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MIXING ON SEQUENCES 

NATHANIEL A. FRIEDMAN 

1. Introduction. Our aim is to study the mixing sequences of a weak 
mixing transformation. An ergodic measure preserving transformation is 
weak mixing if and only if for each pair of sets there exists a sequence 
of density one on which the transformation mixes the sets [9]. An un­
published result of S. Kakutani implies there actually exists a single 
sequence of density one on which the transformation is mixing for all 
sets (see Section 3). This result motivated the general définition of a 
transformation being mixing on a sequence, as well as mixing of higher 
order on a sequence. Given a weak mixing transformation, there exist 
sequences along which it is mixing of all degrees. In particular, this is 
the case for an eventually independent sequence [7]. 

In Section 3 it will be shown that if T is weak mixing but not mixing, 
then a sequence on which T is two-mixing must have upper density zero. 
Thus in this case T is mixing on a sequence of density one but T cannot 
be two-mixing on a sequence of positive density. 

In Section 4 we will study the Mean Ergodic Theorem (M.E.T.) for 
Césaro-averages along a mixing sequence. The Blum-Hansen Theorem 
[1] states that a transformation is mixing if and only if the M.E.T. holds 
along any sequence. It was proven by L. Jones [10] that the M.E.T. holds 
for any sequence of positive lower density when the transformation is 
weak mixing. An example will be given of a weak mixing transformation 
T that is mixing on a certain sequence but the M.E.T. does not hold 
for T on that sequence. An inspection of the proof in [1] shows that the 
M.E.T. is equivalent to a condition referred to in Section 4 as Césaro 
uniform mixing. In particular, this implies the M.E.T. holds along each 
sequence on which the transformation is two-mixing. 

In Section 5 we will first verify a uniform version of the Blum-Hansen 
Theorem which states that if T is mixing, then the Césaro average of 
any n iterates Tkif, 1 ^ i'• £ n, is close to the integral of / if n is large. 
Here n depends only o n / and the closeness is uniform for all choices of ku 

1 ^ i g n. A corollary is that if T is mixing and A is a set of positive 
measure, then the union of any n iterates of A has measure close to 1 for 
n sufficiently large. However, if T is mixing on a sequence, then this 
property can fail for iterates chosen on the sequence. The property holds 
on a two-mixing sequence. 
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2. Prel iminar ies . Let (X, £8, m) be a measure space isomorphic to 
the unit interval with Lebesgue measure. An invertible transformation T 
defined on X is weak mixing if 

(2.1) \\m»Y,\m{TkAr\B) - m(A)m(B)\ = 0, A,B^38. 
n-»co n * = 1 

The transformation T is mixing if 

(2.2) lim w(rUnS) = m(A)m(B), A,B£38. 

We will only consider transformations that are weak mixing but not 
mixing. 

An increasing sequence of positive integers will be denoted by s = (s*) 
or s — {k : k Ç s). A limit along s will be denoted by limfce5. A transforma­
tion T is mixing on s if 

(2.3) lim*€, m ( r U H B) = tn(A)tn(B), A,B ^38. 

For each positive integer n, let n(s) be the number of terms in s not 
exceeding n. Define D*(s) and D*(s) as 

D*(s) = lining sup »($)/«, 

A„(s) = l i m , ^ inf n(s)/n. 

If D*(s) = D+(s) — D, then 5 has density D(s) — D. The following result 
is proved in [9]. 

(2.4) THEOREM. A transformation T is weak mixing if and only if for 
each pair of sets A, B £ SS there exists s — s (A, B) with D(s) = 1 and 

l i m ^ m(T*A C\ B) = m(A)m(B). 

Since {38, m) is separable, one can use (2.4) and a diagonalization 
argument to prove there exists a sequence 5 on which T is mixing. 
Moreover, if T is mixing on a sequence, then T must be weak mixing. 
Thus T is weak mixing if and only if T is mixing on s for some s. In 
Section 3 it will be proved that s can be chosen to also satisfy D(s) — 1. 

