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Abstract

Personalised nutrition (PN) has emerged as an approach to optimise individual health
outcomes through more targeted and tailored dietary recommendations based on unique
genetic, phenotypic, medical, lifestyle and contextual factors. The application of artificial
intelligence (AI) presents an opportunity to achieve personalised nutrition advice at a scale that
has population impact. This review introduces a nutrition audience to different AI applications
and offers insights into the concepts of AI that might be relevant to the field of nutrition
research. The current and future uses of AI in PN are discussed, as well as the potential benefits
and challenges to their application. AI-driven solutions have the potential to improve health
and reduce the risk of disease because they can consider more information about an individual
in making recommendations. However, challenges such as data interoperability, ethical
considerations, andmodel interpretability remain an issue limiting widespread use at this point.
This review will provide a foundational understanding of the application of AI within PN and
help to identify opportunities to leverage the potential of AI in transforming dietary guidance
and enhancing health outcomes through innovative solutions.

Population dietary advice is designed to provide guidance to improve the health andwellbeing of
the general population. Therefore, it does not account for individual differences in genetics,
metabolism, lifestyle and circumstance(1). Personalised nutrition (PN) has emerged as an
approach to optimise individual health outcomes through more targeted and tailored dietary
recommendations based on unique genetic, phenotypic, medical, lifestyle and contextual
factors(2,3). This paradigm shift from generalised dietary guidelines to personalised nutritional
advice reflects the growing understanding that individual responses to food intake, nutrients
bioavailability and dietary patterns can vary significantly(4,5). PN is a field that can leverage
human individuality to drive nutrition strategies that prevent, manage, and treat disease and
optimise health(3). The significance of PN is its potential to improve health outcomes more
effectively than generic, nutrition advice(2,6), but the challenge remains to achieve personalised
results at a scale that has population impact.

The application of artificial intelligence (AI) has potential to provide preventive
healthcare, ease the workloads and burden of healthcare professionals, and provide more
accurate diagnosis faster and more easily, which will reduce healthcare costs and improve
outcomes for patients(7). As a result, AI is starting to receive significant attention in areas of
nutrition and lifestyle behaviour change too(8). AI and machine learning (ML), as subset of the
broader category of AI, allow analysis of complex, high-dimensional data sets that are
common in nutrition and health behaviour research. ML algorithms, such as support vector
machines and tree-based ensembles, have been widely used for different applications to
identify patterns and make predictions from large datasets(9). Deep Learning (DL) has
achieved state-of-the-art performance in tasks such as image classification, object detection,
and segmentation across different imaging modalities(10). They have significantly improved
our ability to analyse complex genomic data(11) and enabled more comprehensive and
accurate predictions in functional genomics. Thus, the importance of AI in addressing
complex biological and lifestyle data cannot be overstated. AI techniques can process massive
and complex datasets, including genetic, phenotypic, and behavioural data, to generate highly
personalised dietary recommendations(12). Its’ application allows dietary intake and health
behaviour patterns to be uncovered, and individualised nutritional requirements to be
determined that may not be apparent through traditional analysis methods.

This review offers insights into the concepts of AI that might be relevant to the field of
nutrition research for a non-technical audience to help better understand what kind of AI
technology might be most appropriate for certain data and analysis problems. In this review,
current and future uses of AI in PN are critically examined, and the potential strengths and
challenges discussed, primarily through a technical lens. The challenges faced in research and
implementation of AI-driven PN solutions, such as data interoperability, technical AI-related,
ethical considerations, and model interpretability are also discussed. It is thought that this
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comprehensive review will enable the personalised nutrition (PN)
academic community to understand the fundamental concepts and
existing challenges to identify opportunities to leverage AI’s full
potential for transforming dietary guidance and enhancing health
outcomes through innovative solutions.

This comprehensive review seeks to help those working in PN
to understand the fundamental concepts and existing challenges of
using AI in PN and with this foundational understanding, will
identify opportunities to leverage AI’s full potential for trans-
forming dietary guidance and enhancing health outcomes through
innovative solutions. For readers seeking a deeper dive into specific
technical aspects such as advanced model architectures,
high-dimensional data integration, or ethical frameworks for
algorithmic bias there are other appropriate publications
(see References(13–16)).

Fundamentals of AI and data for PN applications

Conventional machine learning (ML): supervised and
unsupervised

ML is a cornerstone of AI applications in PN, offering well
established techniques for analysing complex, well-structured data
(see Figure 1).

