .5G into %k disjoint
copies G; = p;(.5G), 1 < j = k; hence w(G;) = 5w(C;),1 £ j < k.
Thus the width of G, is the same as the width of the jth column in G,,
1=sj=k

Form the tower SG obtained by placing G, above the jth column
.5C;in Gy, 1 £ j £ k. The tower SG has & columns above each column
in Go; hence SG has k* columns. The width of SG is w(SG) = w(G,)
= w(G)/2. Note that Tg; extends T to a set of measure m(G,) =
w(G)/2, by mapping p,C,onto G;, 1 < j < k.

We refer to SG as the tower obtained by independent cutting and
stacking of G. Let S*G = S(§*!G) and T, = Tsg, £ = 1, As a set,
G, = G so T} is defined on G — G;, where m(Gy) = w(G)/2* k = 1.

If x is in a level in G, then Ty (x) will be defined for & sufficiently large.
Thus a transformation 7°(G) can be defined on G as

2.5) T(G)(x) = limy, o Ti(x).
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A tower G is an M-tower if two columns in G have heights that are
mutually prime. In particular, G is an M-tower if two heights differ by
one. If G is an M-tower, then 7°(G) is mixing [5]. Moreover, T(G) is a
mixing Markov shift and isomorphic to a Bernoulli shift [6, 13]. Mixing
implies that given ¢ > 0, there exists a positive integer N (G, ¢) such that

2.6) m(T@GINJT)—mIymJ)/m(G)] <e n= N(@G,e),

where I and J are levels in G.
Fix N = N(G, ¢). By (2.5) we can choose k = k(G, ¢, N) so large that
if T extends T, then (2.6) implies

@7) |[m(TINJT) — m(ImJ)/mG)| < e NG, e) <n< N,

where I and J are levels in G.

Let G be a tower with columns with rational widths. Using the greatest
common divisor, we can cut the columns in G into subcolumns all of the
same width w. These sub-columns are now stacked consecutively to form
one column of width w that we denote by C(G). Note that if I is a level
in G, then I appears as a finite union of levels in C(G).

Let C be a column of height 2 and width w. Let « be a positive integer.
The column C can be cut into # subcolumns of equal width w/u. These u
subcolumns are stacked consecutively to form a single column denoted
by S,C, with height #k and width w/u.

Let ¢ > 0 and ¢ a positive integer. Choose # = ¢/ and let 7" be any

extension of T's,¢. If Jis alevel in C, then the construction of S,C implies

l

(2.8) m(ﬂoTﬂ'J) = (1 — em(J).
=

3. Sequences. A sequence s; eveniually contains a sequence s if all but
a finite number of terms in s; are in s;. The union of a countable set of
sequences of density zero can have positive density. However, the follow-
ing unpublished result of S. Kakutani {11] states that there exists a
sequence of density zero that eventually contains each sequence of density
zero in the countable set. A proof is included for completeness.

(3.1) THEOREM. Let D(s®) = 0, n = 1. There exists s with D(s) = 0
such that s eventually contains s®, n = 1.

Proof. Let s = (s/)and e, = 1/n%, n = 1. Given s = (s;), let
(1)  d*(s,u) = limy,, sup Vi/k,

where V; is the number of terms s; that do not exceed % for j = . For
n = 1,d*(s", u) decreases toQ as u — 0.
Choose #; such that

(2) a*(st, u1) < e.
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Assume u; < #; < ... < u, have been chosen so that for 1 £ v < 7,
(3) d*(sn) uu) < €y, 1<n =< v
Choose u,,1 > u, such that

4) a*(s" 1) < 641, 1Sn=<r+ 1

By induction we obtain an increasing sequence (u,) satisfying (3) for
v = 1. Now form s as the union of s;* for j = u,, n = 1. Since ne, — 0,
it follows that D(s) = 0.

(3.2) COROLLARY. 4 transformation is weak mixing if and only if it is
mixing on a sequence of density one.

