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Abstract

The core of a graph I' is the smallest graph A that is homomorphically equivalent to I" (that is, there
exist homomorphisms in both directions). The core of I is unique up to isomorphism and is an induced
subgraph of I'. We give a construction in some sense dual to the core. The hull of a graph I' is a
graph containing I" as a spanning subgraph, admitting all the endomorphisms of I', and having as core
a complete graph of the same order as the core of I'. This construction is related to the notion of a
synchronizing permutation group, which arises in semigroup theory; we provide some more insight by
characterizing these permutation groups in terms of graphs. It is known that the core of a vertex-transitive
graph is vertex-transitive. In some cases we can make stronger statements: for example, if I" is a non-
edge-transitive graph, we show that either the core of I" is complete, or I" is its own core. Rank-three
graphs are non-edge-transitive. We examine some families of these to decide which of the two alternatives
for the core actually holds. We will see that this question is very difficult, being equivalent in some cases
to unsolved questions in finite geometry (for example, about spreads, ovoids and partitions into ovoids in
polar spaces).
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1. Introduction

In this paper, we speak of graphs and groups; a typical graph will be called I and
group G. Groups (and semigroups) will act on the right, so that g maps v to vg. All
graphs will be finite, undirected and simple.

A graph homomorphism from I to I’ is a map from the vertex set of I to that of
IV that maps edges to edges. (There is no condition on non-edges.) Two graphs are
homomorphism-equivalent if there are homomorphisms in both directions between
them. This is an equivalence relation coarser than isomorphism. Each equivalence
class contains a unique graph (up to isomorphism) with fewest vertices; such a graph is
a core, or the core of any graph in the class. The core of a graph can be embedded as an
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induced subgraph, and there is a retraction from a graph to its core (a homomorphism
that fixes its image pointwise). We will sometimes denote the core of I" by Core(T").
The core of a graph I is complete if and only if the clique number w (") (the size of
the largest complete subgraph) and the chromatic number y (I") (the smallest number
of colours required for a proper colouring of the vertices) are equal. A k-clique exists
if and only if there is a homomorphism K; — T, and a k-colouring exists if and only
if there is a homomorphism I' — K.

An endomorphism is a homomorphism from a graph to itself. The endomorphisms
of a graph form a semigroup. An endomorphism of a finite graph is an automorphism
if and only if it is one-to-one. (A bijective endomorphism cannot decrease the number
of edges, and cannot increase it either.) A graph is a core if and only if all its
endomorphisms are automorphisms.

The rank of a transitive permutation group G on a set €2 is the number of orbits of
G on Q2.

We refer to [6] for more information on permutation groups, and to [11, 12] for
graphs, homomorphisms and cores. The inspiration that led us to the results in
Section 2 derives from the papers [1, 2], which describe the background in automata
theory, and [18], with which this paper has a lot in common (although the aims are
quite different). We are grateful to the authors of those papers for helpful comments.
We have described the connection in Section 2.1.

2. Cores and hulls

Welzl [21] showed that the core of a vertex-transitive graph is vertex-transitive;
see [11, Theorem 3.7]. More general statements are true; for example, the properties
of edge-transitivity and non-edge-transitivity are inherited by cores as well.

In this section we show that, for non-edge-transitivity, much more is true: if " is
non-edge-transitive, then either the core of I" is complete, or I is a core. These results
will be deduced from a much more general theorem that applies to all graphs.

Let I" be a graph; let G = Aut(I") be its automorphism group, and S = End(I") its
endomorphism semigroup. We define a graph I'’, which we will call the hull of T, as
follows:

(a) T has the same vertex set as I'; and
(b) two distinct vertices v, w are adjacent in I'” if and only if there does nor exist an
element f € End(I") with vf = wf.

The next result gives some properties of the hull.

THEOREM 2.1. Let T be the hull of T'. The following properties hold.:

(a) T is aspanning subgraph of T';

(b) End(I") < End(I'’) and Aut(T") < Aut(I"); and

(¢) ifthe core of T has k vertices, then the core of I’ is the complete graph Ky on k
vertices.