The sequences on which a transformation is mixing are isomorphism 
invariants and can be used to distinguish certain weak mixing transforma­
tions. For example, given any increasing sequence s, one can construct 
a weak mixing transformation that is not mixing on s [7]. Thus if 7\ is 
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mixing on s, then there exists T2 not mixing on s. In particular, there 
does not exist a universal mixing sequence. 

The method of independent cutting and stacking [5, 6, 13] will be used 
to construct examples. A brief description follows. The construction takes 
place on the unit interval [0, 1) and all intervals considered will be left-
closed and right-open. A column C of height h is an ordered set of disjoint 
intervals Iu 1 ^ i | 4, that have the same length. The base of C is 
C = Ii, the top of C is C — Ihy the width of C is w(C) = ra(Ii), and the 
height of C is h(C) = h. We also let C denote the union of the intervals 
in C, which we refer to as levels in C. A column C can be pictured as the 
rungs on a ladder with It above I<_i, 1 < i ^ h. 

The corresponding transformation Tc maps It-\ onto I* by a transla­
tion, 1 < i ^ h. Thus Tc is defined on C — C. 

A tower G is an ordered set of disjoint columns. The top of G is the 
union of the tops of the columns in G, denoted by G. The base of G is 
the union of the bases of the columns in G, denoted by Q. The width of G 
is w(G) — m(G) = m(G). The transformation TG consists of Tc acting 
on C in G. A level in a column in G is simply called a level in G. We also 
let G denote the union of levels in G. Thus TG is defined on G — G. 

Let C be a column of height h with base I. Let I be a subinterval of I. 
We refer to Cj = (Tc

lJ : 0 S i < h) as a subcolumn of C. Let 

£ = m(J)/m(I) ^ 1. 

We also refer to Cj as a p-copy of C and denote O = pC. 
Given a tower G == (Cj : 1 ^j ^ k)y denote a p-copy of G as 

£G = ( 0 C , : 1 g j g i ) . 

Let pj = tt/(Q/w(G), 1 g j ^ £; hence (pi + . . . + ph) = 1. Cut G into 
disjoint copies Go = .5G and .5G. Cut the latter .5G into & disjoint 
copies Gj = pj(.5G), l S j S k; hence w(G^) = .5w(Cy), 1 ^ j ^ i . 
Thus the width of G y is the same as the width of the j th column in Go, 

Form the tower SG obtained by placing Gj above the jth column 
.5Cj in Go, 1 S j S k. The tower SG has k columns above each column 
in Go; hence SG has k2 columns. The width of SG is w(SG) = w(G0) 
— w(G)/2. Note that TSG extends TG to a set of measure m (Go) = 
w(G)/2, by mapping £;C^ onto G,, 1 | j ^ i . 

We refer to SG as the tower obtained by independent cutting and 
stacking of G. Let SkG = S(Sk~lG) and Tk = r ^ , & ^ 1, As a set, 
Gk — G so r* is defined on G — Gk, where m(Gk) = w(G)/2k, t ^ 1, 

If # is in a level in G, then Tk(x) will be defined for k sufficiently large. 
Thus a transformation T(G) can be defined on G as 

(2.5) r(G)(*) = lim^œrt(*). 
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A tower G is an M-tower if two columns in G have heights that are 
mutually prime. In particular, G is an Af-tower if two heights differ by 
one. If G is an M-tower, then T(G) is mixing [5]. Moreover, T(G) is a 
mixing Markov shift and isomorphic to a Bernoulli shift [6, 13]. Mixing 
implies that given c > 0, there exists a positive integer N{G, e) such that 

(2.6) \m(T(G)nI H / ) - m(I)m(J)/m(G)\ < e, n ^ N(G, c), 

where / and / are levels in G. 
Fix N è N(G, «). By (2.5) we can choose k = k(G, €, N) so large that 

if T extends Tk, then (2.6) implies 

(2.7) \m{TnIC\J) - m(I)m(J)/m(G)\ < e, N(G, e) ^ n ^ N, 

where / and / are levels in G. 
Let G be a tower with columns with rational widths. Using the greatest 

common divisor, we can cut the columns in G into subcolumns all of the 
same width w. These sub-columns are now stacked consecutively to form 
one column of width w that we denote by C(G). Note that if / is a level 
in G, then / appears as a finite union of levels in C(G). 