Proof. Since (X, &, m) is separable there exists a sequence of pairs
(Ax, Bi) that are dense in the sense that for any pair (4, B) we have

(1) lim,,,, inf (m(AAdy) + m(BABy)) = 0,

where A denotes the symmetric difference. We can choose a sequence s*
with D(s*) = 1 such that Theorem (2.4) holds with s(4;, By) = s*,
k = 1. Let t* be the complement of s* in N. Apply Theorem (3.1) to
obtain ¢ with D(t) = 0 so that ¢ eventually contains ¢, & = 1. Let s be
the complement of ¢. It follows that T is mixing on s and D(s) = 1.

We will now consider higher order mixing on a sequence s. A transfor-
mation T is 2-mixing on s if A, B, C € & imply

(3.3) limygnes m(T"A N T*B N C) = m(4d)m(B)m(C),

where £ — o0 and n — k — 0. Since T is measure preserving, C = X in
(3.3) implies

(8.4) limy s m(T"*4 M B) = m(4)m(B).

The reason that 7" may be mixing on s but not 2-mixing on s is that
k, n € s does not imply n — k € s. In particular, 7 may be mixing on s,
but (3.4) may not hold. If (3.4) holds, then we will say T is uniform
mixing on s, in the sense that 7"4 mixes into T*B uniformly with respect
to n — k. Note that (3.4) may not imply (3.3). Otherwise one could
prove mixing implies 2-mixing since a mixing transformation is uniform
mixing on every sequence.

As in [8], a sequence s has upper density U(s) = u if u is the largest
number for which there exist a; — ©, b; — a; — 00, and the number of
terms in the sequence between a; and b; divided by 4; — a; converges to
u as j — 0. Note that s may have D(s) = 0 but U(s) = 1 because
s contains long blocks of consecutive integers with even longer gaps of
consecutive integers in between. We will now prove that uniform mixing
implies U(s) = 0.
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(3.5) TueoReM. If T is weak mixing but not mixing and T 1is uniform
mixing on s, then U(s) = 0.

Proof. Consider the set D of positive differences p = n — k where
k, n € 5. The set D can be writtenas D = {p;: 1 = 1}, where p; < pis1,
1 = 1. The gapsin D are p;41 — P, ¢ = 1. Suppose the gaps are bounded
by a positive integer g.

Since T is assumed weak mixing but not mixing, there exist 4, B and
¢ > 0 such that

1)  lim,,,supm(T"4A N\ B) 2 m(A)m(B) + e
Thus there exist r; — 0 such that

(2) m(TiANB)2m(AmB) +e¢ j=1

For each r, there exists ¢;,, 0 < ¢t; < g — 1, such that r; 4 ¢; € D. Since
there are only g possible values for ¢;, one value ¢ must repeat infinitely
often. Thus r; + ¢t € D for infinitely many j. Now

3) m(TTi+'A N T'B) = m(T"iA N B).
Letv; = r; + tand B, = T'B; hence (2) and (3) imply
4) m(T%A N By) =2 m(A)m(B,) + e

Noww; € D;hencev;, = n; — k;so (4) implies
B) m(TA N T*By) 2 m(A)m(B1) + e

Now (5) contradicts uniform mixing. Thus T cannot be uniform mixing
on s if s — s has bounded gaps.

The proof is completed by a remark in [8] that states that if s — s
does not have bounded gaps, then s has upper density zero. A simple
proof of this result, shown to me by B. Weiss, will be included for com-
pleteness. It suffices to verify that s has # mutually disjoint translates
for n = 1. The translate of s by k is the set ¢ + k, 7 € s, which is denoted
by s + k. Note that s is disjoint from s + & if and only if £ ¢ s — .

Since s — s has unbounded gaps, there exists a positive integer
ki1 ¢ s — s;hence s M (s + k1) = B. Now choose a gap in s — s starting
at ke such that the gap exceeds ky; hence &y + k2 ¢ s — s. Therefore s,
s + ki, and s + k; + k. are mutually disjoint. Note that 2y ¢ s — s
implies

(s+k1)f\(s+k1+kz)=sf\(s+k2) = 0.

