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HIGH ORDER DERIVATIONS AND HIGH 
ORDER LIE-LIKE ELEMENTS 

S. T. CHANG 

I n t r o d u c t i o n . We can define high order derivat ions of an algebra into the 
ground field by diagrams. Then consider the same diagrams in the category of 
coalgebras. By reversing all the arrows in these diagrams, we come to a new 
notion - high order Lie-like elements of a coalgebra. These elements are useful 
in the s tudy of the s t ructure of coalgebras and sequences of divided powers. 

W e assume the knowledge of [7] and use the same conventions and notat ions. 

1. De f in i t i ons a n d c o n n e c t i o n s . Nakai [6] defined high order derivat ions 
from a commuta t ive algebra A to an A -module M and derived some properties 
of them. If A has an a u g m e n t a t i o n s , the ground field K becomes an A -module. 
If we restrict ourselves to high order «-differentiations (high order derivat ions 
of A to K), the commuta t iv i ty of A is no longer necessary. Now we give the 
dual definition - high order Lie-like elements and s ta te some dual properties 
(for direct proofs see [1]). 

Let (C, A, e) be a coalgebra. For any integer n ^ 2, An = ( / ® A)Aw_i = 
(A (x)7)An_i. Fur ther , let A0 = / . For any positive integer q, ®qC = 
C ® C ® . . . ® C (q t imes) and for any element x in C, ®qx = x ® x ® . . . 
(x) x is in ®3C. T h e n for any integers 

1 ^ H < H < • • • < is = <Z + 1 (where l S s ^ q), 

we define a utwist" m a p r ^ . . . ^ from (x)e+1C into itself by 

Ttl...u(Xl ® • • • ®*ff+l) 

= xtl ® . . . ® xis (g) xi . . . (g) xH ® . . . (x) xu (x) . . . ® xq+i. 

Let Tilm..u be the inverse of Tix...u. 

Definition. For any a Ç G(C) (i.e., a group-like element of C) and any 
positive integer q, an element x G C is called a g-th order Lie-like element of C 
relative to a if and only if 

Aqx = £ U ( - I ) * - 1 E f i<. . .<i . î , i 1 . . . i . (®a ® Ac_ sx). 

W e denote by La
q(C) the set of g-th order Lie-like elements of C relative to 

a and p u t La°°(C) = U?=i ^ ( C ) . 
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For a G G(C), x G C and/ G C*, we set 

[*,/]« = x<f-f(a)x-f(x)a (G C) 

where x <f = (f ® 7)Ax = E(*)/(x(i))x(2)- We shall drop the subscript a 
if it is clear from the context. For simplicity we shall write [x,/i, . . . , / J 
for [ [ . . . [ * , / J , . . . ] , / t ] . 

THEOREM 1. Le£ a G G(C) a?zd /#/ D &£ any dense subset of C*. Then an element 
x of C is in La

Q(C) if and only if [x,/i, . . . , / J = 0 for any elements fu . . . ,fQ 

in D. 
COROLLARY 1. For any integer g ^ 2 , x G La

Q(C) if and only if 
[x,f] G Lj~l(C)for every f G D. 

COROLLARY 2. For any integer a ^ 1, x G La
Q(C) implies x G La

n(C) for any 
integer n ^ q. 

PROPOSITION 1. For any integer q ^ 1, x G La
Q(C) implies e(x) = 0. 

PROPOSITION 2. Le/ (x0, . ) be a sequence of divided powers in C. 
Then x0 G G(C) and xq G LXQ

Q(C) for any positive integer q. 

Let A be an algebra, A0 its dual coalgebra [7, Proposition 6.0.2] and 
Diffa

9(A) the set of q-th order ^-differentiations of A, i.e., 

Disa
Q(A) = {ô eA*\ô(x&1...xq) = E - i ( - i ) 5 " 1 E < K . . . « . « ( * « I ) - - -

a(x is)5(xo. . . Xi! . • . xu . . . Xç) for all x0, Xi, . . . , xQ (z A} 

With the help of Proposition 6.0.3 of [7] it is easy to see that Diff«l4 = La
l(AQ). 

