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HOLONOMY DECOMPOSITIONS OF NEAR-RINGS

by M. HOLCOMBE
(Received 15th September 1978)

Some techniques developed by Eilenberg (1) in the theory of automata are used to
investigate certain types of near-ring.

1. Transformation semigroups

Let P be a non-empty set and S a semigroup with identity then the pair (P, S) is
called a transformation semigroup if a semigroup homomorphism <f>:S-> Map P
exists with a trivial kernel. For the sake of notational clarity we will write the action
of an element s G S on an element p E P as s(p), rather than <f>(s)(p). For any p G P
define p:P-*{p} as the constant transformation of p and then put (P,S) =
(P, (S U U peP{p})), where (5 U U peP{p}) is the semigroup generated by S and U p£P{p}.
For any s G S the set s(P) = {s(p) | p G P} will be called the s-image of P. Associated
with (P, S) is the space $° of all s-images of P. Note that {p} may not belong to ^°
where p G P. Thus we introduce the idea of the skeleton space $ of (P, 5), this consists of
/ U P U ( U pSp{{/>}})- A preorder =£ may be defined on $ as follows, if A, B G / then
A =£ £ iff ,4 C s(B) for some s G S. The set / with the ordering =£ is called the
skeleton of (P, 5). We may now define an equivalence relation ~ on $ by putting A ~ E
iff A ss B and B *£ A We can now introduce the holonomy groups.

Let A G 0° and put K(A) to be the set of elements of S that behave as units on A,
more precisely K(A) = {s G 51 3f G 5 with M = A and sf(a) = t5(a) = a, Va G>\}.
Note that for a given s G S there may exist more than one t which acts as an inverse
for s on A. However the restriction of t to A is unique. Let B(A) = {B G $ \ B C A
and if C G ^ with BCCCA then either C = B or C = A}. Thus B(,4) consists of
those images of P that are contained in A and are maximal with respect to this
property. Each s G K(A) acts as a permutation on B(A) and the set <£(v4) of the
distinct permutations of B(A) induced by the elements of K(A) is called the
holonomy group of A. Then the group 'S(A) acts as a transformation group on the
maximal image space of A, B(A). Eilenberg proved that any finite transformation
semigroup may be covered by a wreath product formed from these holonomy
transformation groups. This insistence on the finiteness of both P and S is not
entirely essential. The notion of a covering may also be extended to other situations.
Let (P, S) and (Q, T) be transformation semigroups. We say that (Q, T) covers (P, 5),
written (Q, T) > (P, S) if there exists an onto partial function / : Q -* P and if to each
s&S there corresponds a t G T satisfying s(f(q)) = f(t(q)) for q G Q.

The wreath product of two transformation semigroups (P, S)°(Q, T) consists of

43

https://doi.org/10.1017/S0013091500003588 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003588


44 M. HOLCOMBE

the pair (P x Q, S x T") where T" is the set of all maps from P into T and we define
(s,h)(p,q) = (s(p),(h(p))(q)) for all (s, h) G S x r',(/>, q ) G P x Q. Returning to the
skeleton (^, =£) of (P, 5) we now examine the concept of a height function. This is a
function h from $ into the set Z of integers satisfying the conditions

H.F. 1 h({p}) - 0 for all singletons {p} G j?

H.F.2 ^ ~ B ^ > / I ( A ) = / I (B) where A B G J ?

H.F.3 ,4<£i>/ i (A)<fc(B)if A, B G ^ and card A>\

H.F.4 If 0 =£ j ^ h(P) then 3 A G ̂  such that /i(A) = i.

There may be many height functions on (P, 5) and if (P, 5) is finite, height functions
always exist. In the rest of this section h:£^>Z will denote a fixed height function
and h(P) will be called the height of (P, S).

Let 0=£/=£/i(P) and write / ( / ) for the set of all elements of $ of height i, so
$(i) = {A G $ | h(A) = /}. We may partition / ( i ) using the equivalence relation ~
defined on $. If there are a finite number of equivalence classes under ~ on the set
/(«') for each 0 =£ / =£ h(P), we say that (P, S) is of finite breadth. Given any 0 « i *£
h(P) we choose a set {A;/1 j G /} of representatives of the equivalence classes on ${i)
and then define the transformation semigroup (Uj^jBiA^), riyej^(Aip) which will be
denoted by the symbol % The result of Eilenberg's that we need is:

Theorem A. / / ( P , S) is a finite transformation semigroup and h : $ -» Z / s o height
function then (P, S ) < f , = ^n-i ° • •• ° ^ , H>fcm! n =

Thus the semigroup 5 is a homomorphic image of subsemigroup of a wreath
product of groups formed from the distinct holonomy groups. If we move to the case
where (P, S) is an infinite transformation semigroup then the result may still be true.
The wreath product of an infinite family of transformation groups may be defined but
Eilenberg's proof, which involves the use of relational coverings of finite rank, does
not seem to generalize very easily. However if the transformation semigroup has a
finite height function and is of finite breadth then we may make some progress.