PROOF. (a) Let v and w be adjacentin I', and f € § = End(I"). Then vf and wf are
adjacent in T, so vf # wf. Thus v and w are adjacent in I/, by definition.
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(b) Let f € End(T"), and let v and w be adjacent in I'’; we have to show that vf and
wf are adjacent in I'". But, for any & € S, (vf)h =v(fh) and (wf)h = w(fh) are
distinct, by definition of the hull. So the assertion is proved.

Now an endomorphism of a finite graph is an automorphism if and only if it is
one-to-one, so the inclusion of the automorphism groups follows.

(c) Let K be a core of I'. There is an endomorphism % of I with image K, but no
endomorphism with smaller image; so no endomorphism f of I' can map two vertices
of K to the same vertex, else 4 f has smaller image than 4. So by definition of the hull,
K induces a complete graph in I, with (say) k vertices. Then the map h is a proper
k-colouring of T, so the core of I'" is K. O

In particular, T is a core if and only if its hull is complete. The ‘dual’ statement is
not true: if ' is equal to its hull, then its core is complete, but the converse is not true.
For example, the hull of a path of length 3 is a 4-cycle (note the extra symmetry), but
its core is K> since it is bipartite.

We give a couple of corollaries concerning symmetric graphs. A graph is non-edge-
transitive if its automorphism group is transitive on unordered pairs of nonadjacent
vertices.

COROLLARY 2.2. Let I" be a non-edge-transitive graph. Then either the core of I is
a complete graph, or T is a core.

PROOF. Let I" have n vertices, and let '’ be the hull of I'. By Theorem 2.1(a) and (b),
IV is obtained from I' by converting the non-edges in some Aut(I")-orbits to edges.
But there is only one such orbit. So either I =T (in which case the core of T is
complete), or I'” is complete (in which case its core has n vertices, so the same is true
for I' by Theorem 2.1(c), so that I is a core). O

The second corollary is known [11, Theorem 3.9], but our proof is quite
straightforward.

COROLLARY 2.3. Let I" be a vertex-transitive graph with n vertices, whose core has
k vertices. Then k divides n.

PROOF. We may replace I' with its hull without changing the orders of the graph or
its core or the fact that the graph is vertex-transitive. So we may assume that the core
of I' is complete. Thus the clique number and chromatic number of I' are both equal
to k. Choose a k-clique K, and a colouring with colour classes Cy, ..., Cr. We are
going to show that |C;| = n/k, from which the result will follow. Let G = Aut(I").

Let B be the set of images of K under G. If |B| = b, then vertex-transitivity shows
that every vertex lies in a constant number r of members of B, where nr = bk.

Choose a colour class C;, and count choices of (v, B), where v € C;, B € B and
v € B. Clearly there are |C;|r such choices. But each element of B is a k-clique, so
meets C; in a vertex, so the number of choices is |B| = b. So

|Cil =b/r =n/k,

and we are done. |
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REMARK. We see from the proof that, if the core of a vertex-transitive graph I" is
complete, then the product of the clique number w (I") and coclique number «(I") of I'
is equal to the number n of vertices. Now it is well known (and proved by almost the
same argument) that, in an arbitrary vertex-transitive graph, we have w(IN)a(I") < n;
so equality is a necessary condition for the core to be complete. Since the product is
not changed when I is replaced by its complement, this is also a necessary condition
for the core of T to be complete. (The corollary and remark are inspired by a result of
Neumann, see [18, Theorem 2.1]; see also Lemma 2.6 in that paper.)

2.1. Synchronizing permutation groups Although the above material is self-
contained, the inspiration for it came from results on synchronizing permutation
groups by Arnold and Steinberg [2] and Aratjo [1]. In fact there is a close connection
between this theory and our results. The concepts arise from automata theory, where
the existence of a reset word and a conjectured bound on its length if it exists (the
Cerny problem) are among the oldest problems in the theory. We are grateful to Jodo
Aragjo, Peter Neumann and Ben Steinberg for providing us with this information.
Indeed, the relation between parts of this paper and [1, 2, 18] is very close, although
the context is different, since these authors consider permutation groups rather than
graphs.

A permutation group G on a set V is called synchronizing if the following holds:
for any map f : V — V that is not a permutation, the semigroup generated by G and
f contains a constant function. It is known that a synchronizing permutation group is
primitive, but not every primitive group is synchronizing.