But for q > 1, DiftjA 9* La
Q(A°) in general. 

PROPOSITION 3. La
Q(A°) C Difia

q(A). For any element ô G Diffa
ff(^), we 

have Ô G La
Q(A°) if and only if ô £ A0. 

Proof. 

La
Q(A°) = {ô G ̂ °|A,5 = ZU ( -1 ) 5 " 1 E iK...<*. Tilmm.u((S)'a ® A,_s5)}. 

DiffaV) = {5 G i4*|«(*o*i . . . x,) = E î-i ( - l ) " 1 E «K...«. «(*<i) • • • 

a(xis)8(x0 . . . xu . . . xis . . . x?) for all x0, Xi, . . . , xQ G A} 

= {a e4*|(A f lô)(xo®xi®... ®x,) = E L i ( - i ) 5 " 1 E«i<...<«. 

7\i...*.(®*a ® A(7_sô)(xo ®Xi ® . . . ®xff) 

for all xo, Xi, . . . , xff G 4̂} 

= {ô G ̂ 1*|A,5 = E ï-i ( " I ) " 1 E « . . . « . Î V . a ® ' a ® A,_sô)}, 

where, by abuse of notation Aq also denotes the map A* —» (®4+1^4) which 
is the dual map of the multiplication (g)q+1A-+A (where ®q+1A means 
A ® . . . ® A q + 1 times). The rest of the proof is clear. 
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Thus to show Diff/,4 ^ La
Q(A°), it is enough to find an element <5 Ç Diff«*(i4) 

which is not in A0. We now give such an example. 

Example. Let A = i£[xJT=i be a polynomial algebra in infinitely many 
indeterminates Xi, x2, . . . over a field X. Let P be the subset of A consisting 
of zero and all polynomials of positive degree. Then A = K © P. Let a be the 
projection of A onto K. Then a is an augmentation of A with augmentation 
ideal P. Since 

( J-? X ^ , XfXj) XiXjXfcy • • •} i,j,k=l 

is a basis of A over i£, we can pick ô £ A* such that 8 (x*2) = 1 for i = 1 , 2 , . . . 
and ô kills any other element in this basis. By straight forward computation 
one shows 8 £ Diffa

2(^4). But we show now that <5 (? A0. By Proposition 6.0.3 
of [7], it suffices to show that 8 < A is infinite dimensional (where, for each 
a G A, 8 < a is defined by 8 < a(x) = 8(ax) for all x Ç ̂ 4). Consider ô < x*. 
We have 8 < #*(#*) = 8(xt

2) = 1 and if y ^ x* is any other element in the 
basis, 8 < xt(y) = 8(xly) = 0. That is, 8 < xt = xf* is the element in A* 
dual to x^ Hence {8 < Xi}T=i is a linearly independent set. Thus 8 < A is 
infinite dimensional. 

PROPOSITION 4. Let A be an algebra with an augmentation a such that the 
augmentation ideal Ker(a) is finitely generated. Then Difla

q(A) = La
q(A°) for 

every positive integer a. 

Proof. For any 8 Ç Diffa
q(A), we have to show 8 Ç A0. Let {xi, . . . , xn] be 

a set of generators of Ker(a). For any monomial x^x^ . . . xjq . . . xjq+t in the 
XfS of length > q, put yt = xH for i < q and yq = xjq . . . xjq+t. Now 

8(xjoxH ...xJq... xjq+t) = 0(3/03̂ 1 • • • y«) 

= S ï-i (~i)s_1 Z) *i<...«.a(yii) • • • <x(yu)à(yo • •. Su • • • Su • • • y«) 
= 0 

since y0, yi, • • • » yq £ Ker(a). Let 6" be the subset of Ker(«) consisting of all 
elements in Ker(a) expressible as a linear combination of monomials in the 
x / s of length > q. Then clearly 5 is an ideal of A (since A = K 0 Ker(a)) 
and 5 is contained in the kernel of 8. Since the number of monomials in the 
XfS of length ^q is finite, S is a cofinite subspace of Ker(a). Thus 5 is a 
cofinite ideal of A contained in Ker(ô), hence 8 £ A0. 