Supervised learning involves training algorithms on labelled
datasets to predict specific outcomes, such as linking dietary intake
patterns to metabolic responses or disease risks. Tree-based
methods such as XGB or Random Forest, Support Vector
Machines, Naïve Bayes, and K-Nearest Neighbors belong to this
class of models. This review does not mention linear and logistic
regression as they are traditional statistical models used for data
analysis and modelling. Tree-based methods proved to be effective
in capturing complex patterns(17) yet being less complex and less
computationally demanding than advanced Artificial Neural
Network (ANN) models for plenty of applications. These models
are particularly appealing when dealing with static tabular data to
identify patterns between input variables and targeted outcomes,
for example, nutrient intake(18), disease prediction(19), or health
intervention engagement(20).

Unsupervised learning, in contrast, identifies hidden patterns in
unlabelled data. To that end, the algorithm searches for patterns
present in the data based on similarities, and groups data that share
similar characteristics. This approach has been used in metabolic
phenotyping(21), to identify profiles or biomarker signatures of

health and disease risks(22), or clustering microbiome samples into
groups that share similar microbial compositional patterns(23).

Deep learning

DL is a subset of ML that leverages Artificial Neural Networks
(ANN) models – so called Deep Neural Networks (DNN) – to
analyse and process data. With the ability to automatically extract
and learn features from raw data, deal with complex, high-
dimensional, or unstructured data, ANN have great capabilities to
identify complex relationships and patterns between inputs data
(e.g. genomic, microbiome, medical, lifestyle data, or any other)
and targeted outcomes such as nutrient deficiencies, food
intolerances, engagement interventions etc. Depending on the
data format and application, some model types may be more
appropriate than others. Unlike ML, it requires large datasets to
train on and better computational resources. Thus, if data is limited
traditional ML models are recommended over ANN.

Convolutional Neural Networks (CNN) is a type of DNN which
are particularly effective for image analysis and as such have been
extensively used for image-based dietary assessments such as
identifying food items from photographs(17,20,21,24). It performs
convolution on input data using filters to produce feature maps
and extract positional relationships in the image data. CNN can be
used to automate food recognition tasks, enhancing the accuracy of
dietary intake monitoring.

Recurrent Neural Networks (RNN) is a type of DNN specialised
for sequence modelling. It is designed to capture historical
information in time series data and is capable of learning order
dependence in sequence prediction problems. For instance, to
understand the impact of food intake in predicting BMI(25) or to
predict the risk of chronic diseases based on dietary habits to
inform early warnings for at-risk individuals. Long short-term
memory (LSTM) is a type of advanced RNN designed to overcome
the so-called vanishing gradient problem, the problem when the
learning signals (called gradients) become very small as they move
through the model. This problem makes it difficult for traditional
RNN to learn and retain information from earlier steps in long
sequences. LSTM networks use a specialised structure to preserve
important information over longer time periods, improving their
ability to handle long-term dependencies.

Reinforcement Learning (RL) is suitable for complex problems
in dynamic environments for which an optimal solution is
unknown, and labelled data is unavailable. In RL, ‘learner’ which

Figure 1. AI models and concepts applied to
PN applications. Abbreviations provided in
Table 1.
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refers to the AI system or model can act autonomously to reach its
goals without the need for constant human guidance, and as such it
is called an agent. The agent makes choices and does things in the
environment to see what works best. Each choice can earn a
reward, or a penalty based on a user-defined set of rules. The
algorithm then adjusts its future choices to get more rewards and
fewer penalties. This allows it to master a task without being told
exactly how to do every step.

RL is emerging in PN by enabling systems to adapt dietary
recommendations over time based on feedback and evolving
health data. These advanced DL techniques allow for dynamic and
personalised dietary modelling as well as an opportunity to
consider different data as an input – multi modal systems – to
capture interactions between diet, genetics, and lifestyle. It is
suitable for analysis of big data from different sources to generate
adaptive models over time for personalised health recommenda-
tions(26–28).

Transformers are a specific type of DL model originally
developed for text, that is, natural language processing (NLP) but
has successfully expanded to other data and applications. It is based
on self-attention mechanisms(29), which enable the model to
consider the entire context of the input to better understand its
meaning. Transformers are suitable for complex and unstructured
data of any type - text, images, time series, tabular data or their
combination) – so their application is widespread.

