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HIGH ORDER DERIVATIONS AND HIGH
ORDER LIE-LIKE ELEMENTS

S. T. CHANG

Introduction. We can define high order derivations of an algebra into the
ground field by diagrams. Then consider the same diagrams in the category of
coalgebras. By reversing all the arrows in these diagrams, we come to a new
notion — high order Lie-like elements of a coalgebra. These elements are useful
in the study of the structure of coalgebras and sequences of divided powers.

We assume the knowledge of [7] and use the same conventions and notations.

1. Definitions and connections. Nakai [6] defined high order derivations
from a commutative algebra 4 to an A-module M and derived some properties
of them. If 4 has an augmentation «, the ground field K becomes an 4-module.
If we restrict ourselves to high order a-differentiations (high order derivations
of 4 to K), the commutativity of 4 is no longer necessary. Now we give the
dual definition — high order Lie-like elements and state some dual properties
(for direct proofs see [1]).

Let (C, A, €) be a coalgebra. For any integer n = 2, A, = (I Q A)A,_1 =
(A ®I)A,—1. Further, let Ay = I. For any positive integer ¢, ®C =
CRCE®...R®C (¢qtimes) and for any element x in C, @ x = x Qx @ ...
® «x is in ®?C. Then for any integers

1= <<...<i;,2¢g+1 (where 1 =5 = q),
we define a ““twist”” map 74,...;, from ®1C into itself by

Til«..ia(xl ® ... @ %xg41)
= X ®... ®x“ ®x1... ®5&11 ®... ®9A0i3 ® ®xq+1.
Let 7°4,...:, be the inverse of 7., .4,.
Definition. For any o € G(C) (i.e., a group-like element of C) and any

positive integer ¢, an element x € C is called a g-th order Lie-like element of C
relative to « if and only if

Ax = i (‘_1)8—1 Z il<...<iaTi1...is(®sa ® Ag_sx).

We denote by L,2(C) the set of ¢-th order Lie-like elements of C relative to
a and put L,”(C) = U L2(C).
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Fora € G(C), x € Cand f € C*, we set
[, fla =% <f— fla)x — fx)a (€ C)

where x < f = (f ® I)Ax = X »f(x@)x@. We shall drop the subscript a
if it is clear from the context. For simplicity we shall write [x, f1, ..., f.

for [[... [x, fi], .. .1, fol.

THEOREM 1. Leta € G(C) and let D be any dense subset of C*. Then an element
x of Cisin L2(C) if and only if [x, f1, . . ., f] = O for any elements fi, . . . , f,
in D.

CorOLLARY 1. For anmy integer q = 2,x € L,%(C) if and only if
[x,f] € Ly *(C) for every f € D.

COROLLARY 2. For any integer ¢ = 1, x € L,°(C) implies x € L,"(C) for any
integer n = q.

ProrosiTION 1. For any integer ¢ = 1, x € L,2(C) tmplies e(x) = 0.

ProrositioN 2. Let (xo, X1, « - . , X, - - .) be @ sequence of divided powers in C.
Then xo € G(C) and x, € L,,%(C) for any positive integer q.

Let 4 be an algebra, 4° its dual coalgebra [7, Proposition 6.0.2] and
Diff,?(4) the set of ¢g-th order a-differentiations of 4, i.e.,

Diff,’(4) = {6 € A*|6(xox1...%,) = (=1t 2 n<e<in (X)) - .
a(xy)d(xo... &4y ... %4 ...x,) forall xo, 25,...,x, € A}

With the help of Proposition 6.0.3 of [7] it is easy to see that Diff,l4 = L,1(4°).
But for ¢ > 1, Diff,%4 = L,?(A4°) in general.

ProrosiTioN 3. L,2(A%) C Diff,4(4). For any element § € Diff,9(4), we
have § € L,2(A%) if and only if 6 € A°.