Remark. One can find an example to show that Ker(a) being finitely gener­
ated is not a necessary condition. 

Recall that a higher differentiation of an algebra A is a sequence 
(ôo, ôi, . . . , 8n) of elements in A* (where n may be infinite) such that for 
x, y G A, 

5j(xy) = J2 <-<> Ô<(*)Ô/-<60, i = o, 1 , 2 , . . , , w. 
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T h e following proposition shows t ha t higher differentiations of A are nothing 
bu t sequences of divided powers in A0. 

PROPOSITION 5. Let A be an algebra. Then a sequence (<50, 5i, . . . , 8n) of 
elements in A* is a higher differentiation of A if and only if it is a sequence of 
divided powers in A °. 

Proof. Suppose (50, ou . . . , ôn) is a higher differentiation of A. Then for any 
x and y in A, 

Aôj(x ®y) = ôj(xy) = £ i-o«*(*)«^<0y) = Z Lo «, ® ^ _ , ( x ®y) 

for j = 0, 1, . . . , n. Thus 

A^- = X) <=o $< (x) ^_*; j = 0, 1, . . . , n. 

Therefore (ô0, 5i, . . . , 5W) is a sequence of divided powers in A0 provided each 
ôj is in A°. Bu t this is t rue by Proposition 6.0.3 of [7]. Conversely if 
(ôo, ôi, . . . , 5n) is a sequence of divided powers in A0. Then for any x, y £ ^4, 

^ ( r y ) = A8j(x ® y ) = X) l-o «< ® 5,-_,(x ® y ) = £ Lo«<(tf)ô,-i(y) 

for j = 0, 1, . . . , n. T h a t is, (50, 5i, . . . , 5n) is a higher differentiation of A. 

Now we reverse our direction. We shall connect high order Lie-like elements 
(respectively sequences of divided powers) of a coalgebra C with high order 
differentiations (respectively higher differentiations) of the algebra C*. 

Le t C be a coalgebra and a £ G(C). Then the m a p x —> x° (where x°(f) = 
/ ( * ) for all feC*) embeds the set La*(C) into the set Diffao*(C*) for every 
positive integer q. I t also embeds the set of sequences of divided powers in C 
into the set of higher differentiations of C*. 

PROPOSITION 6. / / C is finite dimensional and a £ G(C), then LJ(C) == 
Diffao«(C*) as sets for every positive integer q and the set of sequences of divided 
powers in C is isomorphic to the set of higher differentiations of C*. 

Proof. Since a is a group like element of C, it is easy to see t ha t a0 is an 
augmenta t ion of C*. Since C is finite dimensional, Ker(a°) is finite dimensional. 
W e can apply Proposition 4. Now 

Diffao«(C*) = Lao*(C*°) = Lao*(C**) ^LJ(C). 

Finally the set of higher differentiations of C* is the set of sequences of divided 
powers in C*° = C** = C (Proposition 5) , which is isomorphic to the set of 
sequences of divided powers in C. 

2. S e q u e n c e s of divided powers . 

PROPOSITION 7. Let (x0, .) and (3/0, yu • • • , Ju • • •) be two 

sequences of divided powers in a coalgebra C. If xt = yt for i = 0, 1, . . . , N, 
then 

xN+j - yN+j G Lxo
j(C) for j = 1, 2, . . . . 
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Proof. We prove by induction on j . For j = 1, 

à(xN+i - yN+i) 

= A(x^+ i) - A(yN+i) 

= 12 S x * (g)xN+i-i — l^TiN* ®yN+i~i 

= 12 S x* ® Stf+i-i - ( 12 *=i * « <8) a*r+i-i + *o ® y^+i + y^+i (x) x0) 

= Xo ® x^+i + *i\r+i ® x0 — x0 ® y^+i — 3^+1 (x) x0 

= xo (g) (xN+i - yN+i) + (xN+i - yN+i) ® x0. 

