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Abs t rac t . Over the last decade we have seen the application of novel techniques to the 
old problem of nonlinear stellar pulsations. Together with numerical hydrodynamics this 
approach provides a more fundamental understanding of the systematics of the pulsational 
behavior. For weakly nonadiabatic pulsations, whether regular or multi-periodic, dimen­
sional reduction techniques lead to amplitude equations and to a description in terms 
of modal interactions and resonances. In particular they shed new light on the bump 
progression in the classical Cepheids. In more dissipative stars numerical hydrodynamical 
modelling has uncovered the existence of irregular variability, both in radiative and in con-
vective models. An application of modern dynamical systems techniques has shown that 
this behavior occurs according to well understood routes from regular to chaotic behavior. 
The mechanism is very robust and represents the first non ad hoc theoretical explanation 
of irregular stellar variability. Finally, we discuss how a comparison with observations of 
irregular variability shows the need for more suitable observations, on the one hand, and 
of better techniques of signal processing, on the other. 

1. Introduction 

There is hardly a need to stress the importance of the study of stellar pulsa­
tions. Almost all stars undergo some kind of pulsational phase during their 
lifetimes, and an understanding of the large variety of pulsational behav­
ior poses a challenge to the astrophysicist. From an astronomical point of 
view, nonlinear pulsations yield information about the parameters of the 
stars which their static siblings do not reveal us. More generally, the study 
of stellar pulsations has greatly improved our understanding of stellar struc­
ture and evolution, of galactic evolution and especially of cosmology, where 
the variable stars have provided the pillar on which our knowledge of the 
Universe's distance scale rests. For the physicist the pulsating stars are in­
triguing giant natural heat engines. Because of the extreme conditions of 
density and temperature encountered in stellar interiors they provide an 
excellent testing ground for Physics. For example, it is a long-standing dis­
crepancy between the predictions of stellar pulsation and stellar evolution 
that has stimulated (Simon 1982) a revisitation of the atomic physics calcu­
lations with a subsequent substantial change in the opacities. Finally, to the 
dynamicist, pulsating stars are of interest because they exhibit very charac­
teristic low-dimensional behavior in spite of the quite complicated nonlinear 
hydrodynamical equations which govern their behavior. 

The work on nonlinear stellar pulsations can be grouped into three cate­
gories, numerical hydrodynamical, simple modelling and nonlinear dynamics 
approaches. The first, the numerical hydrodynamical approach was pioneered 
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by Christy in the mid 60s and has been the workhorse for nonlinear mod­
elling. Although it clearly constitutes a brute force attack, it is also the 
approach that will yield the most detailed and accurate description of the 
pulsations. However, its obvious shortcomings are the difficulty of extracting 
the underlying systematics in the metamorphosis of the generated light and 
radial velocity curves when the stellar parameters are varied. In particular, 
it is easy to model and obtain the Hertzsprung progression in the bump 
Cepheids, but it is difficult to understand its origin and what governs its 
presence and shape. 

The second approach of constructing simple models is very pedestrian, 
but is essential for developing physical intuition and guidance. In the case of 
the famous linear one-zone model of Baker (1966) it yielded a much clearer 
understanding the destabilization of vibrational modes through the effects 
of the equation of state and of the opacity, the so-called 7 and K mechanism. 
In the context of nonlinear pulsations, Baker, Moore and Spiegel (1966) sug­
gested the use of such a model in the form of a simple set of three first order 
ODEs. Their suggestion came as a result of a model oscillator that they 
had constructed for studying overstability in a convectively unstable zone 
(Moor and Spiegel 1966). This simple oscillator model which is a little known 
contemporary of the now famous Lorenz oscillator (e.g., Cvitanovich 1984), 
like the latter exhibits a myriad of different types of behavior, including 
chaotic oscillations. Buchler and Regev (1982) developed a simple one-zone 
model of interest for the oscillations of stars with extended convective par­
tial ionization regions. It turned out this oscillator was very similar to the 
Moore-Spiegel oscillator as well. Buchler and Perdang (1979) introduced a 
two-zone model to understand the thermal relaxation oscillations found in 
the study of stars with thin burning shells. Barranco, Buchler and Livio 
(1981) and Livio and Regev (1984) used a similar model for X-ray bursters. 
Recently Tanaka and Takeuti (1988) introduced additional one-zone models 
for stellar pulsations, and Saitou, Takeuti and Tanaka (1989) showed that 
the famous Rossler attractor can be transformed into a model stellar oscil­
lator (for a review cf. e.g., Takeuti 1990). This is particularly interesting in 
view of the chaotic pulsations encountered in the numerical hydrodynamical 
modelling of W Vir stars which seem to have the topology of the Rossler at­
tractor (Kovacs and Buchler 1988b). Generally speaking, it is important to 
realize that such simple model equations (3 first order nonlinear ODEs) can 
have a variety solutions, from static, to regular periodic, to period-doubled 
and to chaotic, depending on the values of the model parameters. It would 
therefore be astonishing if the more complicated hydrodynamical modelling 
were not also to produce this type of behavior. The general drawback of 
this approach is that the predicted behavior is not robust to the addition of 
further zones and that it is therefore not easily generalizable and improvable 
in a systematic fashion. 
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Finally, the dynamical systems approach is complementary to numerical 
hydrodynamics in that it gives a natural framework within which to un­
derstand the sometimes overwhelming computer output. Its astrophysical 
origins go back to the Hamiltonian approach of Woltjer (1936. 1937. 1946). 
(Here we only note in parentheses, because we are concerned with dissipa-
tive systems, that this Hamiltonian approach has been continued and ap­
plied to Kolmogorov unstable systems by Perdang 1933). Papaloizou (1973), 
realizing the importance of dissipation, was the first to use asymptotic per­
turbation methods with which he studied the nonlinear pulsations of upper 
main sequence stars. He also drew attention to the essential role played by 
resonances. Vandakurov (1979) and Dziembowski (1980), with the help of 
averaging techniques used in plasma physics, studied resonant wave cou­
pling, but did not consider nonlinear nonadiabatic effects. At the same time 
Takeuti and Aikawa (1980, 1981, 1985) employed another asymptotic pertur­
bation technique, the method of harmonic balance, again with an adiabatic 
approximation, and they added ad hoc van der Pol nonlinear dissipation 
terms. Buchler, Yueh and Perdang (1977) and Barranco, Buchler and Regev 
(1982) applied a multi-time method, but used a quasi-adiabatic approach 
which turned out not to be very useful from a practical point of view. Al­
though all these studies were not fully satisfactory in some way or other they 
gave rise to amplitude equations of very similar form. This is not astonishing 
in retrospect as there exists a very general, systematical formalism to derive 
such equations provided rather general physical assumptions are satisfied. 