Proof.
LA(A% = {8 € A°A8 = DTN Y <t T (@a @ B d)}.
Diff,"(4) = {6 € A*[5(xox1...x) = 2% (=1 Y scici a®y) ...

a(x,)8(xo... %y ... %4 ...x,) forall xo,21,...,x, € A}
= {0 CA*(AD) @ Rx1 ® ... ®x) = 2 a (1) Y <<
Tito(@'a @ A8p-s0) (60 @ %1 ® - - . ® %)
for all xo, 1, . ..,%, € A}
= cA¥ag = X0 (D7 X uc<ul (@ ® A-d)},

where, by abuse of notation A, also denotes the map 4* — (®%'4) which
is the dual map of the multiplication ®%!'4 — A (where ®%'4 means
A®... ®A4 g+ 1 times). The rest of the proof is clear.
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Thus toshow Diff,%4 # L,%(A"%), itis enough to find an element § € Diff,?(4)
which is not in 4°. We now give such an example.

Example. Let A = K[x,]5%-1 be a polynomial algebra in infinitely many
indeterminates xy, x5, . . . over a field K. Let P be the subset of A consisting
of zero and all polynomials of positive degree. Then 4 = K @ P. Let a be the
projection of 4 onto K. Then « is an augmentation of 4 with augmentation
ideal P. Since

{1, Xy XX jy XX Xpy « - -}?j.k:l

is a basis of 4 over K, we can pick § € A* such thaté(x;?) = 1fors =1,2,...
and § kills any other element in this basis. By straight forward computation
one shows § € Diff,2(4). But we show now that § ¢ 4°. By Proposition 6.0.3
of [7], it suffices to show that § < 4 is infinite dimensional (where, for each
a € 4,86 <aisdefined by § < a(x) = §(ax) for all x € 4). Consider § < x,.
We have § < x;(x;) = 8(x;2) = 1 and if y # x; is any other element in the
basis, § < x;(y) = 6(x,y) = 0. That is, § < x; = x;* is the element in A*
dual to x;. Hence {6 < x;}%5.1 is a linearly independent set. Thus 6§ < 4 is
infinite dimensional.

ProOPOSITION 4. Let A be an algebra with an augmentation o such that the
augmentation ideal Ker (o) is finitely generated. Then Diff,2(4) = L,2(A°) for
every positive integer q.

Proof. For any & € Diff,?(4), we have to show § € 4°. Let {xy,...,x,} be
a set of generators of Ker(a). For any monomial x;x;, ..., ... x,,, in the
x;'s of length > ¢, puty; = x;, for ¢ < g and y, = x;, . . . ¥4,,,. Now

(X« o Xy e Xgppn) = 0(Yo¥1- .. V)
= =1 (—1)3_1 Z 'i1<...<’isa(yi1) cee 0‘(3’13)5(3’0 R T ﬁi, e yq)
=0
since Yo, ¥1, - - . , ¥¢ € Ker(a). Let .S be the subset of Ker(a) consisting of all
elements in Ker(a) expressible as a linear combination of monomials in the
x;'s of length > ¢. Then clearly S is an ideal of 4 (since 4 = K @ Ker(a))
and S is contained in the kernel of §. Since the number of monomials in the

x,'s of length =<gq is finite, S is a cofinite subspace of Ker(x). Thus S is a
cofinite ideal of 4 contained in Ker (), hence § € A°.

Remark. One can find an example to show that Ker(«) being finitely gener-
ated is not a necessary condition.

Recall that a higher differentiation of an algebra A is a sequence
(80, 61y - . ., 8,) of elements in A* (where # may be infinite) such that for
x,y € 4,

8;(xy) = Z =00:(x)8,(¥), 1=0,1,2,...,n.
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The following proposition shows that higher differentiations of 4 are nothing
but sequences of divided powers in A4°.

ProrosiTiON 5. Let A be an algebra. Then a sequence (8o, 81, .. .,8,) of
elements in A* is a higher differentiation of A if and only if it is a sequence of
dwided powers in A°.