Thus xN+i — yN+i G L^o^C). Now assume the proposition is true up to 
j — 1 and prove xN+j — yN+j G Lxo

j(C). By Corollary 1 of Theorem 1, it 
suffices to show that [xN+j — yN+j,f] G L ^ - 1 ^ ) for all / G C*. But 

[XJV+^ — 3^+;» / J 

= (/ ® I)A(xiV+J- - 3̂ +,) - f(x0)(xN+j - yN+j) - f(xN+j - yN+j)x0 

= (/ ® J) (Ax +̂;- - Ay^+i) - /(xo) (x^- - yN+j) - f(xN+j - yN+j)x0 

— 2-J i=° \f\Xi)XN+j-i ~ f\yi)yN+j-i) ~~ f\Xo){XN+j ~ yN+j) ~~ f\XN+j — yN+j)Xo 

= 12 Ti ' - 1 (f(xt)xN+j-.t - f(yi)yN+i-i) 

= Y,Ni=i~l (f(xN+J-t)xi -f(yN+j-i)yi) 

= 12 £ î (f(xN+j-i)xt - f(yN+j-i)yt) + 2^/~V(**+*-<)(s« - yO. 
Thus by our induction hypothesis, we see that 

[ x ^ - - yN+j,f] G Lxo^HO for a l l / G C*. 

PROPOSITION 8. Le£ B be a bialgebra over a field K of characteristic zero. Let 
a G G(B), xi, . . . , Xj, G -k i 1 ^) awd 

<*J = X(<Zi (?;)€ S(i)^l f l l • • • Xfj/fall) . . . (^ ! ) 

for j = 0, 1, 2, . . . , Tfl&ere 

5(j) = {(<Zi, • . . , ? ; ) £ N^|gi + 2q2 + . . . + jg , = j } . 

Then (do, d\, . . . , djf . . .) is a sequence of divided powers in B. 

Proof. First note that for any x G Li1(B), the sequence 

( l ,x ,x 2 /2 ! , . . . , x V j ! , . . . ) 

is a sequence of divided powers in B (the proof is simply by induction). Using 
this and the fact that 

Ad, = Z( f f l w)AaA(*i'Vffi!) • • • A(x/y/(Z,!), 

one can show that Ad, = 12i=od* ® d ;- f by computing. 
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THEOREM 2. Let B be a bialgebra over a field K of characteristic zero. Then a 
sequence (1 = d0, di, . . . , dj, . . .) in B is a sequence of divided powers in B if 
and only if 

dj = ]C(«i.....ff;)€s(i)*i f l l • • • XjQj/(qi\) . . . (qjl) 

(with j = 0, 1, 2, . . .) for some Xi, . . . , Xj in Lx
l(B), where 

S(j) = { (gi, ...,q,)e N'lg! + 2q2+ ... +jÇj = j \ . 

Proof. By Proposition 8, it suffices to show that if (1 = do, d\, . . . , dj, . . .) 
is a sequence of divided powers in B, then dj is of the above form. Since 
d\ G Lil(B) by Proposition 2, this is true for j = 1. So assume 

ai = X(ffl.....ff,-)€S(o*iffl • • • Xt9i/(qi\) . . . (qt\) 

for i = 0, 1, . . . , j — 1. We now show dj is of the above form. Let y j G L1
1(B) 

and 
d/ = Z)(?i>...,Ci)€>s(j)^iei • . . ^ - l ^ j A / t e i O . • • (g ,0 . 