2. The Dynamical Systems Approach 

The first basic assumption that underlies this approach is one of weak non-
linearity which allows us to describe the nonlinear behavior of the system in 
terms of modes. Let use denote the deviation from static equilibrium of the 
basic variables (radius, velocity and a thermal variable, e.g., the tempera­
ture) by z{t) = (SR,..., 6v,..., 6T,...,...), where SR and Sv respectively 
are vectors or scalars in the nonradial or radial cases. When for practical 
purposes the model is discretized into N mass zones, each of these quanti­
ties then has N components. We can write the equations of hydrodynamics 
and radiative transport (in the Lagrangean description) in the very compact 
form 

d-l = Cz + M{z) (1) 

where M(z) is the strictly nonlinear part of the right-hand side. Linearization 
with a time-dependence exp(crt) leads to the eignevalue problem 

£e k = akek (2) 

with 
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Uk = iu!k + Kk (3) 

The complex eigenvectors ek, together with their dual adjoints, form a com­
plete orthogonal set and the displacement can be expressed in terms of the 
amplitudes {ak} of all the modes, viz. z(t) = *}2kak(t)ek. Substitution into 
Eq. (1) then leads to an equivalent system of coupled equations 

dak T—^ ^-^ 
— = akak + 2_s nkimaiam + ^ nklmnOiaman + ••• (4) 

Ira Iran 

the sum extending over all modes and over all combinations of the {ak} and 
complex conjugate (c.c) amplitudes {a"k}. The nonlinear coefficients nkimn„ 
are constructible from the operator A^ and from the complex eigenvectors ek 

and their duals (e.g., Buchler and Goupil 1984. Buchler 1985). At this stage 
such equations can represent Hamiltonian as well as dissipative systems. 

2.1. THE GALERKIN APPROXIMATION 

This approximation is nothing but a truncation both in the number of modes 
and in the number of nonlinear terms in system (4). For example, for a single 
mode one finds 

—j- = (iu>i + Ki)a1+(ramaf + c.c. + 2n11_1|a1|2) 
at 

+(nulal + Znm-ila^ai + c.c) (5) 

In general, a Galerkin approximation is not a good approximation unless 
a large number of modes are included. The problem is that the predicted 
behavior is not robust in the sense that it can depend sensitively on the 
number of modes. The Lorenz equations, for example, have their origin in a 
truncation in terms of 3 Fourier components and have become famous not 
for the physics they represent, but for their interesting solutions. 

2.2. THE AMPLITUDE EQUATION FORMALISM 

The fundamental assumption of this approach is the existence of a slow 
manifold. What this means is that the modes can be split into two groups, the 
principal modes characterized by \Kk/uk\ <C 1 and the slave modes fox which 
Kk/u:k is negative and of order unity. The physical idea which underlies the 
dimensional reduction method is very simple. When a system is disturbed 
away from its static equilibrium it is only during a short transient time-
interval that it rings with all the eignefrequencies. an interval during which 
the amplitudes of the slave modes decay away very fast. This is followed by 
a slow evolution in which the system is completely specified by the behavior 
of the amplitudes of the principal modes, i.e., 

v 
z(t) = z({ak(t)}) = 2 J ak(t)ek + quadratic terms + cubic terms + ... (6) 

fc=i 
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These amplitudes can be considered generalized coordinates which parametrize 
in the slow manifold, i.e., the subspace of phase-space corresponding to the 
slow manifold in which the system evolves. The behavior of the principal 
amplitudes themselves is described by a system of ordinary differential equa­
tions, the amplitude equations whose general form is 

—- = (iuk + Kk)ak + gk({ak}), k = l,....p (7) 

where p is the number of principal modes. The expressions for gk({ak}), the 
normal forms as they are also called depend on the number of modes and 
on what resonances, if any, are present, and are generic (e.g.. Guckenheimer 
and Holmes 1983). Which specific form one needs to use can therefore be 
decided on the basis of the linear spectrum. 

The amplitude equations (Eq. (7) and the nonlinear terms gk({ak})) can 
be obtained in a number of ways. Coullet and Spiegel (1984) presented 
a very elegant and general method for deriving the amplitude equations, 
whereas, concomitantly, Buchler and Goupil (1984; cf. also Buchler 1985) 
used a more intuitive multi-time method and gave explicit expressions for 
the case of radial stellar pulsations. 

Because of the basic assumption of weak nonlinearity for the principal 
modes we can factor out a rapidly varying term from the amplitudes, viz. 

ak(t) - exp(iujkt)dk(t) (8) 

It is clear that expression (6) for z(t) represents a multi-periodic function 
with the eigen-frequencies of all the principal modes. Actually, the higher 
order terms gradually modify these frequencies because of nonlinear effects 
without however destroying the multi-periodicity. 