Proceeding inductively, suppose k1, 1 < 7 < n, have been chosen so that

6) s s+ ky, 1=Srs=mn,
i=1

are mutually disjoint. Choose a gap starting at k,,: such that the gap
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size exceeds ) i1 ks It follows that (6) holds with # replaced by # + 1.
Thus s has #» mutually disjoint translates for » = 1.

Since 2-mixing on s implies uniform mixing on s, Theorem (3.5) yields
the following result.

(38.6) CoroLLARY. If T is weak mixing but not mixing and T is 2-mixing
ons,then U(s) = 0.

In Example (4.6) we will consider a case where T is mixing on s and
U(s) = 0, but T is not 2-mixing on s.

In [8] Furstenberg defined a transformation T to be weak mixing of
orderrif A, € Z,0 £ 1 < r, imply

n

@7) lim< 3

N0 k=1

m(éo T“A,) - gm(A,)' = 0.

Furstenberg proved that weak mixing implied weak mixing of all orders.
As in the case of weak mixing, one can use Theorem (3.1) and (3.7) to
show there exists a sequence s with D(s) = 1 such that

(3.8) llmm<ﬂ TntAt) = Hm(Ai), Aiee@, Oéi ___<_T.
nes 1=0 1=0

Furthermore, another application of Theorem (3.1) yields a single se-

quence s with D(s) = 1 such that (3.8) holds for all » = 1. In particular,

for r = 2 we can rewrite (3.8) as

8.9) lim,e, m(T"ANT"BNC) = m(A)m(B)m(C), A,B,Cc Z.

Thus (3.9) holds for D(s) = 1, in contrast to Corollary (3.6).

In Section 4 a transformation will be constructed that is mixing on a
sequence s but is not uniform mixing on s. We have been unable to con-
struct a transformation that is uniform mixing on a sequence s but is not
2-mixing on s. Another problem is to construct a transformation that is
2-mixing on a sequence s but is not 7-mixing on s for some r > 2.

4. Mean convergence. We will now consider mean convergence of
Césaro averages along a sequence s = (s;). Letf € L?, p = 1, and denote

@D file) = 2 3 )

The following result [1] relates mixing and the mean convergence of f,
to the integral m(f) of f with respect to m.

(4.2) BLuM-HANSEN THEOREM. A transformation T is mixing if and
only if for each sequence s, f, converges tom(f) in L, f € L?, p = 1.
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Now suppose 7 is mixing on s. An example will be constructed to show
that Césaro-averages along s need not converge in the mean. The idea of
the example can be illustrated by a mixing sequence of sets. Let (4,) be
a sequence of sets with m (4,) = @, n = 1. The sequence is mixing [12] if

4.3) lim,,, m(4, N\ B) = am(B), B¢ Z%.

Let ¢, > 0 and ¢, — 0. Let (¢,) be an increasing sequence of positive
integers that satisfy

n—1

(44) D ti/tn< e, n> 1L
1=1

Let (4,) satisfy (4.3) with ¢« = 1/2. Consider the sequence of sets (B,)
obtained by repeating 4, ¢, times, n» = 1. This sequence will also be
mixing. Letb(n) = (¢4 + . .. + ¢,). The characteristic function of a set 4
will be denoted by A4 (x). The Césaro-average of the first 5(n) character-
istic functions of sets in (B,) is denoted by g, (x); hence

Z 1A () /b ().

Since m(X) = 1, it follows from (4.4) that
lge — 1/2]ls = 1/2 — &,

(4.5) gn(x)

Thus g, does not converge to 1/2 in the mean.

We will now construct a transformation 7', a corresponding mixing
sequence s, and a set A of measure close to 1/2 such that T4, 7 € s,
consists of blocks of length ¢, that are approximately the same set, n = 1.