Then by Proposition 8, (1, d\, . . . , d^_i, d/) is a sequence of divided powers 
in B. But by Proposition 7, dj — dj G Li1(B). Thus dy = d / + Zj for some 
2̂  G Li1(B). Let Xj = ;y;- + zjm Then â  G L1

1(B) and we have 

COROLLARY. Assume further that G(B) is a group. Then a sequence 
(do, d\, . . . , dj, . . .) in B is a sequence of divided powers in B if and only if 
d0 G G (B) and 

dj = Y,(<n,--.,<ij)esu)doXiqi . . . x/V(giO • • • (g,0 

(with j = 0, 1, 2, . . .) for some x\, . . . , Xj, . . . in L±1(B), where 

S(j) = { (qi, • • • , q,) G N'lff! + 2q2+ ... + jqs = j}. 

Proof. Again by Proposition 8, we only have to prove the result in one 
direction. So suppose (d0, d\, . . . , dj, . . .) is a sequence of divided powers in B. 
Then by Proposition 2, do G G(B) and dj G Ldo

j(B) for j = 1, 2, . . . . Since 
G(B) is a group, LdJ(B) = d0Lij(B) by Theorem 4 below. Therefore for each 
7, there exists 3;̂  G Lij(B) such that d.? = 6̂ 0̂ j. So on one hand, we have 

Adj = AdoAyj = (d0 ®d0)Ayj. 

But on the other hand, 

Ad,- = Z) <-od* ®dj-i = J2 Uodoyt (g)d0yj-i = (d0 (8) do) 2 î-o^i ® ?*-«• 

Thus 

(d0 ® do)A3/i = (d0 (x)d0) X) Uo yi ®3^-i-

Since do"1 exists, we get Ayt = 2<-oy* ®yi-u i.e., (1, yi, . . . , y^ . . .) is a 
sequence of divided powers in B. Then applying Theorem 2, we are done. 
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Remarks. (1) In particular, the sequences of divided powers in a Hopf 
algebra H of characteristic zero are completely determined by the elements of 
W(H) andG(iJ) . 

(2) The results of this section are for higher differentiations also (cf. 
Proposition 5). 

3. The structure of coalgebras. We now show that high order Lie-like 
elements are useful in studying the structure of coalgebras. 

For a G G(C), x G C a n d / G C*, we set 

[/, x]a = f > x - f(a)x - f(x)a 

= (I ®f)Ax-f(a)x-f(x)a. 

We drop the subscript a if it is clear from the context. We shall show (cf. 
Corollary 1 of Theorem 1) 

La
n(C) = {x G C\[f, x] G La

n-i(C) for a l l / G C*}. 

Also, if we put Pa
l(C) = La

l(C), and for any integer n > 1 set 

Pa
n(C) = {x G C\Ax = a®x + x®a + y;y G X * d V ( 0 ®La

n-\C)}} 

then we shall show La
n(C) = Pa

n(C). 
Let (C, A, e) be a pointed irreducible coalgebra over K and a the group-like 

element of C. Then Ka is the coradical of C and we have 

Ka = Co C Ci C C2 C • • • C Ct C • • • , 

the coradical filtration on C, where Ĉ  = Ai+1Ka and C = U Ct. Let 
Cn

+ = Cn C\ Ker(e) for every positive integer n. Then it is easy to see that 
Cn

+ = {x — e(x)a\x Ç Cn} and Cn = Ka © Cn
+ (for details, see [7]). 

LEMMA 1. Let (C, A, e) be a pointed irreducible coalgebra over K and a the 
group-like element. Then Pa

n(C) = La
n(C) = Cn

+ for every positive integer n; 
hence Cn = Ka ®Pa

n(C) = Ka ®La
n(C) and C = Ka ®La°°(C). 