Let C be a column of height h and width w. Let u be a positive integer. 
The column C can be cut into u subcolumns of equal width w/u. These u 
subcolumns are stacked consecutively to form a single column denoted 
by SUC, with height uh and width w/u. 

Let e > 0 and t a positive integer. Choose u ^ e/i and let T be any 
extension of Tsuc- If / is a level in C, then the construction of SUC implies 

(2.8) m ( n r ' V ) è (1 - e)m(J). 

3. Sequences. A sequence si eventually contains a sequence 52 if all but 
a finite number of terms in $2 are in s\. The union of a countable set of 
sequences of density zero can have positive density. However, the follow­
ing unpublished result of S. Kakutani [11] states that there exists a 
sequence of density zero that eventually contains each sequence of density 
zero in the countable set. A proof is included for completeness. 

(3.1) THEOREM. Let D{sn) = 0, n è 1. There exists s with D(s) = 0 
such that s eventually contains sn,n è 1 • 

Proof. Let sn = (sf1) and ê  = 1/w2, n ^ 1. Given 5 = (sj), let 

(1) d*(s,u) = l i m ^ ^ s u p Vk/k, 

where Vk is the number of terms Sj that do not exceed k for j è u. For 
« e l , d*(sn, u) decreases to 0 as u —> oo . 

Choose U\ such that 

(2) d*(s\ m) < ci. 
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Assume ux < u2 < . . . < ur have been chosen so that for 1 g v S r> 

(3) d*(s\uv) < €„ l ^ n ^ v . 

Choose uT+1 > wr such that 

(4) d*(sn, wr+1) < €r+1, U ^ r + 1 . 

By induction we obtain an increasing sequence (uv) satisfying (3) for 
v è 1. Now form 5 as the union of sf1 for j ^ wn, w ^ 1. Since wen —» 0, 
it follows that Z> (s) = 0. 

(3.2) COROLLARY. A transformation is weak mixing if and only if it is 
mixing on a sequence of density one. 

Proof. Since (X, &, m) is separable there exists a sequence of pairs 
(Ak, Bk) that are dense in the sense that for any pair (A, B) we have 

(1) lim*_œ inf (m(AAAk) + m(BABk)) = 0, 

where A denotes the symmetric difference. We can choose a sequence sk 

with D(sk) — 1 such that Theorem (2.4) holds with s(Ak} Bk) = sk> 
k è 1. Let /* be the complement of sk in N. Apply Theorem (3.1) to 
obtain / with D(t) = 0 so that / eventually contains tk, k §: 1. Let s be 
the complement of t. It follows that T is mixing on s and D(s) = 1. 

We will now consider higher order mixing on a sequence 5. A transfor­
mation T is 2-mixing on s\i A, By C G 3$ imply 

(3.3) lim*in€, w ( r M C\ TkB C\ C) = m(A)m(B)m(C)f 

where k —» oo and n — & —> oo. Since T is measure preserving, C = X in 
(3.3) implies 

(3.4) lim*,n€5 m(T^*A C\ B) = m(A)m(B). 

The reason that 7* may be mixing on s but not 2-mixing on 5 is that 
k, n G s does not imply n — k G 5. In particular, T may be mixing on s, 
but (3.4) may not hold. If (3.4) holds, then we will say T is uniform 
mixing on s, in the sense that TnA mixes into TkB uniformly with respect 
to n — k. Note that (3.4) may not imply (3.3). Otherwise one could 
prove mixing implies 2-mixing since a mixing transformation is uniform 
mixing on every sequence. 