(4.6) Example. The construction is by induction and the nth stage
begins with an M-tower G, with columns with rational widths. If I is
alevelin G;, 1 £ ¢ < n, then I appears as a union of levels in G,. Let L,
be the total number of levels in G, and let ¢, < w,/100L,%. With reference
to (2.6) and (2.7), let N, = N(G,, ¢,) and &k, = k(G,, ¢,, N,). Choose a
positive integer

7, = max {k,, N,/¢,}

and form G, = S™G,. We let T,; denote T'g,, for notational convenience.
Since 7, 2 k,, (2.7) implies that if T extends T, then

Q) m(TINT) = mDmT)/m(G)| < e, @ = N,

where I and J are levels in G,.

Now form the column G, = C(Gni). Each set 4 that is a union of
levels in G, will also appear as a union of levels in G,.. Moreover, the
choice of 7, implies 774 appears as a union of levels in G2, except
possibly for a set of measure at most ¢,. This is because only the top N,
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levels in columns in Ga; pass through the top of Gn.; under T%». Thus
we have

v
@2 T1™4=U J,VE,
1=1
where J; is a level in Gy, 1 £ 7 £ v,and m(E) < ¢,.
We also have positive integers ¢;, 1 < j < n, and choose ¢, to satisfy
(4.4); hence

@3) b —1)/t, < e

Now choose a positive integer u, = ¢,/¢,. Form the column Gr3 = S,,Gna.
Let k, be the height of Gn.. If J is a level in Gaxs and T extends T3, then
(2.8) implies

(4) m(ﬂ T”"'J) 2 (I - e)m(J).

iStn
Lets;, =N, + (j—b(n — 1))h,,b6(n — 1) £ j < b(n). From (2) and
(4) we obtain

(5) m( W;Z;I T“A) = (1 — 2¢)m(A4).

=bln—1)

Lastly, let G,+1 be the tower obtained by cutting Gr; into two equal
columns and adding an extra interval above one column. Thus G, is
an M-tower consisting of two columns with heights differing by one.
The levels in G, appear as unions of levels in G,,1 and the columns in
G,+1 have rational width. This completes the induction step.

We begin with an M-tower G, with columns of rational widths. Take
b(0) =1 in (3). At each stage we add an interval to form G,,;. It is
easy to see that the sum of the measures of these intervals is finite. Let
X = Uy, G, and assume m is normalized so that m(X) = 1. Thus we
obtain a transformation 7" defined by

(6) T(x) = lim,,, T¢,(x), x € X.

We first verify 7 is mixing on s = (s;). Let 4 and B be sets that are
unions of levels in G1; hence A and B appear as levelsin G,, n = 1. If n is
large, then m(G,) is essentially 1 and (1) implies

(7)  |m(T¥A N B) — m(A)m(B)| £ Ly, = w,.
It is easily seen that w, — 0; hence
8) lim, ., m(T¥*4A N B) = m(4)m(B).

The same proof holds if 4 and B are unions of levels in G;, 2 = 1. Since
these sets generate &, it follows that 7 is mixing on (%,). From (5) we
conclude T is mixing on s.
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To verify that the Mean Ergodic Theorem does not hold on s, choose &
large and fix A consisting of a union of levels in Gy such that

9) |m(4) — 1/2| < 1/100 and ¢ < 1/100.

Now (5) holds for n > k. Let g,(x) be asin (4.5) with 4, = T%4,1 =2 1.
From (9) and (5) we obtain

lgn — m(A)]: 2 1/8.

Thus the M.E.T. does not hold on s.

The preceding example shows that mixing on s does not imply the
M.E.T. on s. An inspection of the proof in [1] yields the following mixing
condition that is equivalent to the M.E.T. on s.

(4.7) Definition. A transformation 7" is Césaro uniform mixing on s
if 4, B € & imply

lim —-15 > m(T"A N TYB) = m(4)m(B).
N0 1, j=1
(4.8) THEOREM. The Mean Ergodic Theorem holds for T on s if and only
if T ts Césaro uniform mixing on s.