Proof. We show Pa
n(C) C La

n(C) C Cn+ C Pa
n(C) for any positive integer 

n. Using the fact that La
n(C) = {x £ C\[x,f] £ La

n-l(C) for a l l / G C*}, one 
sees easily that Pa

n(C) C La
n(C). To prove the second inclusion, let x be any 

element of La
n(C). Then 

A„X = 2 «-1 ( - 1 ) S _ 1 12 ii<...<isPii...is(®
SOL (g)An-sx). 

On the other hand 

Cn = An+1Ka = Ker(C^? ®n+1C -> ®w+1C/Xa). 

Thus it is clear that x G C .̂ Also we know that e(x) = 0 (Proposition 1). 
Thus x £ CnC\ Ker(e) = Cn

+. Since x is an arbitrary element of La
n(C)> we 

have La
n(C) C Cn

+. Finally we prove the third inclusion by induction on n. 
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If n = 1, it is known that G = Ka ®La
l(C) [7, Proposition 10.0.1]. Thus 

Ci+ = L*l(C) = Pc}(C). So suppose Ct+ C PJiQ for i = 1, . . . , n - 1. For 
any element 2 £ Cn

+, Az = a ® z + z (g)a + y, where y Ç X)llî C*'+ ® £»£* 
[7, Proposition 10.0.2]. By our induction hypothesis, we have 

y e EwV(c)®£»*-'(c). 
Thus s 6 Pa

n(C). Since s is any element of Cw
+, we conclude Cn

+ C Pa
n(C). 

LEMMA 2. Le£ (C, A, e) be any coalgebra over K,a a group-like element of C and 
Ca the irreducible component of C containing a. Let Aa be the restriction of A to 
Ca, d = Ai+1Ka and C? = Aa

i+1Ka for i = 0, 1, 2, . . . . Then Ct = Cf for 
all i. 

Proof. Since Ka is a subcoalgebra of C, each Ct is a subcoalgebra of C and 
Co C C\ C C2 C • • . [7, Proposition 9.0.0.i]. Furthermore, 

A(C„) C E"=o C< (x) G_, for n = 0, 1, 2, . . . . 

[7, Theorem 9.1.6]. Therefore U Ci is a filtered coalgebra. Since Co = Ka 
contains every simple subcoalgebra of U Ct [7, Proposition 11.1.1], U d is 
pointed irreducible and U Ct C O. Since Ct C O, C< = A*+1i&* =Aa

i+1Ka = 
da for each i and Ca = U Ct

a = U C,. 

THEOREM 3. With the same assumptions as in Lemma 2, the following sets are 
equal for every integer n > 1. 

(1) L*(&), 
(2) Pa

n(C«), 
(3) (C„«)+= e n K e r ( e ) , 
(4) Ç + = C , n K e r ( e ) , 
(5) La

n(C), 
(6) {x G C|[x,/] G L / - U O for a l l / Ç C*}, 
(7) P«»(C), 
(8) {x Ç C\Ax = a ®x + x ®a + y;y £ La

n~l{C) <g> L»~l(C)}, and 
(9) {x £ C|[/, *] G L^-UC) for a l l / G C*}. 

Proof. (1) = (2) = (3) by Lemma 1 and (3) = (4) by Lemma 2. To see 
that (4) = (5), we show (1) C (5) C (4). But L«(&) C La

n(C) and 
La

n(C) C Cn by definitions. La
n(C) C Ker(e) is known (Proposition 1). 

(5) = (6) is also known (Corollary 1 of Theorem 1). (6) = (7) since one sees 
easily that (2) C (7) C (6). Since (7) C (8) C (9) is easily seen, to complete 
the proof it suffices to show (9) C (4). Let x be any element of (9) and assume 

Ax = a(g)X + x(g)a + X)?=i Ji ® **> 

where {Zi}?=i is a linearly independent set. Since 

[/,*] = (I ® / ) A x -f(a)x - / ( * ) « G La^(C) 

for a l l / G C*j we see yt g La
w_1(C) for all i (by picking p rope r / ' s ) . Thus 
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Ax G C ®Ka+ Cn-! ® C; and (by [7, Proposition 9.0.0(a)]), 

x G A-UC ®Ka+ C;_i ® C) = Cn-iAKa = Aw+1i£a = C„, 

Finally we show x G Ker(e). 

x = (e ® 7) Ax = (e ® 7) (a ® x + x ® a + ]T ?=i 3>< ® 2,) 

= e(a)x + e(x)a + X *=i e(yùzi = x + e(x)a. 