As in [8], a sequence s has upper density U{s) — u if u is the largest 
number for which there exist a, —> oo , bj — aj —> oo , and the number of 
terms in the sequence between aj and bj divided by bj — a, converges to 
u a s j —•> oo. Note that 5 may have D(s) = 0 but U(s) = 1 because 
s contains long blocks of consecutive integers with even longer gaps of 
consecutive integers in between. We will now prove that uniform mixing 
implies U(s) = 0. 
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(3.5) THEOREM. If T is weak mixing but not mixing and T is uniform 
mixing on s, then U(s) — 0. 

Proof, Consider the set D of positive differences p = n — k where 
k, n € 5. The set D can be written as D = {pi : i è 1}, where pt < pi+u 
i è 1. The gaps in D are pi+i — pui 2: 1. Suppose the gaps are bounded 
by a positive integer g. 

Since T is assumed weak mixing but not mixing, there exist A, B and 
€ > 0 such that 

(1) l i m ^ sup m{J«A C\ B) ^ m(A)m(B) + e. 

Thus there exist rj —» oo such that 

(2) m(TT*A C\B) è m(A)m(B) + e, j e 1. 

For each r ; there exists tjt 0 ^ ^ ^ g — 1, such that r, + tj £ D. Since 
there are only g possible values for tjy one value / must repeat infinitely 
often. Thus r5 + t 6 D for infinitely many j . Now 

(3) m(Tri+lA C\ TlB) = m(T^A H JB). 

Letz^ = tj + tand B\ = JT'JB; hence (2) and (3) imply 

(4) m(T^A C\ Bx) è m(A)m(Bi) + €. 

Now Vj £ D; hence Vj = n^ — kj so (4) implies 

(5) m(T**A C\ T**Bi) è m(A)m(B1) + e. 

Now (5) contradicts uniform mixing. Thus T cannot be uniform mixing 
on 5 if s — s has bounded gaps. 

The proof is completed by a remark in [8] that states that if s — s 
does not have bounded gaps, then 5 has upper density zero. A simple 
proof of this result, shown to me by B. Weiss, will be included for com­
pleteness. It suffices to verify that s has n mutually disjoint translates 
for n ^ 1. The translate of 5 by k is the set i -f k, i € s, which is denoted 
by s + k. Note that 5 is disjoint from s + k if and only if k $ s — s. 

Since 5 — 5 has unbounded gaps, there exists a positive integer 
ki $ 5 — 5; hence s C\ (s + ki) = 0. Now choose a gap in 5 —• s starting 
at k2 such that the gap exceeds ki; hence k\ + k2 $ s — s. Therefore s, 
s + ki, and s + ki + k2 are mutually disjoint. Note that k2 Q s — s 
implies 

(s + ki) n (s + h + k2) = s n (s + k2) = 0. 
Proceeding inductively, suppose ki, 1 ^ i< :§ n, have been chosen so that 

(6) s, s+J2ku 1 ^r ^ n, 

are mutually disjoint. Choose a gap starting at kn+i such that the gap 
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size exceeds X)"-i *<• It follows that (6) holds with n replaced by n + 1. 
Thus 5 has n mutually disjoint translates for n ^ 1. 

Since 2-mixing on 5 implies uniform mixing on s, Theorem (3.5) yields 
the following result. 

(3.6) COROLLARY. / / T is weak mixing but not mixing and T is 2-mixing 
on s, then U(s) — 0. 

In Example (4.6) we will consider a case where T is mixing on s and 
U(s) = 0, but T is not 2-mixing on s. 

In [8] Furstenberg defined a transformation T to be weak mixing of 
order r if At Ç 3!, 0 g i g r, imply 

(3.7) l i m - è U ( n TktAA - f lm( i4 , ) 0. 

Furstenberg proved that weak mixing implied weak mixing of all orders. 
As in the case of weak mixing, one can use Theorem (3.1) and (3.7) to 
show there exists a sequence s with D(s) — 1 such that 

(3.8) limwln TniAt) = f[fn(At), A^âS, 0 ^ i Û r. 