Proof. Suppose (8, 61, . . . , 8,) is a higher differentiation of A. Then for any
xand yin 4,

Ad;(x @) = 8;(xy) = D 0 8:(x)8,—i(¥) = 208 @8,i(x ® )
forj =0,1,...,n Thus

Asj= D108 ®6;255=0,1,...,n

Therefore (5o, 91, - . -, 8,) is a sequence of divided powers in A° provided each
6; is in A° But this is true by Proposition 6.0.3 of [7]. Conversely if
(80, 81, . - ., 8,) is a sequence of divided powers in A°. Then for any x,y € 4,

8;(xy) = A8i(x ®Y) = D108 @8milx ®Y) = D G0 8:(x)8,-:(p)
forj =0,1,...,n. Thatis, (8,81, ...,8d,) is a higher differentiation of 4.

Now we reverse our direction. We shall connect high order Lie-like elements
(respectively sequences of divided powers) of a coalgebra C with high order
differentiations (respectively higher differentiations) of the algebra C*.

Let C be a coalgebra and & € G(C). Then the map x — x° (where x°(f) =
flx) for all f € C*) embeds the set L,2(C) into the set Diffo?(C*) for every
positive integer ¢. It also embeds the set of sequences of divided powers in C
into the set of higher differentiations of C*.

ProrosiTiON 6. If C is finite dimensional and a € G(C), then L,(C) =
Diff09(C*) as sets for every positive integer q and the set of sequences of divided
powers in C 1is isomorphic to the set of higher differentiations of C*.

Proof. Since « is a group like element of C, it is easy to see that &’ is an
augmentation of C*. Since C is finite dimensional, Ker («°) is finite dimensional.
We can apply Proposition 4. Now

Diffao 2(C*) = Lo ?(C*®) = Lo ?(C**) = L,%(C).

Finally the set of higher differentiations of C* is the set of sequences of divided
powers in C*® = C** =2 C (Proposition 5), which is isomorphic to the set of
sequences of divided powers in C.

2. Sequences of divided powers.

PROPOSITION 7. Let (X0, %1, -.,%4,...) and (Yo, Y1, .+, Y4 ...) be two
sequences of divided powers in a coalgebra C. If x;, =y, for i =0,1,..., N,
then

Xn+s — Yn+s € L/ (C) for j=1,2,....
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Proof. We prove by induction on j. For j = 1,

A(Xy+1 — Yn41)
= A(xy41) — A1)
= Z T2 @ Xwprs — > Ty ® ynii
= T2 @xwrims — (20 Ta1 %1 @ Zygrs + %o @ Va1 + Yvar ® %o)
= %0 @ Zn+1 + Xyp1 @ %o — X0 @ Yv+1 — In+1 @ %o

= %0 @ @x+1 — Yv41) + @41 — Yv41) @ %o

Thus xy41 — Ya+1 € Lz'(C). Now assume the proposition is true up to
7 — 1 and prove xyy; — Yn+; € Lz’ (C). By Corollary 1 of Theorem 1, it
suffices to show that [xy+; — Yx+i ] € L7 1(C) for all f € C*. But
[xy+s — Ynts f]
= (f ® DA@y+; — Yv+s) — floo) Convss — Iv+s) — fewes — Inves)%o
= (f ® 1) (Axyt; — Ayy+s) — f(x0) @nes — Ives) — f(@yes — Yves)%o

ZNH (fe)%nsj—1 — FY)Yngi—1) — (%) (Xn45 — Ynes) —‘f(xN+j — Yn+3)%0
= Z phr e (f@)XN+j—s — [ )YN+i-1)
= phr oy (f@rs—)%s = fOnts-0)e)
= Z ol (f Cows—)s — fn4s—0)ys) + Z N+'j_ Jlonys—a) (63 — 34).

Thus by our induction hypothesis, we see that
[xm.j - yN+jyf] € onj‘l(C) for allf € C*.