THEOREM 2.4.

(a) LetT" be a non-null graph that is not a core. Then Aut(I") is not synchronizing.
(b) Conversely, let G be a permutation group that is not synchronizing. Then there
is a non-null graph T, which is not a core, such that G < Aut(I").

PROOF. (a) Let S = End(I"). Then S contains Aut(I"), and contains a function that
is not a permutation (since I is not a core), but does not contain a constant function
(since I" is non-null). So Aut(I") is not synchronizing.

(b) Suppose that G is not synchronizing, and choose a semigroup S containing
G and containing a function that is not a permutation, but containing no constant
function. Now we follow the construction of the hull: we let I' be the graph on the
vertex set V, in which v and w are joined if there is no element f € S satisfying
vf =wf. As in the proof of Theorem 2.1, I" is non-null, and S < End(I") (so that
G < Aut(I") and T" is not a core). O

It follows that a rank-three permutation group is synchronizing if and only if both
of its orbital graphs are cores. Our results later in the paper will show that, even for
rank-three groups G, it is difficult to decide whether G is synchronizing or not.

Another consequence of the theorem is the fact that a permutation group G is
synchronizing if and only if its 2-closure is. (The 2-closure of G consists of all
permutations that preserve every G-orbit on ordered pairs.)
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3. Rank-three graphs

A rank-three graph is a graph whose automorphism group is transitive on vertices,
ordered edges and ordered non-edges. In other words, it is a (nondiagonal) orbital
graph of a rank-three permutation group of even order. (The study of such graphs was
begun by Higman [13].) All such permutation groups have been determined [14—-16],
so in principle all such graphs are known. We will see that there are things we do not
know about these graphs.

By Corollary 2.2, if I is a rank-three graph, then either the core of I" is complete,
or I' is a core. In this section, we examine some families of rank-three graphs to
see which alternative actually holds. We will see that this leads to some difficult
questions in finite geometry. We consider only primitive rank-three graphs, since
an imprimitive rank-three graph is either a disjoint union of complete graphs, or a
complete multipartite graph, and its core is complete.

The remarks in the previous section show that, if [" is a rank-three graph on n
vertices which satisfies w (I")a(I") < n, or for which w (I") does not divide 7, then both
I' and its complement T are cores. Indeed, I is a core if and only if w(T") < x ().
While both clique number and chromatic number are NP-hard to compute, in practice
the former is much easier, using tools such as GRAPE [19].

3.1. Square lattice graphs The square lattice graph L,(n) has as vertices the
ordered pairs (i, j), with 1 < i, j <n; vertices (i, j) and (i’, j’) are adjacent if i =i’
or j = j' (but not both). It is a rank-three graph, admitting the wreath product S,, wr S,
in its product action. It can also be regarded as the line graph of the complete bipartite
graph K, ;.

PROPOSITION 3.1. The cores of Ly (n) and its complement are both K,,.

PROOF. In L;(n), a row or column of the square grid is a clique, and a Latin square

of order n gives an n-colouring. In the complement, the set {(i, ig) |i € {1, ..., n}},
for any permutation g, is an n-clique, while the rows of the grid give a partition into
cocliques. O

This result is closely connected with [18, Example 3.4].

3.2. Triangular graphs The triangular graph T (n) is the graph whose vertices are
the two-element subsets of {1, . . ., n}, two vertices adjacent if the sets have nonempty
intersection. It is a rank-three graph, admitting the symmetric group S,. It can also be
described as the line graph of the complete graph K,.

PROPOSITION 3.2.

(@) Forn =5, the core of T(n) is K,,—1 if n is even, and T (n) if n is odd.
(b) Forn>5, T(n)isacore.

PROOF. (a) The clique number of T (n) is n — 1, a maximal clique consisting of all the
2-subsets containing a fixed element of {1, ..., n}. Now an (n — 1)-vertex colouring
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of T'(n) is an (n — 1)-edge colouring of K,,; these are well known to exist if and only
if n is even.