To summarize, the dimensional reduction method reduces the compli­
cated partial differential system (1) or its infinite dimensional counterpart 
(4) to as system of p ODEs for only the p principal modes. This is schemat­
ically illustrated in Fig. 1. In the amplitude equation formalism the slow 
manifold, while of the same dimension as the space of the principal modes, 
curves into the space of the slave modes. In contrast, in the Galerkin approx­
imation the system is restricted to move in the space of the modes which 
are being included. In addition, the coefficients in the amplitude equations 
are different. 

We now examine the predictions of the amplitude equation formalism 
for the simplest case, viz. that of a single principal mode. The amplitude 
equation, truncated at the lowest nonlinear terms, is given by 

daa I i2 
— = (iua + na )a + Q\aQ\ aa (9) 

Introducing into Eq. (9) the slowly varying amplitude-modulus and phase, 
defined by aa(t) — Aa(t) exp(id>a(t)) we obtain 
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Galerkin approx. 

Fig. 1. 

amplitudes 
slave modes 

transients 

amplitudes 
principal modes 

The slow manifold. 

dAQ 

dt 
KaAa + Re(Qa)Al (10) 

When Re(Qa) < 0, which is the usual situation in stellar pulsations, this 
equation has two fixed points, i.e., values for which dAa/dt = 0. The first 
one, Aa = 0, represents the stable equilibrium model, whereas the second 
one, A\ = -Ka/Re(Qa), represents a limit cycle, or pulsation of the stellar 
model with constant amplitude. The point nQ = 0 is the Hopf bifurcation 
point or, in the parlance of stellar pulsations, the blue edge for the sequence. 

One also obtains "an equation for the phase 4>a(t), given by d<pa(t)/dt = 
Im(Qa)A

2
a which for the limit cycle has the trivial solution (j>a(t) — Im(Qa) 

A2
a. When inserted into Eq. (8) it represents the nonlinear correction to the 

frequency, LJ£L = ua + Im(Qa)A
2

a. 
It is easily shown (e.g., Buchler 1985) that the cubic saturation coeffi­

cient Qa is a (specific) combination of the cubic term and products of the 
quadratic terms from Eq. (4), viz. 

2_ 
iujn 

V a — " ^ a a a - a T . / X ^aak^ka—a T na—aknkaa) 
k 

(11) 

:(t) = (aa(t)ea + c.c.) + T—Y] (nkaQa2 - c.c. - nka-a\aa\
2) e k (12) 

where the sums extend over all modes, principal as well as slaves. 
These results are very general and are derived from the full dynamical 

system (Eq. 1 or Eqs. 4). It is perhaps instructive to compare these results 
to the Galerkin approximation. If a corresponding dimensional reduction is 
performed on the Galerkin approximation (Eq. 5) we obtain the same am­
plitude equation (Eq. 9), but the sums both for the cubic term and for the 
correction to z now reduce to a single term, k = a. The Galerkin solution 
vector z(t) therefore lies in the space spanned by eQ and its complex con­
jugate. In contrast, in the amplitude equation formalism the second order 
and higher terms in z(t) acorrectly extend into all of phase-space (as il­
lustrated in Fig. 1). Of course when more modes are kept in the Galerkin 
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approximation, these modes then also appear in the sums and improve the 
solution. 

3. Applications of the Amplitude Equation Formalism 

A number of formal studies of amplitude equations have been made for a 
variety of physical situations (e.g., Dziembowski and Kovacs 1984, Takeuti 
and Aikawa 1980, 1981. Buchler and Kovacs 1986a. b. 1987a, Moskalik 1985, 
1986, Buchler and Goupil 1988, and many others). Such studies are very 
valuable because they elucidate the various types of behavior that can be 
expected, e.g., fixed points, limit cycles and chaos, corresponding to stellar 
pulsations with, respectively, constant amplitudes, periodically modulated 
and erratically modulated stellar pulsations. In addition to the nature of the 
solutions they also allow an assessment of their stability. In particular, they 
show the effects of various types of resonances and the bifurcations that they 
can produce. It is important to note that often these results do not depend on 
the exact values of the parameters which appear in the amplitude equations, 
but are valid for broad ranges of values, lending quite general validity to such 
studies. 

On the quantitative side, two types of studies have been made. Truly ab 
initio calculations in realistic stellar models have only been preformed for 
quadratic coefficients. Dziembowski (1982) and Dziembowski et al. (1985, 
1988) computed the coefficients appropriate for a resonant condition be­
tween nonradial modes (a p mode coupled to two g modes) in 6 Scuti stars. 
Takeuti and Aikawa (1980, 1981) computed the quadratic coupling coeffi­
cients in the case of a 2:1 resonance in classical Cepheid models. These last 
two studies approximated the exact (complex) linear eigenvectors by (real) 
adiabatic ones. The general expressions for the coupling coefficients in clas­
sical Cepheids were computed by Klapp, Goupil and Buchler (1985). The 
expressions are very complicated an extension to the cubic terms will almost 
certainly require the use of a symbol manipulation program. 

The second, different approach consists of using numerical hydrodynam-
ical computations of the pulsations to extract the values of the nonlinear 
coupling coefficients. This approach is perhaps less accurate, but it yields 
some useful results which we shall describe in the next sections. In particular, 
it allows a quantitative comparison of hydro-model sequences, it sheds new 
light on the important role played by resonances and it allows a search for 
specific pulsational behavior in stellar models. For example, the amplitude 
equations predict quite generally that in the presence of a 2:1 resonance a 
limit cycle sees its stability decreased, sometimes to the point of instabil­
ity. Such general guidance from amplitude equations allowed Kovacs and 
Buchler (1988a) to conduct a successful numerical hydrodynamical search 
for persistent beat pulsations. 
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Fig. 2. Flow field for nonresonant two-mode case; Separatrices: thin lines; Evolution of 
hydro-model: thick lines. 

