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Abstract. Modular curves like X0(N) and X1(N) appear very frequently in
arithmetic geometry. While their complex points are obtained as a quotient of the upper
half plane by some subgroups of SL2(�), they allow for a more arithmetic description as
a solution to a moduli problem. We wish to give such a moduli description for two other
modular curves, denoted here by Xnsp(p) and X+

nsp(p) associated to non-split Cartan
subgroups and their normaliser in GL2(�p). These modular curves appear for instance
in Serre’s problem of classifying all possible Galois structures of p-torsion points on
elliptic curves over number fields. We give then a moduli-theoretic interpretation and
a new proof of a result of Chen (Proc. London Math. Soc. (3) 77(1) (1998), 1–38;
J. Algebra 231(1) (2000), 414–448).

2010 Mathematics Subject Classification. Primary 11G18; Secondary 11F80,
14G35, 14K10.

1. Introduction. Let p be an odd prime. Let Y (p) be the affine modular curve
classifying elliptic curves with full level p structure. The completed modular curve
X(p) classifies generalised elliptic curves with full level p structure. Those two
curves admit integral models over the ring of integers of the cyclotomic field �(ζp).
See [6] and [11]. The modular curve X(p) comes equipped with a natural action
by GL2(�p). For any subgroup H of GL2(�p), the quotient X(p)/H defines an
algebraic curve XH over �(ζp)det(H). Hence, the points on XH over an algebraically
closed field k̄ of characteristic different from p are H-orbits of k̄-points of X(p).
However, in some interesting cases, there is a nice description of a moduli problem
for XH too.

As an example, we explain the case when H is the Borel subgroup B = {
( ∗ ∗

0 ∗ )
}

in
GL2(�p). First, the points in Y (p)(k̄) are k̄-isomorphism classes of pairs (E, (P, Q)),
where E/k̄ is an elliptic curve and (P, Q) form a basis of E[p]. For a fixed E, all the
pairs (P′, Q′) in the B-orbit of (P, Q) are such that P′ is in the subgroup C generated by
P. Hence, the k̄-points on the quotient curve YB can be identified with k̄-isomorphism
classes of pairs (E, C) with E again an elliptic curve defined over k̄ and C a cyclic
subgroup of order p in E[p]. The latter description is now independent of the initial
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choice of the Borel subgroup B in GL2(�p) and only uses the geometry of E. The curve
XB is usually denoted by X0(p).

Another example is the quotient by the split Cartan subgroup that consists of
diagonal matrices in GL2(�p). The corresponding curve, denoted here by Xsp(p),
parametrises k̄-isomorphism classes (E, (A, B)) of generalised elliptic curves E
endowed with two distinct cyclic subgroups A and B of order p in E. For its normaliser
S, the corresponding curve XS = X+

sp(p) classifies generalised elliptic curves with an
unordered pair {A, B} of cyclic subgroups A and B of order p. All these cases are easy
to describe because the subgroups H can be defined as the stabiliser of some object
under a natural action of GL(E[p]).

In view of Serre’s problem to classify the possible Galois module structure of the
p-torsion of an elliptic curve over a number field, there are two further modular curves
of importance. The aim of this paper is to give a good moduli description for those,
namely when H is a non-split Cartan subgroup or a normaliser of a non-split Cartan
subgroup in GL2(�p). We will denote the corresponding modular curves by Xnsp(p) and
X+

nsp(p), respectively. See the start of Section 2 for detailed definitions. These curves
have been studied for instance by Ligozat [13], Halberstadt [10], Chen [3,4], Merel and
Darmon [5, 14] and Baran [1].

In our description, the modular curve X+
nsp(p) will classify elliptic curves endowed

with a level structure that we call a necklace. Roughly speaking, a necklace is
a regular (p + 1)-gon whose corners, called pearls, are all cyclic subgroups of
order p in E and such that there is an element in PGL(E[p]) that turns this
necklace by one pearl. This will not depend on the choice of a non-split Cartan
subgroup.

In Section 2, we define these necklaces and give our moduli description in detail
(as well as an alternative and more geometric description using the cross-ratio in
�(E[p])). We also compare this to other moduli descriptions in the literature. In
this article, we exclude the case where the base field is of characteristic p. In other
words, we are treating the modular curves only over �[ 1

p ]. We expect however
that the moduli problem given here will help to understand the special fibre at
p, too.