PRroPoSITION 8. Let B be a bialgebra over a field K of characteristic zero. Let
a € G(B),x1,...,%x5 € Li*(B) and

ds = 2armanesneX® . x5/ (@) .. (g5))
forj =0,1,2,..., where
SG) = (g, -+, 9) € N1 + 2¢: + ... + jg; = j}.
Then (do, @1, . ..,4dy, ...) 1is a sequence of divided powers in B.
Proof. First note that for any x € L,'(B), the sequence
1, x,x2/21, ..., %7/, 000)

is a sequence of divided powers in B (the proof is simply by induction). Using
this and the fact that

Adj = Z(q; ----- q]->AaA(x1‘11/g1!) ces Ax%/g5h),
one can show that Ad; = D_J_od; ® d,_; by computing.
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THEOREM 2. Let B be a bialgebra over a field K of characteristic zero. Then a

sequence (1 = do, dy, ..., dy,...) in B is a sequence of divided powers in B if
and only if
d; = Z(ql,...,w)esmxl“ coex%/ (@) ()
(withj = 0,1,2,...) for some x1, . ..,x; n L,*(B), where
SG) = 1{(g, .-, q) € Ngi + 2o + ... + jg; = 7}.
Proof. By Proposition 8, it suffices to show that if (1 = dy, dy,...,d;, ...)

is a sequence of divided powers in B, then d; is of the above form. Since
d1 € L'(B) by Proposition 2, this is true for j = 1. So assume

d; = Z(ql ----- cesx1™ . ox %/ (@) (q:")

fort =0,1,...,7 — 1. We now show d; is of the above form. Lety; ¢ L;'(B)

and
df =2y apesp® .. x5y 5 () L (g,)).

Then by Proposition 8, (1,dy, ..., d;_1,d;") is a sequence of divided powers
in B. But by Proposition 7, d; — d;/ € L;*(B). Thus d; = d,;/ + z; for some
z; € L1'(B). Let x; = y; + 2;. Then x; € L,1(B) and we have

&y = 2t apes®®™ . x5/ (q1!) . (g)).

COROLLARY. Assume further that G(B) is a group. Then a sequence
(do,dr,y ..., dy4,...) in B is a sequence of divided powers in B if and only if
d() € G(B) and

dj = Dy emapesmdoini® .. x5/ (@) . (g5
(withj = 0,1,2,...) for some x1,...,%;, ... Li*(B), where
SG) =1l -1 a9) € Njgr + 2¢2 + ... +jg; = j}.

Proof. Again by Proposition 8, we only have to prove the result in one
direction. So suppose (do, d1, . . ., dy, . . .) is a sequence of divided powers in B.
Then by Proposition 2, dy € G(B) and d; € L4’ (B) for j = 1, 2, ... . Since
G (B) is a group, Ly’ (B) = doL:?(B) by Theorem 4 below. Therefore for each
7, there exists y; € L{/(B) such that d; = dyy,. So on one hand, we have

Adj = AdoAy] = (do ®do)Ay_1.
But on the other hand,
Ady = D i0d; @dji = 2 im0dey: @dwys—s = (o @do) 2 im0y @ Vit
Thus
do ®do)Ay; = [do ®do) D i0yi @V

Since dg~! exists, we get Ay, = D 0¥ @ Vjesr i€y (L, V1,01, 5 ...) is @
sequence of divided powers in B. Then applying Theorem 2, we are done.
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Remarks. (1) In particular, the sequences of divided powers in a Hopf
algebra H of characteristic zero are completely determined by the elements of
L,Y(H) and G(H).

(2) The results of this section are for higher differentiations also (cf.
Proposition 5).

3. The structure of coalgebras. We now show that high order Lie-like
elements are useful in studying the structure of coalgebras.

Fora € G(C),x € Cand f € C*, we set
[fxla = > % — fle)x — f(x)a
= (I ®f)dx = fla)x — f(x)e.