3.1. QUANTITATIVE STUDIES 

The question arises how good the amplitude equation formalism is from 
a quantitative point of view. We shall now illustrate this for the case of a 
nonresonant RR Lyrae model with stellar parameters, O.45M0, dOL®, 5900K 
(taken from Buchler and Kovacs 1987a). The model is linearly unstable in 
the fundamental (0) and first overtone (1) and has stable limit cycles in 
these two modes (talking about a "limit cycle in a moder' is appropriate 
because the nonlinear limit cycles have a predominant projection onto the 
space spanned by their respective linear eigenvectors, and additionally their 
frequencies are also very close to the linear ones). 

After disturbing the static equilibrium model we can follow its evolution 
with the numerical hydro-code. A frequency analysis shows that after a 
very short transient only two principal frequencies survive and that they are 
very close to the linear fundamental and first overdone frequencies. A time-
dependent Fourier decomposition of, say the stellar radius R~(t), then yields 
the time-dependent amplitudes Ao(t) and A\{t) and the phases Qo(t) and 
0\{t). The amplitudes are plotted as thick lines in an amplitude-amplitude 
plot in Fig. 2 for two separate initializations of the hydro-code. One notes 
that in each case both amplitudes first increase before evolving toward a 
fundamental and first overtone limit cycle, respectively. This evolution will 
be considered the experimental "data". We will show that this somewhat 
unexpected behavior of the amplitudes is explained not only qualitatively, 
but also very well quantitatively by the apposite amplitude equations. 
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The amplitude equations for the nonresonant two-mode case to lowest 
order are given by 

K0AQ + Re{Qoo)Al + Re(QQl)A\M 

KlAi + Re(Qn)Al + Re(Q10)A
2

0A1 (13) 

The integral curves of these equations depend on the 2 growth-rates 
and on the 4 nonlinear cubic saturation coefficients. These are to be de­
termined by requiring a fit of the integral curves of the amplitude equations 
to the "data". Details of the procedure can be found in Buchler and Kovacs 
(1987a). The structure of the 2-D phase-space is perhaps best seen from the 
flow field of Eqs. (13) (with the fitted coefficients) which is shown in Fig. 2. 
The thin solid lines represent the separatrices of the flow field. The system 
has four fixed points, the origin (static model) which is an unstable node 
point, two stable node points, corresponding to the two limit cycles and a 
saddle point (double-mode beat solution). The nonmonotonic behavior of 
the amplitudes is now easily understood: The double-mode fixed point ex­
erts a strong attraction at first, but then repels the integral curves toward 
the limit cycles. The phases decouple again from the amplitudes as for the 
single mode case (Eq. 9) and they can be computed when the temporal be­
havior of the latter is known. We just mention here that their behavior is 
also very well described by the amplitude equations. 

The location and stability of the limit cycles are easily obtained from the 
amplitude equations. Table 1 shows that they compare very closely with the 
values obtained from a numerical computation of the limit cycles with a re­
laxation hydro-code. The quantities Ai(Ao) represent the Floquet exponents 
for the growth of the first overtone (fundamental) in the fundamental (first 
overtone) limit cycles, respectively. 

TABLE I 
Limit Cycle Characteristics 

Relaxation code: A0 = 0.166 Ai = -0.039ili; Ai = 0.117 A0 = -0.0093ilo 

AE fit: A0 = 0.163 Ai=0.033l l i ; Aj = 0.115 A0 = -0.0098Ii0 

We conclude that despite the very complicated input physics (equation 
of state with H and He ionization, realistic expression for opacity) the hy-
drodynamical evolution of the stellar model takes place in a 2-D space (4-D 
when the decoupled phases are included). This evolution is quite accurately 
described by the system of two nonresonant amplitude equations for the fun­
damental mode and the first overtone, truncated at the lowest order (cubic) 
nonlinearities. In addition, because of the simplicity of these equations all its 

dAp 
dt 

dAi 
dt 
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fixed points and their stability can readily be studied analytically (Buchler 
and Kovacs 1986b). 

3.2. EFFECTS OF RESONANCES 

Resonances have a strong effect on the appearance and stability of the pul­
sations. A model is said to be resonant when there exists a relation of the 
form Yl^k^k ~ 0, (Ik positive or negative integers) between the frequencies 
of the eigenmodes. In general, only the resonances of low order, i.e., for 
which Ylk I'fcl 1S small, can have an appreciable effect. 

Since the two-mode resonances play a particularly important role we 
shall examine them in some detail. Let the resonance be characterized by 
the condition nu>a « rmjg. The apposite amplitude equations are given by 

craaa + QQQ\aa\
2aa + Qal3\a8\

2aa + Pad™'1 a™ 

vpap + Qpplatfap + Q0o\al\ap + PBan
Qa'0

m-1 (14) 

The nonlinear coupling coefficients P1 and Q^s are complex in general. 
Let modes a and /? be linearly unstable and stable, respectively. Un­

der these conditions, in the absence of a resonance these equations would 
reduce to Eqs. (13) and the system would have a single stable limit cycle 
corresponding to mode a. 

We can distinguish three types of solutions depending on the value of m. 

3.2.1. m=l, integer resonances: nuja = up 
The characteristics of this type of resonance are that AQ J^ 0, always, and 
that the fixed points represent phase-locked (or synchronized) solutions, 
which are therefore singly periodic. These resonances thus cause a distortion 
of the light and velocity curves (e.g., bumps and shoulders). They have been 
found to play a major role in stellar pulsations. 