Natural language processing

NLP and Large Language Models (LLM), as the most advanced
technology in NLP, are instrumental in extracting insights from

textual data such as those related to dietary behaviours. NLP
algorithms are useful to analyse food diaries, survey responses, and
social media content to identify eating habits, preferences, and
patterns in words. These insights can be used to customise dietary
interventions and understand broader trends in dietary behaviour.
NLP also supports sentiment analysis, helping to capture
emotional responses to food and dietary changes, or interventions,
which is crucial for designing user-friendly and sustainable
nutrition programmes(13). Advanced Large Language Models
(LLMs) are mostly built on Transformer ANN architecture due
to their ability to analyse the entire context at once. For example,
ChatGPT is powered by an LLM in combination with transformers
and RL from human feedback. It and similar technologies could be
used for PN advice by creating meal plans(30).

Explainable AI (XAI)

Advanced DNN models are quite complex in structure, and
therefore often referred to as a ‘black box’ because its internal
decision-making processes are not interpretable or transparent to
humans. As AI systems become more complex and influential in
providing dietary recommendations, there is a growing need for
more transparency and interpretability in their decision-making
processes. Also, having limited input from nutritional experts to
guide the system to generate safe and accurate recommendations
has raised questions about the trustworthiness of the nutritional
advice provided by such AI systems(30).

It has been argued that XAI could build greater trust with the
healthcare workforce by providing transparency into the AI
decision-making process(31). This would provide insight into
contributors that drive an algorithm’s decision-making process to
generate an output, for example, dietary advice. A greater
understanding of key contributing factors in an algorithm’s
decision process may boost trust in AI-generated outcomes. For
instance, XAI can elucidate why a specific nutrient is recom-
mended based on a user’s genetic data or explain the relationship
between microbiome composition and suggested dietary changes.
However, recent studies report the dangers of overreliance and
potentially being misled as a result of XAI(32,33), especially if
variables are correlated and/or if deployed XAI does not capture
casual relationships. Instead, using interpretable models, which are
models that trace and comprehend the reasoning mechanisms
behind the outcomes, has been recommended for high-stakes
decisions(34). However, interpretable models may be less accurate
in handling complex, highly non-linear and/or high-dimensional
data, which is a limitation of using these models. In multidisci-
plinary literature, explainable and interpretable are often used
interchangeably. However, one should be aware they have
completely different meanings as explained above and should be
used appropriately.

The advantage and potential of XAI is its ability to help
researchers and practitioners uncover potential biases or inaccur-
acies in AI models, ensuring that recommendations are both fair
and scientifically reliable(27,29). SHapley Additive exPlanations
(SHAP)(35) and Local Interpretable Model-agnostic Explanations
(LIME)(36) are the most popular explanation methods applicable to
any ML model, and LLM. They show which parts of the input (like
words in a sentence or features in data) has the biggest impact on
the model’s prediction. SHAP does this by fairly assigning credit to
each factor that influences a prediction, similar to how rewards
might be shared among team members based on their contribu-
tions. LIME, on the other hand, simplifies the model’s decision just

Table 1. Table of common abbreviation used in the field of AI and within this
review

Abbreviation Explanation

AI Artificial Intelligence

ML Machine Learning

PN Personalised Nutrition

PH Precision Health

PH Precision Health

XGB Extreme Gradient Boosting

RF Random Forest

SVM Support Vector Machines

KNN K-Nearest Neighbours

NB Naïve Bayes

ANN Artificial Neural Network

DNN Deep Neural Networks

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

LSTM Long short-term memory

RL Reinforcement Learning

NLP Natural Language Processing

LLM Large Language Models

XAI eXplainable AI
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around the example being examined, helping us understand why
the model made that specific choice.

There is more literature using SHAP and in nutrition research it
is used for explaining predictions and identifying relative
importance of nutrition-related factors for different outcomes
including mortalities(37,38), cardiovascular diseases(39,40), depres-
sion(41,42), feeding intolerances in preterm newborns(43), disengage-
ment in online weight loss applications(20), overweight and
obesity(44), glucose monitoring(45,46).

Unlike SHAP and LIME, which are model-agnostic, that is,
methods that can be used with any kind of AI model, some XAI
algorithms are specifically designed to explain only neural
network-based models. Their taxonomy has been reviewed by
Ibrahim et al.(47) and Samek et al.(48). However, there is lack of
evaluation of XAI methodologies(49).