(b) The clique number of 7'(n) is [n/2], a maximal clique consisting of pairwise
disjoint 2-sets. A theorem of Lovdsz [17] shows that the chromatic number of this
graph is n — 2, which is greater than |n /2| for n > 5. (In fact, we do not need to use
Lovasz’s theorem here. The only cocliques of size n — 1 consist of all pairs containing
a fixed element of {1, . .., n}, and there cannot be a partition into such sets, since any
two of them intersect in one vertex.) O

This result is closely connected with [18, Example 3.7].

3.3. Paley graphs Let g be a prime power congruent to 1 mod 4. The Paley graph
P(q) has vertex set the finite field GF(g), two vertices joined if their difference
is a nonzero square. It is a rank-three graph, admitting the group of additions
and multiplications by nonzero squares. Multiplication by a nonsquare induces an
isomorphism from the graph to its complement.

PROPOSITION 3.3. Let g be a prime power congruent to 1 mod 4.

(a) If q is not a square, then P(q) is a core.
(b) Ifg =r?, then the core of P(q) is K.

PROOF. (a) Since I' = P(q) is self-complementary, its clique and coclique numbers
are equal; if g is not a square, their product cannot be ¢, so I is a core.

(b) Let V = GF(q) and W = GF(r). Then every element of W is a square in V, so
W is a clique. If a is a nonsquare, then Wa is a coclique, as are its translates Wa + b;
there are r such translates, giving an r-colouring of I'. O

Part (a) of this result is contained in the paper of Arnold and Steinberg [2].

3.4. Line graphs of projective spaces The line graph of the projective space
PG(n, g) has as vertices the lines of the space, two vertices joined if the lines intersect.
It is a rank-three graph on (¢"*! — 1)(¢" — 1)/(¢*> — 1)(g — 1) vertices, admitting the
group PGL(n + 1, g).

PROPOSITION 3.4. Let I be the line graph of PG(n, q), where n > 3.

(@) The core of T is the complete graph of order (q" — 1)/(q — 1) if there is a
parallelism of the lines of PG(n, q); otherwise I is a core.
(b) The complement I is a core.

PROOF. (a) For n > 3, a clique of maximum size consists of all lines through a
point, and contains (¢" — 1)/(g — 1) vertices. (If n =3, there are other cliques of
maximum size, consisting of all lines in a plane.) A coclique has size at most
(¢"t! —1)/(g*® — 1), with strict inequality unless g> — 1 divides ¢"*!' — 1, that is,
2 divides n 4+ 1. So, if n is even, then I'" is a core. If n is odd, a maximum coclique
is a spread, and a colouring with (¢g" — 1)/(¢ — 1) such cocliques is a partition into
spreads, that is, a parallelism.
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(b) If the core of T is a clique, then the vertices can be partitioned into cocliques
of size (¢" — 1)/(¢ — 1). For n > 3, such a coclique consists of the lines through a
point, and any two of them intersect, so no partition is possible. For n = 3, there is
one further type, but we can have at most two pairwise disjoint such cocliques, one of
each type. So I is a core. O

A necessary condition for a parallelism of the lines of PG(n, ¢) is that n is odd (this
is the necessary and sufficient condition for a spread, as we saw). It is conjectured that
this is sufficient, but this has only been proved in special cases:

(a) for n =3 (Denniston [7]);
(b) more generally, for n = 24 _1,d>2 (Beutelspacher [4]); and
(c) for g =2 (Baker [3]).

The first open case is thus PG(5, 3), whose line graph has 11011 vertices.

3.5. Point graphs of polar spaces A classical polar space is defined by a form
of one of the following types on a finite-dimensional vector space: a nondegenerate
alternating bilinear form; a nondegenerate Hermitian form; or a nonsingular quadratic
form. The points are the one-dimensional subspaces that are totally isotropic or totally
singular with respect to the form. The graph of the polar space has the points as its
vertices, two points being adjacent if they are orthogonal with respect to the form.
See [5, 20] for further discussion.