We will apply the Eilenberg techniques in one main direction.

2. The 2-primitive near-ring MG(T).

In this section N = MG(O where G is a group of automorphisms on T, an additive
group, and the number of orbits of F under G is n < °°. The near-ring N becomes a
transformation semigroup (N, N) when we interpret the operation of the semigroup of
N on N as left multiplication. The set ^° then consists of all the principal right
N-groups of N of the form aN, a E.N.

Suppose that y\,...,yn are distinct non-zero orbit representatives, so that F =
(0) U ( U ?=iy,-G). Put I = {1 ,2 , . . . , n), then for each i G / there exists an idempotent
e , £ N defined by 7,3 = 7, and •y,e1=0 = 0e1 for iVj. Then JV = ©,e/C,iV. The N-
subgroups etN are minimal (type 2) right ideals of N. Note that e,JV G $ for i G I. Now
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let JCI and consider ©j-ej(cyN'). Since Sye/£,E©yGyeyN we have (1jBjej). NC
©/ey(e,iV). Now let 2yEye,-n,- G ©ye/(£yN) where «y G JV. Define elements m, G iV for
7 G / by y/ffiy = yy«y, ytmy = 0 for k^ j,k El. Consider (2ye/«y)(2ye/my) then for

Now

M6J

and so

\ f 0 if ig /
'n'J = ly,n, if/E/

hence ©yej(eyJV) = (S.jejej)N. Thus each ®ieJ(e)N) G / for / C /. Also, for / C / and
/ ' C / with | / | = | / ' | we have (2yeJ et)N ~ (2 t e J . ^ ) N To see this we introduce the
following mappings, for t, s G / define / r e : F - » r by yrfrs = ys, y,frs = 0 for t^ r and
0/,s = 0. Then / „ G N. Now let / = {7,, j 2 , . . . ,jq} and / ' = {Jfci, k2,..., kq) and consider
y = (2?=. /j*)(2?_, ekl)(2U fuj- Then y/(y = y,,fort = l,...,q and y,y = 0 for i g / . Thus
y = 2f=i Cy, = 2yey £y and thus (2/e/«y)A/C(2?=i/y,jt,)(2tsy e t )N and so (2yey«y)N=£

and by symmetry (2yey e,)N ~ (2k ey et)N. Also 2 ; 6 / e>N =

Clearly if JQJ"Ql then

We now consider any 0 ^ f l £ N and look at the principal right N-group aN.
Clearly aN G / . Suppose that there are s distinct non-zero orbits in the set Ta, where
1 « s « n, let these have representatives y , , , . . . , yis. Put es = 2^=1 eim then aes = a for
if y G T then ya = yimg for some m e { l , . . . , s } and gE.G, then yaes = yimges =
yim£sg ~ yij! = ya. Hence aN C aesN and so aN =s esAT. Now, for each m G
{ 1 , . . . , s}3jm G / such that yym« = yimgm for some gmE.G. Define a function
n ' : T - > r by y,mn' = yym for m G { l , . . . , s } and y«' = 0 for y G T \ U i,=, y^G. Then
n' G AT. Also define for each wi G { 1 , . . . , s} a map nim : F-» T by y,mnim = ylmf m1 where
fcGG and yyraa = yimgm. Now consider 2 = n'a.(1s

m=i «•„). Let / G { l , . . . , s } then
y;,z = y/(a(2m=i n,m) where yy,a = y^gh so yhz = yi,g/(2J,=i n,m) = y/,. For y G r\2f=, yhG,
yz = 0. Thus z = e, and hence esN Qn'aN =$>e,N =saiV. Thus esN ~ aN. Note that
CjJV C esn'aN C e5N so £,JV = (esn')aN and also

Theorem 1. For a EN with a^0 f/ien a N ~ e,JV where es is the sum of s distinct
idempotents where s is the number of non-zero orbits in Fa.

This means that the skeleton of Mc(F) is particularly simple. The height of aN is
the number of non-zero orbits of Fa and Mo(F) has a maximum breadth of 1.
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Thus we have:-

N
T

T
•• + e,)N]
t
T

t
(0)

where the square brackets indicate —equivalence classes and the vertical arrows
denote the relationship <.

We must now establish the holonomy groups of the rt. N-subgroups esN =
(«, + ••• + es)N. Recall that K(esN) = {a E N | 3a £ AT with aesN = esN and aaesn =
aagj« = e,n for all n G N}.

Theorem 2. a G K(esN) if and only if (Tes)a = Tes and a is bijective on (Tes).