Role of Data in AI Models

AI’s potential to revolutionise PN lies in its ability to integrate
diverse and complex datasets (Figure 2). In the following, the types
of data that could be part of a PN framework(50) and the
information they contain are described.

Medical Data allows nutrition recommendations to be tailored
to an individual’s unique health profile. Dietary recommendations
could be aligned with an individual’s health status, their risk factors
and health needs to prevent or manage chronic diseases through
more specific dietary strategies.

Genomic data provides insights into individual genetic
predispositions, such as sensitivities and intolerances to specific
nutrients or responses to treatment options.

Metabolomic data captures real-time snapshots of metabolic
activity, offering a detailed understanding of an individual’s
physiological responses to dietary intake.

Microbiome data sheds light on the gut’s role in health and
nutrition, highlighting how gut bacteria interact with diet to
influence overall well-being.

Lifestyle data, including physical activity, sleep habits, and
stress patterns, meal timing and composition can be used to
personalise recommendations within the context of their broader
lifestyle routine.

Other data, including demographic information and other
relevant health and wellbeing data that can be collected via variable
devices, mobile and online application may also be informative in
modelling complex process and interactions.

By synthesising these data, AI models generate holistic, data-
driven insights that guide more precise and PN strategies. This

integration is essential for understanding the dynamic interplay of
factors influencing dietary behaviour and health, paving the way
for innovative and effective interventions in PN.

Current AI applications in personalised nutrition

AI techniques have been applied to different PN applications,
which can be broadly grouped into dietary assessment and
monitoring, prediction of health outcomes, diet recommendations
and microbiome analysis and nutritional genomics.

Dietary assessment and monitoring

Along with recommendation systems, this is the most mature
application of AI in PN. Currently there are at least 11 AI-enabled
food image recognition apps available from Australia’s Apple App
and Google Play(51). They are transforming conventional dietary
assessment and monitoring.

Traditional methods of dietary assessment are time consuming,
requiring completion of food diaries or surveys. AI-driven
solutions, integrated into mobile applications, offer more efficient,
real-time alternatives for food recognition and tracking of food
intake. The fundamental operating principles of AI-based food
segmentation and classification systems for supporting nutrition
monitoring are detailed in the work of Freitas et al.(52).

Segmentation performed with CNN is followed by estimation
of energy and nutrient intake by combining CNN and NLP(53).
Tahir and Loo provide comprehensive summary of AI method-
ologies leveraged for automatic image-based food recognition and
volume estimationmethods for dietary assessment(24). The authors
identified several limitations, including the lack of comprehensive
datasets for benchmarking and performance evaluation, which
they regard as one of the biggest challenges. Additionally, they
highlighted the issue of so-called open-ended learning - the
inability of models to continuously learn and adapt to new
information over time, without forgetting previously learned
information. Furthermore, challenges remain in the accurate
classification of ingredients in prepared and mixed food items.

Mobile apps integrated with AI algorithms enable users to scan
food items, automatically recognise ingredients, and calculate
nutritional values. Image analysis, another promising tool, utilises
computer vision to identify food items from photographs, helping
users track meals without manual input. Current accuracy is
relatively high in identifying pre-categorised foods (87 % or more),
however further improvements especially related to diversity of
foods, mixed and culturally varied dishes(51) would support more
widespread use of such tools in PN.

Initial steps towards fully automated food monitoring have
beenmade by leveraging advanced AImodels. LSTM-based system
for food consumption identification to improve diabetes manage-
ment, utilising dynamic temporal data representing full-day record
of wrist movement, has demonstrated great performance(54). This
approach enables automatic meal detection and reduces reliance
on patient’s input, however, has constraints in relation to diabetes
management due to the artificial pancreas systems – delayed
insulin action and the need for pre-meal administration.

Lastly, engagement with digital tools is key to achieving
successful behaviour change and improvements in digital health
interventions. Although technology is increasingly utilised in
health interventions, a notable challenge continues to be the
decline in user engagement and non-use attrition(55). ML-
algorithms have been shown to be effective in predicting and

Figure 2. Data for AI-powered holistic PN.

4 A. Brankovic and G. A. Hendrie

https://doi.org/10.1017/S0029665125100657 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665125100657


explaining factors leading to disengagement, paving the way for
improved and more supported delivery of personalised weight loss
programmes or other personalised digital interventions reliant on
engagement(20).