Proof. Let f,(x) be defined as in (4.1) with f(x) = A (x). In L? we have

M) fe = mE = 2 5 m(TANT M) = m(4)?
If T is Césaro uniform mixing, then (1) implies f, converges to m(4) in
L* A € #. The M.E.T. now follows as in [1]. Conversely, suppose the
M.E.T. holds. Let f, be defined as above and let g, replace f, in (4.1)
with f(x) = B(x) for B ¢ &. Thus f, and g, converge in L? to m(4) and
m(B), respectively. Thus f,g, converges to m(4)m(B) in L% Hence f,g,
converges to m(A)m(B) in L! and this yields Césaro uniform mixing on s.

The proof in [1] can be used to verify uniform mixing implies Césaro
uniform mixing. Since 2-mixing on s implies uniform mixing on s, we have
the following result.

(4.9) CorOLLARY. If T is 2-mixing on s, then the Mean Ergodic Theorem
holds for T on s.

The theorem of L. Jones [10] states that the M.E.T. holds on s for all
weak mixing transformations when D, (s) > 0. Thus Theorem (4.8) is
useful only when D,(s) = 0. In particular, this is the case in Corollary
4.9).

In Example (4.6), k, — oo implies U(s) = 0. Theorem (4.8) implies T
is not Césaro uniform mixing on s. In particular, T is not 2-mixing on s.
This also follows directly from (5).
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5. Uniform sweeping out. Given an increasing sequence s = (&),
we say I sweeps out on s if m(4) > 0 implies
m(U T'“A) = 1.
1=1
If T sweeps out on all s, then we simply say T sweeps out. If T is mixing,
then T sweeps out. In [2] sequence mixing is the term used for sweeps out.

To avoid confusion with mixing on a sequence, we will use the latter term.
The following characterization is proved in [2].

(5.1) THEOREM. A transformation T sweeps out if and only if
lim inf m(T"A N B) > 0, m(4)m(B) > 0.

If T sweeps out, then 7" is weak mixing [3]. Hence if T sweeps out, then
T is mixing on a sequence of density one by Corollary (3.2). However,
there exist weak mixing transformations that do not sweep out. There
also exist transformations that sweep out that are not mixing [4]. We will
now consider a uniform type of sweeping out defined as follows.

(5.2) Definition. T sweeps out uniformly if given a set A of positive
measure and ¢ > 0, there exists N = N(4, ¢) such that » 2 N implies

m(U T’“A) >1—¢ forallk; <k < ...<Ekp

i=1

It is shown below that mixing implies uniform sweeping out. The
following result is motivated by Lemma 1 [1].

(56.3) LEMMA. Let T be mixing, m(4A) > 0, and ¢ > 0. There exists
N = N(A, €) suchthat n = N implies
;15 3 m(T5A N TYA) — m(4)°] < ¢,
1, j=1

for all by < k2 < ... < k,.

Proof. Since T is mixing, we have
1) limy_p e m (T4 N T°A) = m(4)2
Choose w so large that |u — v| > w implies
@) |m(T*4A N T*4) — m(4)? < ¢/2.

Choose N > (4w + 2)/e. Now consider k;,,1 <7 < n,n = N. Foreach:
there are at most 2w + 1 values of j such that |k; — k;| £ w. Since a term
on the left of (2) is bounded by 1, we have

LY Im@H AN TA) —m(a)] s EEED L L o
n 4= n )

@) "- Qw + n
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Lemma (5.3) will now be used to obtain a uniform version of the Blum-
Hansen Theorem. We denote

) = 235,

(5.4) THEOREM. Let T be mixing, p = 1, and f € L?. Given ¢ > 0, there
exists N = N(f, ) such that n = N implies

Ifu = m)lly < e forallk, < ... <k,

Proof. If f(x) = A(x), then Lemma (5.3) yields the result for p = 2
since (3) above with e replaced by ¢* implies

@) fa = mA)]: = e

If f is a simple function of the form

@ flx) = ;au‘h(x),

then we have

@) Mfa=mPll: = ; lai| || fa,e — m(AD)]2.

Here f,, ; cortesponds to f = 4, 1 < ¢ < k. Choose
N = max {N(4, e/kla), 15i= k).