Furthermore, another application of Theorem (3.1) yields a single se­
quence 5 with D(s) = 1 such that (3.8) holds for all r è 1. In particular, 
for r = 2 we can rewrite (3.8) as 

(3.9) limwÇs m(T2nA C\ T^B C\ C) = m(A)m(B)m(C), AyB,C 6 # . 

Thus (3.9) holds for D(s) = 1, in contrast to Corollary (3.6). 
In Section 4 a transformation will be constructed that is mixing on a 

sequence s but is not uniform mixing on s. We have been unable to con­
struct a transformation that is uniform mixing on a sequence s but is not 
2-mixing on s. Another problem is to construct a transformation that is 
2-mixing on a sequence s but is not r-mixing on s for some r > 2. 

4. Mean convergence. We will now consider mean convergence of 
Césaro averages along a sequence s — (s,). L e t / € Lp, p â 1, and denote 

(4.1) /„(*) = I £f(T-°<x). 
n i=i 

The following result [1] relates mixing and the mean convergence of fn 

to the integral m (J) of / with respect to m. 

(4.2) BLUM-HANSEN THEOREM. A transformation T is mixing if and 
only if for each sequence s,fn converges to m (J) in Lv,f £ Lp, /> è 1. 
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Now suppose T is mixing on s. An example will be constructed to show 
that Césaro-averages along 5 need not converge in the mean. The idea of 
the example can be illustrated by a mixing sequence of sets. Let (An) be 
a sequence of sets with m(An) = a, n ^ 1. The sequence is mixing [12] if 

(4.3) l i n w m(An H B) = am (5), B G ^ . 

Let en > 0 and en —» 0. Let (/n) be an increasing sequence of positive 
integers that satisfy 

n-l 

(4.4) £ /,//, < €„, « > 1. 

Let (^4n) satisfy (4.3) with a = 1/2. Consider the sequence of sets (Bn) 
obtained by repeating An tn times, n è 1. This sequence will also be 
mixing. Let b(n) = (t\ + . . . + tn). The characteristic function of a set A 
will be denoted by A (x). The Césaro-average of the first b(n) character­
istic functions of sets in (Bn) is denoted by gn(x) ; hence 

(4.5) gn(x) = Ê M <(*)/*(»). 

Since m(X) = 1, it follows from (4.4) that 

\\gn - 1/2U! è 1/2 - en. 

Thus gn does not converge to 1/2 in the mean. 
We will now construct a transformation T, a corresponding mixing 

sequence 5, and a set A of measure close to 1/2 such that TlA, i G 5, 
consists of blocks of length tn that are approximately the same set, n ^ 1. 

(4.6) Example. The construction is by induction and the nth stage 
begins with an Âf-tower Gn with columns with rational widths. If / is 
a level in Gu\ ^ i < n, then / appears as a union of levels in Gn. Let Ln 

be the total number of levels in Gn and let en < wn/100Ln
2. With reference 

to (2.6) and (2.7), let Nn = N(Gn, en) and kn = k(Gnt eni Nn). Choose a 
positive integer 

rn ^ max 

and form G»i — SrnGn. We let Tnj denote TGnj for notational convenience. 
Since rn è K, (2.7) implies that if T extends Tn\, then 

(1) | m ( r / n / ) - m ( / ) m ( / ) / m ( G J | < C w , i = Nnt 

where / and / are levels in Gn. 
Now form the column GW = C(Gni). Each set A that is a union of 

levels in Gn will also appear as a union of levels in Gn2. Moreover, the 
choice of rn implies TNnA appears as a union of levels in G«2, except 
possibly for a set of measure at most en. This is because only the top Nn 
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levels in columns in Gn\ pass through the top of Gn\ under TNn. Thus 
we have 

(2) TNnA = U / i W £ , 

where J\ is a level in Gni, 1 ^ i â «S and m(£) < «„. 
We also have positive integers tjt 1 ^ j < «, and choose /w to satisfy 

(4.4) ; hence 

(3) 6(n - DA, < en. 