This implies e(x)a = 0, hence e(x) = 0. Thus x £ CnC\ Ker(e). Since x is any 
element of (9), we have (9) C (4). 

Remark. For any coalgebra C, we can write down its pointed irreducible 
components as Ca = Ka © La

œ(C), where a G G(C). By virtue of Theorem 1, 
we know pretty well the structure of Ca. If C is the direct sum of its pointed 
irreducible components (e.g., C is pointed and cocommutative), we have 

c= Z ®{Ka@Lcr{c)). 
aeG(C) 

THEOREM 4. Let B be a bialgebra and a, fi G G(B). Then aLa
q(B) C La$

q(B), 
Lpq(B)aCLpJ(B) (equalities if a'1 exists in G(B)) and La

r(B)Lps(B) C 
Lap

T+s(B) for any positive integers q, r, and s. 

Proof. For any x G Lpq(B), 

Aqax = AQaAax 

= ( ® ^ ) ( E U ( - i r 1 E ^<...<^r,,..,s(®^ ® A,_,X) 

= S *=i ( - 1 ) ' " 1 Z) n<...<i.Til.mmU(<g)*aP ® A ^ a x ) . 

Thus ax G Lap
q(B) and we conclude aL$q(B) C Lap

q(B). Similarly we can 
prove LpQ(B)a C Lpa

q(B). If a - 1 exists in G{B), then any element x G Lap
q(B) 

can be written as «(crtc) G aL$q(B) and any element y G L$a
q(B) can be 

written as (^ûr1)^ G L$q(B)a. Hence the two inclusions become equalities. 
We prove the third inclusion by induction on n = r + s. For any 

x G La
l(B) and y G Lp1(B)1 we have Ax = a ® x + x ® a and Ay = 

P ®y + J ®P- Thus 

Ax^ = AxAj = (a ® x + x ® a) (0 ® 3/ + 3/ ® 0) 

= a/3 ® x j + x;y ®afi + ay ® x/3 + x/3 ® ory. 

Since ay and x0 are in La^(B) by the first two inclusions, we see that 
xy G Lap

2(B) using Theorem 3. Hence La
1(B)L$1(B) C Lap

2(B). So suppose 
La

v(B)L^q(B) C La^
+q(B) whenever £ + 2 < r + s. Let x G La

r(B) and 
;y G Lps(B). Using Theorem 3, we can assume 

Ax = <*®x + x ® o : + w, u £ La'-^B) ® L^-^JS), 

A;y = /3®;y + ;y®/3 + z>, z>G L^(B) ®L^(B). 
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By the first two inclusions and our induction hypothesis, it is easy to see that 

Axy = aP (g) xy + xy ®a/5 + w, wLap
r+s-l(B) ® Lap

r+s-l(B). 

Thus by Theorem 3 we see xy £ Lap
r+S(B). This completes the proof. 

The following is a consequence of Theorems 3 and 4. 

COROLLARY. Let B be a bialgebra and Ba, B& two pointed irreducible components 
of B, where a, /3 £ G{B). Suppose that 

Ka = BçfCBfC-.-CBfC... 
and 

Kp^BJCBfC.-.C Bf C . . . 

are the coradical filiations. Then Bl
aB/ C Bi+j

al3 for any non-negative integers 
i and j . If or1 exists in G{B), then aB/ = B^ and Bfa = Bfa for any non-
negative integer i. 
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