Thus » = N implies the right side of (3) is less than e. For f € L?, we
approximate by a simple function g so that ||f — g||» < ¢/3. Since T is
measure preserving, we obtain

(4) ||fn - gn”2 < 6/3» n = 1.
Now choose N = N(g, ¢/3); hence n = N implies

G) M= mDlle = 1fa — &illo + llge = m@)2 + Im(e) — m(H)] <.

If p = 1, then the result follows from Holders inequality and the result
forp = 2. If p > 1, then as in [1], let g be bounded by M ; hence

©)  lel” = @+ M7)llgl

The result now follows from p from (6) and the result for p = 1 since
simple functions are bounded.

(5.5) CorOLLARY. If T is mixing, then T sweeps out uniformly.

Proof. Let m(A) > 0 and choose N = N(4, ¢2m(4)?) in Lemma (5.3).
Let

[
’

B = (u T’“A)
1=1
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hence

BNT*"4 =0, 1<1=n

IIA

Let f, correspond to f = A. Therefore Lemma (5.3) implies

m(4)m(B) = If,; (falx) —m(A))dm | < ||fo — m(A)|2 < em(4).
Thus m(B) < e.

Let us now consider the following version of Theorem (5.1) for a
sequence s. The proof follows as in [2].

(5.6) THEOREM. T sweeps out on all subsequences of s if and only if

lim inf m(T"4 N B) > 0, m(4)m(B) > 0.
nes

In particular, if T is mixing on s, then 7" sweeps out on all subsequences
of s. However, mixing on s does not imply uniform sweeping out on s. For
consider Example (4.6) (5). This implies 7%i4 is essentially invariant
forb(n —1) = j<b(mn)anddb(n) — b(n — 1) > 0.

If T is uniform mixing on s, then the same proof of Lemma (5.3) yields
the conclusion for k; € 5,1 £ ¢ < #n. In this case Theorem (5.4) holds for
k; € 5,1 £ 7 £ n. The analog of Corollary (5.5) also holds, where uniform
sweeping out on s corresponds to Definition (5.2) with k; € 5,1 < 7 < n.
In particular, if 7 is 2-mixing on s, then there is uniform mean convergence
on s and T sweeps out uniformly on s.

An open problem is whether the converse of Corollary (5.5) holds.
There is also the question of whether sweeping out uniformly on s implies
uniform mixing on s.

The following corollary of Theorem (5.4) states that given a set 4 and
e > 0, there exists N such that for any set B, not more than N iterates of
A can be badly mixed in B (with respect to €). The original formulation
of this result (and (5.8) below) is due to S. Kalikow, where m(B) had
to be bounded away from zero.

(5.7) CorOLLARY. Let T be mixing, m(4) > 0, and ¢ > 0. There exists
N = N(4, €) such that for any set B there are at most N positive iniegers k
such that

[m(T*A N B) — m(A)m(B)| > «.

Proof. Let f(x) = A(x) with p = 1in (5.4) and let N1 = N(f, ¢) in
(5.4). Choose N = 2N, and suppose the conclusion does not hold. Hence
there exist B and %k;, 1 < 7 £ Ny, such that

1) m(T*ANB) —mA)mB) >e (or< —e), 1=21= N,
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Now (1) implies

@) < ﬁl SN (54 A B) — m(4)m(B)

1 1=1

==f3 (o (x) = m(A))dm = ||fay — m(4)1 < e
This contradiction implies N = 2N, and hence the conclusion.

(5.8) COROLLARY. Let T be mixing, m(A) > 0, and € > 0. There exists
N = N(A, €) such that for any sets B and C and j sufficiently large there are
at most N positive integers k such that

|m(T*A N T'BN C) — m(A)ym(B)m(C)| > e
Proof. Let N = N(4, ¢/2) in (5.7). Choose j sufficiently large so that
(1)  |m(T'BNC) — m(B)m(C)| < ¢/2.
The conclusion follows from (5.7) with B replaced by 77B M C.

Note that Corollary (5.8) is in the direction of mixing implying
2-mixing.
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