Over a finite field, the graph of a classical polar space is a rank-three graph,
admitting the corresponding classical group, provided the Witt index of the form (the
dimension of the largest totally isotropic or totally singular subspace) is at least two,
and excluding quadratic forms in odd dimension over fields of characteristic two. We
denote these by the notation standard in finite geometry. Here n is the projective
dimension (one less than the vector space dimension), and ¢ is the field order. By
abuse of notation, we denote the graph by the same symbol as the polar space. So the
examples are:

(a) Wy(q), for n odd and n > 3 (alternating form);

(b) H,(q), for n >3 and g a square (Hermitian form); and

(c) Q,J[(q) (for n odd, n > 3), Q, (q) (for n odd, n >5), and Q,(g) (for n even,
n >4, g odd).

We refer to [20] for further details.

The graph Q;r(q) comes from the ruled quadric in projective 3-space and is
isomorphic to Ly(qg + 1), which we have already considered. So we may disregard
this case.

In a polar space, a generator is a maximal totally isotropic or totally singular
subspace (isomorphic to PG(r — 1, g), where r is the Witt index). An ovoid is a set
of points meeting every generator in one point, and a spread is set of generators that
partition the point set.

The number of points is (¢" — 1)(¢"t¢ +1)/(q — 1), where e is a parameter
depending on the type of space. A generator has (¢" — 1)/(¢ — 1) points; so a spread
must consist of g” ¢ + 1 generators, and an ovoid must consist of ¢g" ¢ + 1 points.
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THEOREM 3.5. Let I" be the graph of a finite classical polar space S.

(@)  The core of I is complete if and only if S has a partition into ovoids.
(b) The core of T is complete if and only if S has an ovoid and a spread.

PROOF. It follows from the properties of sesquilinear forms that, if a point is
orthogonal to two points of a totally isotropic or totally singular line, then it is
orthogonal to every point on a line. So a maximal clique is a subspace, hence a
generator. A coclique is a ‘partial ovoid’, meeting any generator in at most one point.
So the product of the clique number and the coclique number is equal to the number
of points if and only if ovoids exist.

Now a colouring of I is a partition into ‘partial ovoids’, while a colouring of T is a
partition into subsets of generators. From this, both parts of the theorem follow. O

It is a topic of great interest in finite geometry to decide which polar spaces have
ovoids, spreads, or partitions into ovoids. The complete answer is not known. We
summarize here the main implications for our question of what is known, referring
to the fairly recent survey [20] for more information. Of course, if the core is not
complete, then the graph is a core. Let I" be the point graph of a classical polar space.

Wi(q): Core(I") and Core(T") are complete if n =3 and ¢ even, not if
n=3andgqisoddorifn > 3.

H,(q): Core(I") is not complete for any n > 4; Core(I") is not complete if
n is even.

Qom(q), m >3: Core(T) is complete if m = 3 and ¢ is a power of 3.

Q;rm_l(q), m > 3: Corel" is complete for m =3 and in a few cases for larger m;
Core(T) is not complete if m is odd or if g =2 or ¢ = 3.

Q5,,—1(q), m > 3: Neither Core(I") nor Core(T) is complete.

3.6. Small rank-three graphs Using GAP [9] and its share package GRAPE [19],
it is easy to investigate small rank-three graphs. We can take the list of primitive
permutation groups of given degree, and select those that have rank-three and even
order and are 2-closed (that is, the full automorphism groups of their orbital graphs).
Then for graphs on up to 100 vertices, we can compute their clique and independence
numbers; those for which the product of these numbers is smaller than n are cores.
If the product is equal to n, further investigation is required. We give a couple of
examples.

(a) For the primitive group of degree 64, number 47 (which is isomorphic to
26:3586), the clique number of the orbital graph of valency 18 is 4, and
the independence number is 16. (The cliques are the lines of a generalized
quadrangle.) The 64 points have the structure of a three-dimensional affine space
over GF(4); an independent set of size 16 is a two-dimensional subspace, and its
translates give a 4-colouring of the orbital graph. So the core of the orbital graph
is K4. By almost identical argument, the core of its complement is K ¢.

(b) The group HS :2 of degree 100 (primitive group number 4) has the famous
Higman-Sims graph as an orbital graph. This graph has clique number 2 (it is
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triangle-free, since it is 2-arc transitive) and coclique number 22 (the neighbours

of a vertex form a coclique of maximum size). So both the graph and its
complement are cores.
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