We drop the subscript « if it is clear from the context. We shall show (cf.
Corollary 1 of Theorem 1)

L*(C) = {x € C|[f, x] € L 1(C) for all f € C*}.
Also, if we put P,1(C) = L,'(C), and for any integer n > 1 set

PMO) ={x €ClAx=a@x+x®a+y;y € 2 m1L'(C) ® L"),

then we shall show L,"(C) = P,"(C).
Let (C, A, ¢€) be a pointed irreducible coalgebra over K and « the group-like
element of C. Then Ku is the coradical of C and we have

Kae=CiCCiCCC...CC;C...,

the coradical filtration on C, where C; = A®Ka and C = U C;. Let
C,t = C, N Ker(e) for every positive integer #z. Then it is easy to see that
Ct={x — e(x)alx € G} and C, = Ka @ C,* (for details, see [7]).

LEmMA 1. Let (C, A, €) be a pointed irreducible coalgebra over K and o the
group-like element. Then P,"(C) = L,*(C) = C,* for every positive integer n;
hence C, = Ka @ P,"(C) = Ka @ L,"(C) and C = Ka @ L,”(C).

Proof. We show P.;*(C) C L,"(C) C C,t C P,*(C) for any positive integer
n. Using the fact that L,"(C) = {x € C|[x,f] € L,"1(C) for all f € C*}, one
sees easily that P,"(C) C L,*(C). To prove the second inclusion, let x be any
element of L,*(C). Then

A = ZL! (—1)8—1 E n< <ol 1.1, (@' @ Ap_y).
On the other hand
C, = A"'Ka = Ker(C 2 @™'C— @™'C/Ka).

Thus it is clear that x € C,. Also we know that e(x) = 0 (Proposition 1).
Thus x € C, "\ Ker(e) = C,*. Since x is an arbitrary element of L,"(C), we
have L,*(C) C C,*. Finally we prove the third inclusion by induction on #.
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If » =1, it is known that C; = Ka @ L, (C) [7, Proposition 10.0.1]. Thus
Cit = L(C) = PA(C). So suppose C;+ C P,(C) fori=1,...,n — 1. For
any element z2 € C,;t, Az =a ®2z+ 2 @a + y, where y € Z’,Zl Cit ® CE,
[7, Proposition 10.0.2]. By our induction hypothesis, we have

y € 25 L(C) @LSTHO).
Thus z € P,*(C). Since 2 is any element of C,*, we conclude C,t C P,*(C).

LeEMMA 2. Let (C, A, €) be any coalgebra over K, o a group-like element of C and
C= the irreducible component of C containing a. Let A, be the restriction of A to
Ce, C; = A" Ka and C# = AT Ka for 1 =0,1,2,... . Then C; = C# for
all .

Proof. Since Ka is a subcoalgebra of C, each C; is a subcoalgebra of C and
CoC Ci C CyC...[7, Proposition 9.0.0.i]. Furthermore,

A(Cn)czzzocz ®C_, for 71:0, 1,2,‘.. .

[7, Theorem 9.1.6]. Therefore U C; is a filtered coalgebra. Since Cy = Ka
contains every simple subcoalgebra of \U C; [7, Proposition 11.1.1], U C, is
pointed irreducible and U C; C €= Since C; C €, C; = A" Ka =A,"Ka =
Ceforeachiand C*= U C = U C..

THEOREM 3. With the same assumptions as in Lemma 2, the following sets are
equal for every integer n > 1.

(1) Ly"(C),

(2) Po"(C),

(3) (Cna)_'- = C2MN Ker(e):

4) Gt = C,MN Ker(e),

(5) L"(C),

(6) {x € Cllx,f] € Ly»Y(C) for all f € C*},

(7) Pa"(C),

8) {x € ClAx =a @x +x ®a + ¥;9 € L2(C) ® LA(C)}, and

9) {x € C|Lf, x] € Ly(C) for all f € C*}.