Personalised diet recommendations

Leveraging AI, in particular DNN models and large datasets, to
generate tailored meal plans based on individual profiles has
significantly increased(56). Different data sources are exploited and
combined with traditional surveys and questionnaires. These
include data collected via wearable devices such as watches and
activity trackers, demographics and personal data, preferences and
motivation, health and clinical data (e.g. insulin levels), microbiota
and genetic data. Physiological data is used most while use of
genetics and microbiota data is less common. Data can be analysed
with the range of AI technologies discussed in Section 2. However,
an approach integrating all data relevant to generate personalised
advice is still unavailable. Tsolakidis et al.(56) provided an overview
of advancements in data-driven technologies for personalised
nutrition, focusing on data collection methods employed in
modern -ML technologies and their challenges.

Prediction models for health outcomes

AI predictive models, in particular those suitable for modelling
time sequences, are promising for the prevention of chronic disease
such as CVD, diabetes, and obesity due to their ability to analyse
complex temporal data, capability to capture temporal relation-
ships and identify correlations and patterns. AI-powered pre-
diction models can estimate the likelihood of developing specific
health conditions, enabling early intervention strategies and
personalised dietary recommendations.

For instance, a person with pre-diabetes can receive AI-driven
dietary recommendations obtained based on their health, dietary,
lifestyle and genetic data which could help to avoid progression to
Type 2 diabetes. Another example is leveraging AI models to
predict how certain foods or nutrients may interact with a person’s
unique microbiome or identifying genetic predispositions to
nutrient deficiencies or sensitivities that would allow for
personalised dietary interventions to optimise gut health. Some
initial steps have been made for the later example with two studies
developing recommender system based on individuals’ genetic
data(57,58).

Few studies have deployed complex models or time series data
in PN(21,59), and no studies have explored multimodal predictive
models for chronic disease or other health outcomes directly
related to PN. Combining diverse data sources, for example,
clinical data, nutrition intake, health data, genetic or microbiome,
has potential to improve the precision and effectiveness of health
predictions with AI technologies but there is limited evidence of its
application in PN at present.

Benefits and advantages of AI integration

AI integration in PN offers numerous benefits and advantages that
significantly enhance the effectiveness and reach of dietary
interventions. They can be broadly grouped into three main
categories: (i) scalability and accuracy, (ii) personalisation and (iii)
dynamic and adaptiveness.

(i) Scalability and accuracy

The era of ‘big data’ means that information can come from
multiple sources such as wearable devices, mobile apps, websites,
online journals, electronic medical reports, wearable devices. AI
systems have capability to process vast amounts of complex data
rapidly and precisely(60), enabling efficient analysis of large datasets
and provision of real-time feedback. This capability allows for
scalable nutrition solutions that can reach a wide population(61).
AI-driven tools, such as mobile applications and wearable devices
equipped with conventional and DL algorithms, can provide
dietary recommendations, enable real-time accurate nutrient
estimation, monitor intake in real-time and personalised nutrition
plans, making personalised nutrition accessible to users across
different regions and socioeconomic backgrounds(62). Leveraging
ML enables predictive analytics for early intervention and better
support(20). A scoping review(63) has outlined the advantages of AI
in improving accuracy of dietary assessment using a DL. ML and
DL solutions are already part of various commercial programmes
and apps for weight loss.

(ii) Personalisation

One of the benefits of integrating AI into PN research is its ability
to enhance precision in identifying individual dietary needs.
Unlike traditional methods that rely on generalised dietary
guidelines(1), AI algorithms can analyse complex datasets to
account for individual variation related to phenotype, genotype,
lifestyle behaviour (diet, activity, etc.), goals, and preferences(64) to
create tailored nutritional strategies. The ability of AI to harness
large, multidimensional datasets provides an opportunity to
improve the accuracy of identifying individual dietary needs and
tailoring intervention accordingly.

ML models excel at recognising subtle patterns in these data,
enabling the identification of specific dietary components that
align with an individual’s unique health requirements and goals.
For instance, AI can predict how a personmight be engaged during
a weight loss programme(20), respond to certain foods based on
their genetic predispositions or gut microbiome(8,65–67), reducing
the trial-and-error approach often associated with dietary
guidance. By leveraging this level of precision, AI ensures that
dietary recommendations are more accurate and possibly also
more effective in preventing disease, optimising health outcomes,
and improving overall quality of life.