Section 3 shows how classical results about the geometry of Xnsp(p) can be proven
using this moduli interpretation. For instance, we can count the number of elliptic
points, describe the cusps and the degeneracy maps.

In [3, 4], Chen showed that there is an isogeny between the Jacobian of X+
sp(p)

and the product of the Jacobians of X0(p) and X+
nsp(p). In Section 4, we give a new

proof of this theorem using necklaces. This gives an explicit and geometric vision of
the maps involved. We conclude the paper with some numerical data related to Chen’s
theorem.

Since the prime p is fixed throughout the paper, we will now omit it from the
notations and only write Xnsp and X+

nsp. It is to note that there should be no real
difficulty in generalising our moduli description to composite levels N. With view on
the problem of Serre to classify the Galois structure of p-torsion subgroups of elliptic
curves over �, prime levels are maybe the most interesting.

1.1. Notations. The following is a list of modular curves that appear in this
paper and the notations we frequently use. The definitions will be given later. See also
Sections 3.1 and 4.1 for degeneracy maps and correspondences between them.
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Symbol Description of H < GL2(�p) Level structure

X(p) Full-level structure, H = {1} Basis (P, Q) of E[p]
XA Scalar matrices A Distinct triple (A, B, C) in �

(
E[p]

)
X0 A Borel subgroup B Subgroup C ∈ �

(
E[p]

)
Xsp A split Cartan Distinct pair (A, B) in �

(
E[p]

)
X+

sp Normaliser of a split Cartan S Non-ordered pair {A, B} ⊂ �
(
E[p]

)
Xnsp A non-split Cartan Oriented necklace v

X+
nsp Normaliser of a non-split Cartan N Necklace v

Matrices in GL2(�p) will be written as
( · ·· ·

)
, while their class in PGL2(�p) will be

represented by
[ · ·· ·

]
. As in Section 1, we will denote the action of GL2(�p) over X(p) on

the right. Instead, if V is a two-dimensional �p-vector space, the action on V of GL(V )
or, after a choice of basis, of GL2(�p), will be considered on the left.

2. The moduli problem of necklaces.

2.1. Non-split Cartan subgroups and their modular curves. We refer to [16] for
definitions and results about non-split Cartan subgroups and Dixon’s classification of
maximal subgroups of GL2(�p) and just briefly recall some facts. The group GL2(�p)
acts on the right on �1(�p2 ) by (x : y)

(
a b
c d

) = (ax + cy : bx + dy). Any non-split Cartan
subgroup of GL2(�p) can be defined as the stabiliser Hα of (1 : α) in �1(�p2 ) \ �1(�p)
for a choice of α ∈ �p2 \ �p. We see that Hα has order p2 − 1 as the action of GL2(�p) is
transitive on �1(�p2 ) \ �1(�p).

Alternatively, we can consider the basis (1, α) of �p2 as a �p-vector space. Then,
we claim that Hα is equal to the image of the map iα : �×

p2 → GL2(�p) sending β to the
matrix that represents the multiplication by β on �p2 written in basis (1, α). Indeed, let
β = x + yα ∈ �×

p2 with x, y ∈ �p. If X2 − tX + n is the minimal polynomial of α over
�p, then

iα(β) =
(

x −ny
y x + ty

)

and so (1 : α)iα(β) = (x + yα : −ny + (x + ty)α) = (β : βα) = (1 : α). So, the image of
iα is contained in Hα and they are equal because they are of the same size.

Given a choice of a non-split Cartan subgroup H, we define the modular curve
Xnsp as the quotient XH. Note that the quotient does not depend on the choice of H
as these subgroups are all conjugate. However, the description of points on Xnsp as
H-orbits do.

The normaliser N of a non-split Cartan subgroup H in GL2(�p) contains H with
index 2. It can be viewed as adding the image under iα of the conjugation map in
Gal(�p2/�p) on �×

p2 . The corresponding quotient XN will be denoted by X+
nsp.