Proof. (1) = (2) = (3) by Lemma 1 and (3) = (4) by Lemma 2. To see
that (4) = (5), we show (1) C (56) C (4). But L, (C*) C L,*(C) and
L (C) C C, by definitions. L,"(C) C Ker(e) is known (Proposition 1).
(5) = (6) is also known (Corollary 1 of Theorem 1). (6) = (7) since one sees
easily that (2) C (7) C (6). Since (7) C (8) C (9) is easily seen, to complete
the proof it suffices to show (9) C (4). Let x be any element of (9) and assume

Ax=aQ@x+%Qa+t+ 211y Q324

where {z;}%~1 is a linearly independent set. Since

izl = I ®f)ax — fla)x — f(x)a € L2 1(C)
for all f € C¥, we see y; € L,"~(C) for all 7 (by picking proper f’s). Thus
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Ax € C @ Ka + C,—1 ® C; and (by {7, Proposition 9.0.0(a)]),

x €A (CRKa+ Coot ®C) = CouiAKa = A Ka = Gy,
Finally we show x € Ker(e).

v= (@D =(®Ne®s+rRat+ 2 T1y: ®s)

ela)x + e(x)a + Z 1e(¥)z = % + (%)

This implies e(x)a = 0, hence e(x) = 0. Thusx € C, N Ker(e). Since x is any
element of (9), we have (9) C (4).

Il

Remark. For any coalgebra C, we can write down its pointed irreducible
components as C* = Ka @ L,*(C), where @« € G(C). By virtue of Theorem 1,
we know pretty well the structure of C*. If C is the direct sum of its pointed
irreducible components (e.g., C is pointed and cocommutative), we have

C= 2 @ Kad®L=()).

a€G(C)

THEOREM 4. Let B be a bialgebra and a, B € G(B). Then aL,?(B) C L.s%(B),
Ls?(B)a C Lg'(B) (equalities if o™ exists in G(B)) and L, (B)Lsg*(B) C
Log™5(B) for any positive integers q, v, and s.

Proof. For any x € Lg?(B),
Ajax = AjAgx
= (@) (X (DT X e Ta (Q°B ® By-x)

= =1 ('—1)8‘1 Z a<ee<isLire i (@B @ Apsax).

Thus ax € Le?(B) and we conclude aLg?(B) C L.s?(B). Similarly we can
prove Lg?(B)a C Lg,"(B). If o~ exists in G(B), then any element x € L,s?(B)
can be written as a(a™'x) € alg?(B) and any element y € Lg,?(B) can be
written as (ya—1)a € Lg?(B)a. Hence the two inclusions become equalities.

We prove the third inclusion by induction on # =r 4 s. For any
x € L,'(B) and y € Lg'(B), we have Ax =a @x +x ®a and Ay =
B ®y+y ®B. Thus

Axy = Axdy = @ @2+ 2 ®)B @y +y ®B)
=af Q@xy +xy Qaf +ay ®x8 + x8 @ ay.
Since ay and xB are in L.'(B) by the first two inclusions, we see that
xy € Log?(B) using Theorem 3. Hence L,'(B)Lg'(B) C L.?(B). So suppose
L(B)Lg"(B) C Lo"t%(B) whenever p + g <7+ s. Let x € L,(B) and
y € Lg*(B). Using Theorem 3, we can assume
Ax=a@Rx+x RQa+ u, u € L,/1(B) ® L,/ (B),

Ay = Q@y+y QB+ v € Lg"(B) ® Lg*~'(B).
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By the first two inclusions and our induction hypothesis, it is easy to see that
Axy = af @xy + xy ®af + w, W L™ 1(B) ® Log™*"1(B).
Thus by Theorem 3 we see xy € L™ *(B). This completes the proof.
The following is a consequence of Theorems 3 and 4.

COROLLARY. Let B be a bialgebra and B*, B two pointed irreducible components
of B, where a, B € G(B). Suppose that

Ka=Bg"‘CBl"‘C...CB,~"C...
and
K8=BfCBFC...CBFC...

are the coradical filtrations. Then B 2B C B8 for any non-negative integers
1 and j. If o~ exists in G(B), then aBf = B2 and Bfa = B#* for any non-
negative integer 1.
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