The 2:1 resonance between the fundamental mode and the second over­
tone (2wo ~ UI2) has been found to be responsible for the Hertzsprung pro­
gression in the classical Cepheids. This was first conjectured by Simon and 
Schmidt (1976), but a full understanding had to await the development 
of the amplitude equation formalism. The observational low order Fourier 
phases both for the magnitude and for the radial velocity curves show a 
great deal of structure (e.g., Simon and Moffett, 1985 for the light curves 
and Kovacs et al., 1990 for the radial velocity curves). It has been shown 
that cubic amplitude equations with terms describing the effects of the 2:1 
resonance reproduce rather well this behavior of the Fourier phases (Kovacs 
and Buchler 1989). Physically, the resonant, linearly stable second overtone 
gets entrained through its resonance with the fundamental mode. Because 
of phase-lock the solution remains periodic and the excitation of the second 

daa 

~df 
dap 
~dT 
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overtone manifests itself through the appearance of a secondary maximum on 
the light and radial velocity curves whose position varies with the proximity 
of the resonance. The amplitude equation formalism is the only formalism 
that is capable of explaining the Hertzsprung progression, which must be 
considered one of its major successes to date. We note that the same reso­
nance is responsible for essentially identical progressions in BL Her model 
sequences (Buchler and Moskalik 1992). 

The higher order, 3:1 resonance (3ii.'o ~ ^'4) occurs in low period classical 
Cepheids and in BL Her stars and gives rise to a deformation of the Fourier 
phases and amplitudes (Kovacs and Buchler 1989, Buchler and Moskalik 
1992). Moskalik and Buchler (1989) have analyzed the formal solutions of 
the amplitude equations, but a quantitative study has not been undertaken 
yet because this resonance overlaps with the wing of the 2:1 resonance and 
a fit involves too many terms to be practical. 

3.2.2. m—2, half-integer resonances: nua — 2up 
The characteristics of this resonance are that they either have no effect on 
the pulsation (i.e., A@ = 0) or they lead to a parametric excitation of the 
resonant overtone, depending on the parameters of the amplitude equations. 
In the latter case they lead to phase-locked period 2 pulsations because their 
period n is given by II = nRp = 21Ia). In other words these resonances affect 
the stability of the limit cycles, but not their appearance. 

The 1:2 resonance has been found to be important in 6 Scuti stars (Dziem­
bowski 1982). Actually, he studied the 3-mode resonance between a p mode 
and tow g modes, but because the two g modes are required to have very 
similar frequencies, the 3-modes resonance has the same properties as the 
2-mode resonance. Because of the large number of such resonances Dziem­
bowski finds that amplitude saturation in these stars occurs through this 
resonance, rather that through the cubic terms; this has as a consequence 
a lower saturation amplitude. His numerical calculations of realistic stellar 
models yield amplitudes in agreement with observed ones. In an extension 
of this work Dziembowski et al. (1985, 1988) propose that the shortage of 
observed rapidly rotating variables is due to increased chances of resonances 
due to rotational splitting, and thus to unobservably low saturation ampli­
tudes. 

All numerical hydrodynamical studies of classical Cepheid model se­
quences found windows in which the pulsations displayed steady strictly 
periodically alternating cycles. This behavior has been trace to the 3:2 res­
onance (3u;o ~ 2u\) and the appropriate amplitude equations again give an 
analytical explanation of this behavior. Subsequently the same resonance 
was also found to be responsible for similar windows in BL Her models 
(Buchler and Moskalik 1992). In W Vir models a 5:2 resonance (5u;o ~ 2^2) 
is associated with period-doubling and the subsequent cascade of subsequent 
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period-doublings to chaos which have been found in the radiative hydrody­
namical models. This will be further discussed in §4. 

3.2.3. m>2, integer resonances: 
As in the case m — 1 the fixed points of the amplitude equations represent 
phase-locked solutions with A$ ^ 0. These solutions are not as likely to be 
important because, generally speaking, the effects of a resonance decrease 
with the order. Such a criterion must be used with caution, however; the pre­
vious section showed that a relatively high order resonance (5:2) was found 
responsible for a period 2 bifurcation. So far no hydrodynamical calculations 
have shown any good evidence for the importance m > 2 resonances. 

Generally speaking we still have a relatively poor a priori understanding 
of when a particular resonance is going to have an important effect on the 
pulsation. 

3.2.4. Other Resonances 
The 3-mode resonance u>a + u>p « u>^, for a while was thought to be the 
cause of beat behavior. Although this resonance can in principle give rise to 
beat behavior (e.g., Takeuti and Aikawa 1980, Kovacs and Kollath 1988), in 
fact, no evidence thereof has been found in hydrodynamical models. Other 
resonances which may turn out to play an important role are the higher 
order 3-mode resonances u;a + up w 2w7 and uQ + uip ss 3u;7 (cf. Kovacs in 
this Volume). 

3.2.5. Overlapping Resonances 
In many real situations several resonances are sufficiently close so that their 
combined effect may give rise to very complicated behavior. For example, a 
particularly dramatic accumulation of resonances occurs in very low temper­
ature BL Her models (Buchler and Moskalik 1992). The corresponding am­
plitude equations become very cumbersome, contain many coefficients and 
are very difficult to study. As our modelling of stellar pulsations progresses 
the next stage of refinement will require the consideration of resonance over­
laps. 

4. The Nature of Chaos in W Vir Stars 

4.1. HYDRODYNAMICAL MODELS 

The standard astronomical techniques are not adequate for understanding 
the behavior of W Vir model sequences. However techniques from nonlinear 
dynamics can be used to decipher the nature of the observed bifurcations, 
and amplitude equations help clarify the physical situation. 