Now choose a positive integer un è 4Aw Form the column G«3 = SUnGn2. 
Let fen be the height of Gn2. If / is a level in Gni and T extends Tnz, then 
(2.8) implies 

(4) m(n Tjhnj) ^ ( 1 - € . ) * ( / ) . 

Let 5, = iVn + (j - b(n - 1))A„, ft(» - 1) g j < 6(w). From (2) and 
(4) we obtain 

( ft(n)-l \ 

n r M ) ^ (1 - 2en)m(,4). 
Lastly, let Gn+\ be the tower obtained by cutting Gnz into two equal 

columns and adding an extra interval above one column. Thus Gn+\ is 
an if-tower consisting of two columns with heights differing by one. 
The levels in Gn appear as unions of levels in Gn+i and the columns in 
Gn+i have rational width. This completes the induction step. 

We begin with an M-tower G\ with columns of rational widths. Take 
6(0) = 1 in (3). At each stage we add an interval to form Gn+j. It is 
easy to see that the sum of the measures of these intervals is finite. Let 
X — USLi Gn and assume m is normalized so that m(X) = 1. Thus we 
obtain a transformation T defined by 
(6) T(x) = l im^c TGn(x), x £ X. 

We first verify T is mixing on s — (SJ). Let A and B be sets that are 
unions of levels in G\\ hence A and B appear as levels in Gn, n è 1. If n is 
large, then m(Gn) is essentially 1 and (1) implies 

(7) \m{TN«A C\B) - m(A)m(B)\ ^ L2
nen = wn. 

It is easily seen that wn —» 0; hence 

(8) \\mn_>œrn(TN«A C\ B) = m{A)m{B). 

The same proof holds if A and B are unions of levels in Gk, k è 1. Since 
these sets generate «a?, it follows that T is mixing on (Nn). From (5) we 
conclude T is mixing on s. 
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To verify that the Mean Ergodic Theorem does not hold on 5, choose k 
large and fix A consisting of a union of levels in Gk such that 

(9) \m(A) - 1/2| < 1/100 and ek < 1/100. 

Now (5) holds for n > k. Let gn(x) be as in (4.5) with Ax = TlA, i è 1. 
From (9) and (5) we obtain 

H^-mOOHi è 1/8. 

Thus the M.E.T. does not hold on s. 

The preceding example shows that mixing on s does not imply the 
M.E.T. on 5. An inspection of the proof in [1] yields the following mixing 
condition that is equivalent to the M.E.T. on s. 

(4.7) Definition. A transformation T is Cêsaro uniform mixing on s 
if A,B e & imply 

Hm-2 J2 nt(TsiA Pi TsjB) = m(A)m(B). 

(4.8) THEOREM. The Mean Ergodic Theorem holds for T on s if and only 
if T is Cêsaro uniform mixing on s. 

Proof. hetfn(x) be defined as in (4.1) with/(#) = A (x). In L2 we have 

(1) \\fn - m(A)\\2
2 = ~- £ m(TsiA H T"A) - m{A)\ 

If T is Cêsaro uniform mixing, then (1) implies fn converges to m(A) in 
L2, A 6 SS. The M.E.T. now follows as in [1]. Conversely, suppose the 
M.E.T. holds. Le t / n be defined as above and let gn replace fn in (4.1) 
with/(x) = B(x) for B Ç 38. Thus / n and gn converge in L2 to m(A) and 
m(B)} respectively. Thus fngn converges to m(A)m{B) in L2. Hence fngn 

converges to m(A)m(B) in L1 and this yields Cêsaro uniform mixing on s. 

The proof in [1] can be used to verify uniform mixing implies Cêsaro 
uniform mixing. Since 2-mixing on 5 implies uniform mixing on 5, we have 
the following result. 

(4.9) COROLLARY. If T is 2-mixing on sf then the Mean Ergodic Theorem 
holds for T on s. 