(iii) Dynamic and adaptiveness

Improved patient-provider communication can be made through
the real-time monitoring and evaluation of patient progress via
apps(68). One of the key advantages of AI in PN is its ability to
generate recommendations based on longitudinal data. Unlike
traditional periodic dietary assessments that rely on self-reporting,
AI models offer real-time monitoring capabilities(61), providing
timely feedback and intervention. Adaptive nature allows for
dynamic guidance(20), where recommendations are continuously
refined as users log their behaviours such as their meals and snacks,
exercise routines, and health metrics. Such real-time adjustment
ensures that dietary advice remains relevant and effective, adapting
to changes in the user’s health status, activity levels, or even
seasonal variations in food availability. By leveraging AI’s
capabilities in data analysis, real-time feedback, and adaptive
learning, PN strategies can be more effectively implemented,
potentially leading to better adherence to dietary guidelines and
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improved health outcomes. Longitudinal studies powered by AI
provide an opportunity to reveal long-term effects of certain
dietary patterns for instance the risk of chronic diseases based on
dietary habits using RNN, unlike current approaches that consider
only one time point(69).

Challenges and limitations

Data-related challenges

Data-related challenges play a key role in driving data-driven
innovation within the field of PN(56). To that end one of the main
technical challenges in integrating AI into PN research is data
heterogeneity and lack of interoperability among various data
sources. PN relies on different and complementary data(50,64), each
with its own format, structure, and collection methods. There is a
lack of interoperable infrastructure and data standardisation that
would enable data access and data harmonisation(70), which is a key
challenge for developing effective multimodal AI systems.
Moreover, differences in data standards, tools, and platforms
across healthcare systems complicate the seamless exchange and
analysis of information, limiting the potential for broader
applications and scaling of PN interventions. Overcoming these
challenges requires standardised protocols, improved data-sharing
frameworks, and better tools for data integration.

AI-related challenges

Transparency and Trust: AI models, particularly DL algorithms,
have the biggest potential in terms of their application in PN but at
the same time are considered ‘black boxes’, meaning their decision-
making processes are not interpretable by humans. The lack of
transparency reduces their trustworthiness(71). As a result,
healthcare professionals may be hesitant to adopt AI technologies
due to a lack of familiarity with AI tools, concerns about the
reliability of AI-driven recommendations, or scepticism about the
technology’s clinical validity. This poses a significant challenge in
PN, where understanding the rationale behind AI-generated
decisions and recommendations is critical for uptake by healthcare
professionals and patients. Different explainable AI (XAI)methods
are introduced to mitigate this problem. Though explainability and
interpretability are often used interchangeably, they refer to
distinct concepts and should be used carefully. Interpretability
refers to the intrinsic transparency of a model’s internal structure,
permitting direct inspection of how inputs mathematically or
logically generate outputs. Explainability encompasses post hoc
techniques, that is, methods applied after model training, applied
to any model (including ‘black boxes’) to generate human-
understandable rationales behind the model outputs. However,
explanations obtained from different XAI methods are frequently
non-identical and as such less trustworthy to guide clinical
decision making(33). They can be useful and provide insight into
key factors that drive algorithms, but not the whole decision-
making process. To be more trustworthy, explanations should be
able to capture causality, context and match reality(33), however
this still remains a challenge in the application of AI. These reasons
are in support of the view that current XAI approaches will induce
trust with the health-care workforce represent a false hope(31),
though they may be very useful especially for system audit and
troubleshooting(31,33). As an alternative, redirecting focus from
XAI to interpretable AI has been suggested(34).

Fairness: Lack of model opacity can complicate the identi-
fication of systematic errors or biases in the models. The Fairlearn

package(72) and Fairness Indicators TensorFlow tool kit(72) can help
in assessing models and mitigating unfairness.

Over-reliance: When it comes to AI use in applications, there is
risk of over-reliance on AI(73). Some studies have already reported
how over-reliance on AI dialogue systems affects critical cognitive
capabilities, including decision-making, critical thinking, and
analytical reasoning of clinicians(74). Educating on AI limitations,
using AI only as an adjunct and domain expertise to judge and
evaluate AI systems can prevent risks associated with over reliance
while maximising the benefits of its application.

Generalisation: State-of-the-art models lack strong empirical
evidence supporting model performance across diverse and
heterogeneous datasets. This limitation raises concerns about
the generalisability and reliability of AI-driven dietary advice,
particularly for underrepresented populations. High-quality data-
sets and rigorous validation are essential for ensuring AI systems
provide equitable, effective, and trustworthy personalised nutrition
guidance.