The hydrodynamical study of W Vir model sequences by Buchler and 
Kovacs (1987b), Kovacs and Buchler (1988b) found that several sequences 
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Fig. 3. Temporal behavior of the radial velocity and of the stellar radius for the W Yir 
model. 

of models undergo text-book successions of period-doublings (cf. Cvitanovich 
1986, Berge et al. 1986) as a control parameter, here Teg, is gradually low­
ered. For higher luminosity sequences, on the other hand, the transition to 
chaos occurs through a tangent bifurcation (Aikawa 1987, 1988, Buchler, 
Goupil and Kovacs 1987, Kovacs and Buchler, 1988). Since this transition 
to chaos can happen after just a few a few period-doublings (Aikawa 1990) 
this seems to imply that the bifurcation diagram folds backward. Instead of 
displaying the metamorphosis of the radius or radial velocity curves here, 
we refer the reader to the quoted papers (cf. also Aikawa's review in this 
Volume, or Buchler 1990). 

Here we merely examine one such W Vir model, with stellar parameters 
M = 0.6M©, L = 5001©, Teff = 4200K and a Pop. II composition of X = 
0.745, Z — 0.005. The model comes from a sequence which has undergone a 
typical period-doubling cascade to chaos and its inverse chaotic undoublings. 
Figure 3 displays four short consecutive stretches of the temporal behavior 
of the stellar radius R,(t) (radius of the outermost zone) at the bottom 
and of the radial velocity Vr(t) at the top. The fluctuations are much more 
apparent in the radius than in the velocity. Referring to the former we notice 
occasional intervals over which the oscillation is almost singly periodic and 
other intervals over which it exhibits strong RV Tau-like behavior. 

The Fourier power spectrum, taken over 400 pulsations, is exhibited in 
Fig. 4. It displays a remarkably sharp peak at the fundamental frequency, 
but has a strong sub-harmonic structure, indicative of something interesting. 
Had the spectrum been obtained with gapped data beset with observational 
noise one might have concluded that the oscillation is periodic. However an 
O-C diagram, shown in Fig. 5, displays fairlv large phase variations, up to 
10%. 

Perhaps the most powerful technique of the dynamicists is the phase-
space reconstruction of an attractor. It allows one to construct a topologi-
cally equivalent structure from a single temporal signal; barring pathological 
cases, this can be any variable, observational!}', for example the magnitude 

vr(t) 

R.(t) 
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Fig. 4. Power spectrum for W Vir model of Fig. 3. 
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Fig. 5. O-C diagram for W Vir model of Fig. 3. 

or the radial velocity. For the numerical hydrodynamical output we find it 
convenient to use the stellar radius. While a mathematical theorem says 
that any n-D dynamic can be embedded in a (2n+l)-D space, in practice 
it has been found that many physical systems are not pathologicl and an 
n-D embedding space is sufficient. Indeed, while a limit cycle (single loop) is 
embeddable in 2 dimensions (it can be represented by 2 first order ODEs), 
a period 2 cycle (double loop) clearly cannot occur in a 2-D space because 
this would require an intersection point for the trajectory (which is not al­
lowed by the uniqueiicess theorem of ODEs). A period-doubling therefore 
implies that the dimension of phase-space must be greater that 2 and that 
the reconstruction must at least be made in a 3-D embedding space. 

In Fig. 6 we display such a 3-D phase-space reconstruction of the dynamic 
obtained by plotting the triplets of values, {R(t), R(t + r),R(t + 2r)} with 
r equal to 40% of the pulsation "period". The signal shows a remarkably 
tight structure, strongly reminiscent of the Rossler attractor. (We note that 
a multi-periodic signal would have given rise to a space-filling structure, cf. 
e.g., Fig. 9 in Kovacs and Buchler 1988b). The Rossler attractor of course 
arises in a 3-D embedding space since it is generated by a set of 3 ODEs. It is 
therefore of interest to attempt to compute the dimension of our attractor. 
The Grassberger-Procaccia correlation method yields a low dimension, but 
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Fig. 6. 3-D phase-space reconstruction for W Vir model of Fig. 3. 

is rather inaccurate and beset by uncertainties. An analysis based on a 
dynamical systems prediction method (Serre and Buchler 1992) also gives 
a low dimension, probably between 3 and 5. While the exact value of the 
embedding dimension is not certain, there seems to be little doubt that it is 
small. 

We note in passing that there are many other useful techniques for ex­
hibiting low dimensional structure, such as Poincare sections, 1-D return 
maps, Lyapunov exponents, entropy methods, etc. 

Two important questions arise. First, since the dimension of phase-space 
must be increased, in our modal description this necessitates the excitation 
of another mode. In the Rossler attractor this additional mode is necessarily 
a real, nonoscillatory mode. We will show that in our case, in contrast, it is 
oscillatory rather than secular. The second question concerns the robustness 
of period-doubling. Indeed, it occurs in many sequences of models and with 
a very different code (Aikawa 1987). It even survives when the heat flux 
includes time-dependent convection (Glasner and Buchler 1990). 

A clue as to the origin of period-doubling comes from the classical Cepheid 
models. First of all, every sequence of classical Cepheid models (Buchler, 
Moskalik and Kovacs 1990) has windows of strictly period 2 behavior in 
some range of Teff, and a linear stability analysis of the models reveals a 
correlation of this behavior with the location of the half-integer resonance 
3u/-o ~ 2wi. Second, a period-doubling bifurcation indicates that one of the 
Floquet coefficients F^ = exp(i$j. + A&) must cross the negative real axis 
at - 1 , or that the Floquet phase, $*. passes through TT. Since in the lowest 
approximation, $;. = u^.IIo = 2^IIo/IIfc, we may anticipate that the bifur­
cation is associated with a half-integer resonance condition llo/n^ = n/2, 
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Fig. 7. Low order Floquet phases and coefficients for classical Cepheid sequence. 

where n is integer. The bifurcation itself, however, is strictly nonlinear, and 
to uncover its true nature we need to turn to numerical hydrodynamics and 
to the amplitude equation formalism. 