The theorem of L. Jones [10] states that the M.E.T. holds on 5 for all 
weak mixing transformations when D*(s) > 0. Thus Theorem (4.8) is 
useful only when D+(s) = 0. In particular, this is the case in Corollary 
(4.9). 

In Example (4.6), hn —•> 00 implies U(s) = 0. Theorem (4.8) implies T 
is not Cêsaro uniform mixing on s. In particular, T is not 2-mixing on s. 
This also follows directly from (5). 
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5. Uniform sweeping out. Given an increasing sequence s = (&,), 
we say T sweeps out on s if m (A) > 0 implies 

m ( u TkiAJ = 1. 

If T sweeps out on all s, then we simply say T sweeps out. If T is mixing, 
then T sweeps out. In [2] sequence mixing is the term used for sweeps out. 
To avoid confusion with mixing on a sequence, we will use the latter term. 
The following characterization is proved in [2]. 

(5.1) THEOREM. A transformation T sweeps out if and only if 

liminim(TnAnB) > 0, m(A)m(B) > 0. 
n->oo 

If T sweeps out, then T is weak mixing [3]. Hence if T sweeps out, then 
T is mixing on a sequence of density one by Corollary (3.2). However, 
there exist weak mixing transformations that do not sweep out. There 
also exist transformations that sweep out that are not mixing [4]. We will 
now consider a uniform type of sweeping out defined as follows. 

(5.2) Definition. T sweeps out uniformly if given a set A of positive 
measure and e > 0, there exists N = N(A, e) such that n ^ N implies 

mi U TkiA ) > 1 - e for all *! < *2 < . . . < kn. 

It is shown below that mixing implies uniform sweeping out. The 
following result is motivated by Lemma 1 [1]. 

(5.3) LEMMA. Let T be mixing, m (A) > 0, and e > 0. There exists 
N = N(A, e) such that n è N implies 

A E \m(TkiA H TkjA) - m(A)2\ < e, 

for all ki < k2 < . . . < kn. 

Proof. Since T is mixing, we have 

(1) Hm l M_,U o om(rM H T'A) = m{A)\ 

Choose w so large that \u — v\ > w implies 

(2) {rniVA C\ T°A) - m(A)2\ < e/2. 

Choose N > (4w + 2)/e. Now consider ku 1 ^ i' S n, n è N. For each i 
there are at most 2w + 1 values of j such that \kt — kj\ ^ w. Since a term 
on the left of (2) is bounded by 1, we have 

(3) A £ \m(TkiA r\ TkjA) - m(A)2\ è - ^ L + _ l ) « + i < e. 
n i,j=i n £ 
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Lemma (5.3) will now be used to obtain a uniform version of the Blum-
Hansen Theorem. We denote 

/.(*) = ~ £f(T~kix). 

(5.4) THEOREM. Let T be mixing, p è 1, andf £ Lp. Given <= > 0, there 
exists N = N(f, e) such that n ^ N implies 

ll/n - w(/)||„ < e forallki< . .. < kn. 

Proof. If f(x) — A(x), then Lemma (5.3) yields the result for p = 2 
since (3) above with e replaced by e2 implies 

a) H/, - »(4)n, ^ «. 
If / is a simple function of the form 

(2) /(*) = E M i W , 

then we have 

(3) 11/» - m(f)\U ^ Z \at\ ||/,., - f»(.4«)||*. 
< = 1 

Here/n , i corresponds to f = A u 1 S i ^ k. Choose 

N = max {N(AU e/k\at\), 1 g i ^ k). 

Thus n ^ N implies the right side of (3) is less than (. For / £ L2, we 
approximate by a simple function g so that ||/ — ^|J2 < «/3. Since T is 
measure preserving, we obtain 

(4) ||/n « gnh < €/3, n è 1. 

Now choose JV = N(g, e/3) ; hence n ^ N implies 

(5) ||/B - m(f)||, ^ ||/, - &||a + ||& - «(g)||, + |m(g) - m(/)| < «. 