Data privacy and security

AI models in PN may require access to sensitive health data, such
as genetic information, personal health history, and real-time
biometric measurements. This raises significant concerns about
data privacy and security. Unauthorised access, breaches, or
misuse of health data can lead to identity theft, discrimination, or
other adverse consequences(75). Moreover, ethical and legal risks
due to gaps and inconsistencies in legal protection, remain a
concern(76). It is crucial to establish robust data protection
measures, implement strong encryption methods, and ensure that
AI models comply with privacy regulations such as the General
Data Protection Regulation(77) and Health Insurance Portability
and Accountability Act(78) to safeguard personal health
information.

Future directions

Advancements in AI techniques

Future advancements in AI and the application of more
sophisticated approaches show promise in advancing PN research.

Federated learning offers a way to train AI models across
decentralised datasets, preserving individual privacy while lever-
aging diverse and extensive data sources. This approach is
particularly relevant in healthcare, where sensitive data often
cannot be centralised.

Explainable AI (XAI) is another critical development, aiming to
make AI models more transparent and interpretable. By providing
insights into how decisions are made, XAI will increase the level of
trust healthcare professionals and individuals have in the
technology, making personalised nutrition interventions more
acceptable. Currently, they uptake in PN applications has been
limited.

Additionally, multimodal models are gaining prominence for
their ability to integrate various types of data – such as genomic,
dietary, and lifestyle data – into a unified framework. These
advancements will allow AI to generate more accurate, personal-
ised, and actionable dietary recommendations.

Wholistic approach

A more holistic approach to AI in PN is essential to address the
interconnected nature of human health. Integrating data from
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different sources can offer greater insights, supporting personal-
ised dietary recommendations that promote overall health and
wellbeing while also considering disease risk stratification and
prevention. For instance, models that integrate data on stress,
sleep, and physical activity alongside nutrition can provide a better
picture of an individual’s health and wellbeing. This information
would enable interventions to address causes rather than
symptoms.

Interdisciplinary collaboration

The future of AI-driven PN relies heavily on interdisciplinary
collaboration. Nutritionists, AI researchers, and policymakers
should work together to develop practical, ethical, and scalable
solutions. Nutritionists provide domain expertise to guide AI
model development and ensure recommendations are evidence-
based and clinically relevant. AI researchers bring technical
expertise to design robust and innovative models, and under the
risk associated with the application of different approaches, while
policymakers play a crucial role in setting regulations that protect
data privacy and promote equitable access. Collaborative efforts
between stakeholders will ensure that AI-driven personalised
nutrition benefits a broader population while maintaining ethical
integrity. On that note, future advancements in AI, particularly in
DL, are expected to enhance PN research. These technologies may
allow better data analysis of large volume multimodal data and
hence lead to more accurate predictions and more effective
personalised health recommendations(79) being delivered at scale.

Integration with emerging technologies

The integration of AI with emerging technologies will enhance its
effectiveness and accessibility in PN. Wearable sensors and
Internet of Things devices are already transforming how health
data is collected, offering real-time insights into physical activity,
heart rate, and caloric expenditure. Modern continuous glucose
monitors, which track blood sugar levels in real time(80) and
wearable devices, provide invaluable data for dietary management,
particularly for individuals with conditions like diabetes. But it is
possible for their application to target the promotion of health and
wellbeing as well as the prevention of disease progression. Already
there are number of recommendation systems that combine data
from wearable devices and AI to generate adaptive personalised
dietary recommendations(56), but broadening the data sources
available will support greater personalisation and tailoring to
improve an individual’s overall health.

Conclusion

This review has described different AI applications and offered
insights into the concepts of AI that might be relevant to the field of
nutrition research. The potential of AI to support large-scale,
personalised and possibly more effective, dietary advice is
significant. However, as with any emerging technology, it is
critical to understand the science and consider the challenges
associated with the application of such technology to a new area of
research – such as personalised nutrition. AI-driven solutions
consider more information about an individual in making
recommendations, so they have the potential to improve health
and reduce the risk of disease. However, challenges such as data
access, data interoperability, ethical considerations, model reli-
ability, generalisation and interpretability remain an issue limiting
widespread use at this point. The application of AI in nutrition

remains an emerging area of science, but there are great
opportunities to leverage the potential of AI in transforming
dietary guidance and enhancing health outcomes.
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