It is found that the results of the Floquet stability analysis of the limit 
cycles for a sequence of Cepheid models (sequence I of Moskalik and Buchler 
1990, 1991) display very characteristic behavior, namely bubbles in the Flo­
quet exponents and concomitant plateaux in the phases, which are connected 
with the first overtone. Figure 7 presents the phases $^ and exponents A/j of 
the Floquet coefficients for the lowest few modes as a function of the control 
parameter Teff. (How this mode identification is carried out is described in 
Moskalik and Buchler 1991). Again it is seen that the bubbles and plateaux 
are associated with the linear modes which are in a half-integer resonance 
condition, as indicated in Fig. 7. One notes, however, that only for the 
first overtone does the Floquet exponent X\ pierce the stability boundary 
(Ax = 0) and give rise to period 2 behavior. As we have seen the classical 
Cepheids are weakly dissipative and the conditions for the validity of the 
amplitude equation formalism are satisfied. From Eqs. (14) it follows that 
the proper resonance terms to be added to Eqs. (13) are Poao™-1a£ an<^ 
P/.-a)r-1ao, respectively. Moskalik and Buchler (1990) have shown that with 
the simplifying assumption of (Joi = 0 and of constant nonlinear coupling 
coefficients along the sequence as the resonance is traversed, the fixed points 
of these equations can be obtained analytically. 

The amplitude equations predict that the Floquet coefficient for the reso­
nant overtone, and the corresponding phase and exponent, behave as shown 
in Fig. 8. This is exactly the behavior seen in the Floquet coefficients of the 
numerical hydro-models. 

For the W Vir models, on the other hand, we are beyond the range of 
validity of the amplitude equation formalism with e.g., KQUO ~ 0.20. In 
order to obtain the cascade of period-doublings and chaos it would be nec­
essary to introduce non-"normar terms in the amplitude equations which 
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Fig. 8. Schematic behavior of the Floquet coefficient near the instability. 

couple the oscillation to the modulation which now varies on the same time-
scale. At the present time there is no known procedure for selecting such 
non-normal terms among all the nonlinear terms. Still, the Floquet anal­
ysis of the model sequences displays the same general type of behavior as 
for the classical Cepheids (Fig. 2 of Moskahk and Buchler 1991) and the 
same association of the bubbles and plateaux with the half-integer reso­
nances. In these models it is the resonance owo ~ 2u>2 that is responsible 
for the parametric excitation of the overtone. Now, however, inside the most 
important unstable bubble further period-doubling bifurcations and a tran­
sition to chaos occur. Still, it is the first period-doubling bifurcation which 
increases the dimension of phase-space and allows the subsequent period-
doubling cascade to chaos to occur. We also note that a set of two coupled 
oscillators, designed to undergo a half-integer resonance, display the same 
type of period-doublings and chaos, including tangent bifurcations, as are 
observed in the hydrodynamical sequences. 

We conclude that the bifurcation to period 2 behavior occurs because of 
the parametric excitation of a vibrational overtone which is brought about 
by a half-integer resonance. It is this association with a resonance which 
makes the occurrence of period-doubling so robust. Indeed, the locations of 
the resonances generally vary slowly and smoothly as the stellar parameters 
are varied, and they are not very much affected either by the numerical 
methods. 

4.2. OBSERVATIONS 

Traditional astronomical methods are well suited for analyzing periodic and 
multi-periodic signals, but they are inadequate when the purpose is to detect 
low-dimensional nonlinear behavior, and to determine its nature. It is true 
that almost 40 years ago small alternations were observed for the long period 
W Vir stars (15-35d) in globular clusters by Arp (1955) in the light curves, 
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and subsequently confirmed by Wallerstein (1958) in the radial velocities; 
similarly Lloyd-Evans (1971) reports such behavior in SZ Mon. Unfortu­
nately, these investigations were not pursued, perhaps for want of suitable 
techniques of analysis and theoretical motivation. The observed alternations 
are very gentle in contrast to those found in the more luminous, longer pe­
riod RV Tauri stars, and they appear very similar to the alternations in 
our hydrodynamical models. A systematic observation of long period W Vir 
stars has exciting prospect of confirming the period-doubling scenario. 

Recently some attempts have been made to search for chaotic behavior. In 
the stellar context we note the work of Goupil et al. (1988) on white dwarfs, 
of Canizzo et al. (1990) and of Yanagida et al. (in this Volume) on long-
period variables and of Saitou, Takeuti and Tanaka (1989) on semiregular 
stars. The only really thorough study is that of Kollath (1990) who, by 
applying a myriad of techniques to the study of 150 years of data on R Set 
gives credible evidence for low dimensional chaos in this star. 

Generally, the application of modern analyses are hampered by large 
observational noise and by erratically timed and gapped observations (cf. 
Baglin in this Volume). Phase-space reconstructions require observations at 
equal time intervals, or at least data which can be interpolated as such with 
good accuracy. In order to make theoretical progress we have to convince 
the observers for the need of long-term observational programs of specific 
stars with good phase coverage, possibly multi-site to avoid too many gaps. 
Because of their relatively short periods and of the irregularities W Vir stars 
seem ideal candidates for that purpose. 