If p = 1, then the result follows from Holders inequality and the result 
for p = 2. If £ > 1, then as in [1], let g be bounded by M; hence 

(6) | |g | | / g (1 + Af») Hflli. 

The result now follows from p from (6) and the result for p = 1 since 
simple functions are bounded. 

(5.5) COROLLARY. If T is mixing, then T sweeps out uniformly. 

Proof. Let m (A) > 0 and choose N = N(A, e2m(A)2) in Lemma (5.3). 
Let 

B = ( 0 TkiAJ; 
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hence 

B H T**A = 0, 1 g i g n. 

Let fn correspond t o / = A Therefore Lemma (5.3) implies 

I f 
m(A)m(B) = I (fn(x) — m(A))dm 

Thus m (5) < e. 

g | | / n - m ( 2 4 ) | | i < € w ( i 4 ) . 

Let us now consider the following version of Theorem (5.1) for a 
sequence s. The proof follows as in [2]. 

(5.6) THEOREM. T sweeps out on all subsequences of s if and only if 

lim mim(TnA C\ B) > 0, m(A)m(B) > 0. 

In particular, if T is mixing on s, then T sweeps out on all subsequences 
of s. However, mixing on 5 does not imply uniform sweeping out on s. For 
consider Example (4.6) (5). This implies T**A is essentially invariant 
iorb(n — 1) Sj < b(n) andb(n) — b(n — 1) —>co. 

If T is uniform mixing on 5, then the same proof of Lemma (5.3) yields 
the conclusion for kt Ç s, 1 g i ^ n. In this case Theorem (5.4) holds for 
ki G s, 1 ^ i ^ n. The analog of Corollary (5.5) also holds, where uniform 
sweeping out on s corresponds to Definition (5.2) with ki Ç s, 1 g i' ^ n. 
In particular, if Tis 2-mixing on 5, then there is uniform mean convergence 
on 5 and T sweeps out uniformly on s. 

An open problem is whether the converse of Corollary (5.5) holds. 
There is also the question of whether sweeping out uniformly on s implies 
uniform mixing on s. 

The following corollary of Theorem (5.4) states that given a set A and 
e > 0, there exists N such that for any set B, not more than N iterates of 
A can be badly mixed in B (with respect to e). The original formulation 
of this result (and (5.8) below) is due to S. Kalikow, where m{B) had 
to be bounded away from zero. 

(5.7) COROLLARY. Lei T be mixing, m(A) > 0, and e > 0. There exists 
N = N(A, e) such that for any set B there are at most N positive integers k 
such that 

\m{TkAC\B) - m(A)m(B)\ > e. 

Proof. Le t / (*) = A(x) with p = 1 in (5.4) and let Ni = N(f, e) in 
(5.4). Choose N = 2Ni and suppose the conclusion does not hold. Hence 
there exist B and kit 1 â i' è Ni, such that 

(1) m(Tk<A r\B) - m(A)m(B) > e (or < - e ) , 1 S ig NL 
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Now (1) implies 

i Ni 

(2) e<iz~lL m{TkiA C\ B) - m(A)m(B) 
iVi f=a 

= I (ÏNI(X) ~ m(A))dm g \\fNl - m{A)\\x < e. 
J B 

This contradiction implies N = 2N\ and hence the conclusion. 

(5.8) COROLLARY. Let T be mixing, m (A) > 0, and e > 0. There exists 
N = N(A, e) such that for any sets B and C andj sufficiently large there are 
at most N positive integers k such that 

\m(TkA H T'B O C ) - m(A)m(B)m(C)\ > e. 

Proof. Let N = N(A, e/2) in (5.7). Choose./ sufficiently large so that 

(1) \m(TjB C\C) - m(B)m(C)\ < e/2. 

The conclusion follows from (5.7) with B replaced by TjB C\ C. 

Note that Corollary (5.8) is in the direction of mixing implying 
2-mixing. 
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