Proof. If (Tes)a = Tes with a bijective on Tes, let y,a = yjgh where / , e { 1 , . . . , s}
for i = 1 , . . . , s. Define a :F-»r by y;,.a = yigT' for i = 1 , . . . , s, Od = 0 and yd = 0 for
y G r\Tes. Then ypad = yp for pG{l s} and ypda = yp for p G { 1 , . . . , s}. Then
ypdaesn = ypesn = ypdaesn for all p 6 { l s}. For y£ { 1 , . . . , s) then y^daeji = 0 =
yjdaesn = yfisti. Hence a G K(esN). The converse is also easily proved.

We now construct the set B(esN). Let 5 = {1,2 , . . . , s} and S° = {0,1,2, . . . , s}.
Suppose that aN E B(esN) then aN C* esN and if aN CbNC esN for some ft £ N then
either aN = WV or bN = esN. Clearly a G esN and so yfl = 0 for / G / \ 5 . We examine -y,a
for i G S. It is soon evident that either y,a is non-zero for all i G 5 or -y.a = 0 for only one
/ G S, otherwise aN ceases to be maximal in esN. We have two cases, in the first case
there exists /,;" G S such that yta ~ y-fl and the remaining yka are in distinct orbits, and in
the second case yta = 0 for one i G 5 and in distinct orbits for all other yka. We now
represent a by the pair (/, h) where f:S°->S°, h:S^>G so that yta = y/(,)/i(i) where
/(0) = 0 and y0 is interpreted as 0r. Then in either case \f(S°)\ = s and any such pair will
define an element a such that aN is maximal as a rt. N-group in esN. However flN = bN
could occur with a ^ b. To find the distinct elements of B(esN) we must consider the
relation a « b & aN = bN. Then if a = (f, ft), b = (/,, ht) we have a G bN and b G aN.
Then 3n, n ' £ N such that a = bn, b = an'. Thus for / G 5

y,a = r A , that is ymh(i) = ymh'(i)n = yfV)nh'(i).

If / ( / ) = 0 but / ( / ) * 0 for / G 5\{/} then («, + ••• | ' • • • es)a = a and so a G
(«i + ••• t ' ' • • • + «S)N which is maximal in («i + • • • + eJN. However, if / ' ( /) = f'(j) * 0
for 1V7 then -y/(1)n = yni)h(i)(h'(i))~l and yro)n = yf(j)h(j)(h'(;))"' which implies that

=/a) and
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Thus (/, h)=(/', fc')<=> either /(/) = /'(i) = 0 for some i G S:

or

and

Then B(e~sN) consists of the ^-equivalence classes constructed in this way. The elements
of K(esN) gives rise to mappings a: FesN -* resN which are bijective on TesN and
each map a may be considered to be an ordered pair (a*, a**) where d*:5-»5
and d**:5-»G defined by «*(/) = /, and d**(i) = gi where y,d = y^ for each i GS.
Thus we need only look at the group (5S) ° G. We define the relation = on (Ss) ° G by
putting (a,/3) = (a,,/?,)<» (a, B)xN = (au Bt)xN for all xN G B(esN). Now let x =
(/, /t) where / :S°->5° with |/(5°)| = 5 and /i: 5->G as before. Then we want (a,B)
(/, h) = (a,, piKf, h) for all (/, A) of this type i.e. (/(a), h(a) • B) - (/(«.), J»(«i) • j8t) where
(/(a)(i) = /(«(/)), (A(a) • /5X0 = h(a(i)) • B(i) for each i G S. If a(i) 5̂  «,(/) for some
i G S then we can find / : S°-» S° such that |/(S°)| = s and /(a(i)) = 0 and /(a,(0) ^ 0 but
f(a\(j)) = 0 for some / G S, jV i. Then (/(a), /i(a) • /3) ¥> (/(«i), A(a,) • /8) which is false.
Thus a = ai. Now choose any /, / G S with i ^ j . There exists f:S°-*S° with |/(S°)| = s
and /(/) = / 0 ) # 0 and so (/i(a(i))/3(0)(fc(ai(0W/)r' = (h(a(j))p(])Xh(aiW)Pt(iyrl

that is hiaiOWOBiiO^hiaii))-1 = A(a(y))/3O)/3lOT1/j(aO))"' for any /i. Hence for any
c, d GG we have CJSCO/SIOT'C"1 = dB(j)Bxi}Txd~x and thus B(i)B,(i) = B{j)B^j)-x for any
i,; G S. Consequently if Z(G) is the centre of G we have /3 = B, if Z(G) = {1}. Otherwise
/3i(i) = z • B(i) for some 2 G Z(G) and all i G S. Hence, if we regard Z(G) as a subgroup
of 5S ° G we see that ^(^N) = (5s ° G)IZ(G). A study of the proof of Theorem A in the
light of these results yields:

Theorem 3. If N = MG(O and dimGr = n < <»,

(N, N) < (fl(N), ((5n) - G)IZ(G)) o (B(eH.,N),

((S,,.,)»G)IZ(G)) o • • • o (B(e,N), ((5,) o G)IZ(G)).
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