5. Stochastic Effects 

So far we have assumed that the model around which we expand Eq. (1) 
is truly static. In reality, the stellar interior is not quiescent, but undergoes 
complicated convective or turbulent motions. The latter can be considered 
to be the result of the nonlinear interaction of a large number of convective 
modes (of an originally truly static model), in static on average and treat 
the fluctuations as stochastic noise. We then substitute 

^ = £(t)z + Ar(z,t) + E(t) (15) 

for Eq. (1), where the function E(t) represents additive noise and the time-
dependence in L and M is parametric noise. 

The amplitude equation formalism can be generalized to handle this situ­
ation (Stratonovich 1965, Buchler, Kovacs and Goupil 1992) provided that, 
in addition to weak nonlinearity and weak dissipation, we assume (a) that 
the correlation time of the noise, rc is much smaller than the time-scale of 
modulation of the principal amplitudes, i.e., TC < rm ~ 1/KQ and (b) that 
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the stochastic processes are stationary, a reasonable assumption. Generally, 
TC is expected to be smaller than the period, therefore a fortiori smaller than 
rm. The result is a Fokker-Planck equation for the probability distribution of 
the amplitudes w({ais}). 

If we look at the asymptotic case when the distribution has become sta­
tionary, and if, for illustration, we consider the 2 mode nonresonant case 
with additive noise only, the distribution W(AQ,AI) satisfies 

+ -

d 

dAo 
d 

t3 , D „ f n u 2 > • Co\ „ dw 
K0AO + Re(Qoo)Ai + Re{Q0i)A{AQ + - ^ w - C, 

AoJ dA0. 

43 , p . , / , w 2 * , C A . „ 9w 

KIAI + Re(Qu)Ai + Re(Qw)Al
0Ax + - p )w - Cx 0 (16) 

dA! LV — v - - ' - i • - ^ - ^ " - • . 4 l ; - ^ u 

where Ck is related to the spectral density of the noise. 
It is well known that noise can have a critical effect on the behavior of 

a system near bifurcation points (e.g., Moss and McClintock 1989). It is 
therefore of interest to explore how the modal selection problem is affected 
by noise, in particular whether it can generate beat behavior (Buchler and 
Kovacs 1992; cf. also Kovacs in this Volume). 

Here we just give an example of how noise affects the behavior of an 
RR Lyrae model similar to that treated in section 3.1 (in particular Fig. 
3). For a very low noise level the distribution has sharply spiked peaks at 
the fixed points of the noiseless amplitude equations. As the noise strength 
increases these peaks broaden and concomitantly move away from the axes. 
This leads to what is called precursor-noise in which the fluctuations are 
of the same order as the average amplitude of the mode. As pointed out 
by Kovacs (in this Volume) the small, slowly varying overtone amplitudes 
detected by Walraven et al. in AI Vel could well be an example of such a 
stochastic excitation. 

Noise can not only affect the appearance of the pulsation, it can also 
provoke qualitative changes in the nature of the pulsation. In Fig. 9 we 
show the distribution function for four increasing noise-levels (a to d, from 
left to right, top to bottom). Clearly, the peaks correspond to the limit cycles 
of the noiseless case. Although the peaks occur at a finite distance from the 
axes, i.e., although both amplitudes are nonzero on average, the amplitude 
of the secondary mode remains of precursor type throughout. This situation 
therefore does not correspond to a true beat behavior. One notes, however, 
that sufficiently large noise can cause the disappearance of one of the two 
original states. 

A more interesting situation comes about when the two linearly unstable 
modes are coupled to a large number of linearly stable modes which are 
stochastically driven. It then becomes possible for noise to convert the two 
peaks (single-mode limit cycles) into saddle points (unstable double-mode 
cycles) and the original saddle point into a peak. It is remarkable that the 
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Fig. 9. Probability densities for nonresonant two-mode case; origin at the leftmost corner; 
A\ and A2 axes upward and downward, resp.; increasing noise level from left to right and 
top to bottom. 

primary amplitudes of this double-mode solution can be made to have ar­
bitrarily small fluctuations when the number of secondary modes is made 
very large (Buchler and Kovacs 1992). Numerical hydrodynamical tests with 
additive noise confirm the predictions of the Fokker-Planck treatment. 

The astrophysical applications of this formalism are still in their infancy 
and have interesting potential applications both in radial and nonradial stel­
lar pulsations. In particular, it is well known that parametric noise which we 
have not considered here can have very dramatic effects on the bifurcations 
of the models (Moss and McClintock 1989). 

6. Prospects 

The application of techniques from dynamical systems has provided a new 
outlook on the problem of nonlinear stellar pulsations. The amplitude equa­
tion formalism not only gives a more basic understanding of the nature of 
the pulsations in terms of bifurcations, it also clarifies the role played by 
specific resonances. However, much more remains to be learned about the 
relative importance of resonances and especially about the consequences of 
their overlaps. It has also become clear that new tools of data analysis are 
necessary to understand not only the behavior of numerical hydrodynamical 
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models, but also of observational data. It is hoped that the new theoreti­
cal developments will stimulate an observational effort specifically geared 
toward detecting an analyzing nonlinear effects. 

We have not even touched on some areas in which dynamical systems 
techniques have also been applied, or where they are expected to make an 
impact. For example, the problems of the interaction between the pulsation 
and rotation, magnetic fields, and convection are clearly going to receive in­
crease attention. Astrophysical disks are expected to be another active area 
of application. Perhaps one of the most exciting topics is the study of spatio-
temporal structures, their formation, propagation, interaction and destruc­
tion with applications to convection, turbulence, magneto-hydrodynamics 
and dynamo theory. Finally, another topic in nonlinear science is that of 
patterns and fractal structures for which astrophysics is destined to be a 
fertile ground. 
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