2.2. Necklaces. Let γ be a multiplicative generator of �×
p2 . For any two-

dimensional �p-vector space V , we define Cγ to be the conjugacy class in PGL(V )
of all elements h that have a representative in GL(V ) whose characteristic polynomial
is equal to the minimal polynomial of γ . In other words, all representatives of h ∈ Cγ

have an eigenvalue in �×
p · γ . The set Cγ depends only on �×

p .γ . If γ̄ is the conjugate of γ
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over �p, then Cγ̄ = Cγ . If a basis of V is chosen then Cγ consist of all classes of matrices
iα(γ ) as α runs through �p2 \ �p. Note that the class of iα(γ̄ ) = iᾱ(γ ) = N(γ )−1 iα(γ )−1

is equal to the inverse of class of iα(γ ). In particular, in any non-split Cartan subgroup
in PGL(V ), there are exactly two generators h and h−1 that belong to Cγ . As γ varies,
we obtain the 1

2ϕ(p + 1) conjugacy classes of elements of order p + 1.
Let k̄ be an algebraically closed field of characteristic

0 or different from p and let E/k̄ be an elliptic curve. We
know that there exists p + 1 cyclic subgroups of order p in
E[p]. We will consider lists (C0, C1, . . . , Cp) of those cyclic
subgroups and will say that two such lists are equivalent if we can obtain one from
the other by a cyclic permutation; so (C0, C1, . . . , Cp) and (C1, C2, . . . , Cp, C0) are
equivalent.

Recall that we will denote on the left the action by homography of PGL(E[p]) on
�(E[p]).

DEFINITION. An equivalence class (C0, C1, . . . , Cp) is called an oriented γ -necklace
of E if there exists an element h ∈ Cγ ⊂ PGL(E[p]) such that h(Ci) = Ci+1 for all
i = 0, . . . , p − 1.

If h is such an element, then we must also have h(Cp) = C0 as h is of order p + 1.
Note also that if (C0, C1, . . . , Cp) is an oriented necklace with a certain h ∈ Cγ , then
so is (Cp, Cp−1, . . . , C0) because h−1 ∈ Cγ .

Let us consider the dependence on the choice of γ .

LEMMA 1. Let γ and γ ′ be two generators of �×
p2 . There is a canonical bijection

between oriented γ -necklaces and oriented γ ′-necklaces.

Proof. Since �×
p2 is cyclic, there exists an integer k ∈ [0, p2 − 1] such that γ ′ = γ k

and such that k is coprime to p + 1. In particular, Cγ ′ is the set of all hk with h ∈ Cγ .
So, the requested bijection is given by

{oriented γ -necklaces} → {oriented γ ′-necklaces}
(C0, C1, . . . , Cp) �→ (C0, Ck, C2k, . . . )

with the index taken modulo p + 1. �

As a consequence, we may now fix a choice of γ for the rest of the paper and call
the oriented γ -necklaces simply oriented necklaces.

In a picture, we arrange the subgroups C0, . . . , Cp like pearls on a necklace that
can be turned around the neck using the automorphism h of �(E[p]). If we allow
the necklace to be worn in both directions, we get the notion of a necklace without
orientation:

DEFINITION. Let w denote the involution defined by

w(C0, C1, . . . , Cp) = (Cp, Cp−1, . . . , C0),

which changes the orientation of an oriented necklace. A necklace is a w-orbit of
oriented necklaces {v, w(v)}.

https://doi.org/10.1017/S0017089517000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000180


THE NON-SPLIT CARTAN MODULAR CURVE 415

LEMMA 2. Fix a generator γ of �×
p2 . Let C0, C1, and C2 be three distinct cyclic

subgroups of order p in E[p]. Then there exists a unique element h ∈ Cγ in PGL(E[p])
such that h(C0) = C1 and h(C1) = C2.

Proof. Choose generators P0 and P1 in C0 and C1 respectively and consider the
basis (P0, P1) of E[p]. Write t and n for the trace and the norm of γ . The elements

h of Cγ that verify h(C0) = C1 are of the form
[

0 y
−ny−1 t

]
with y ∈ �×

p . Moreover, as y

varies, the points yP0 + tP1 form an affine line, and hence there is a unique y ∈ �×
p

such that yP0 + tP1 belongs to C2. Indeed, note that t 	= 0 because if it were, γ would
be of order dividing 2(p − 1). Hence, there is a unique h ∈ Cγ such that h(C0) = C1 and
h(C1) = C2. �

This lemma implies that for any triple (C0, C1, C2) of distinct cyclic subgroups of
E[p], there is a unique oriented necklace of the form (C0, C1, C2, . . . ). We will denote
it by C0 → C1 → C2. Similarly, there is a unique necklace with consecutive pearls
C0, C1, C2, which we denote by C0 − C1 − C2.

There is a natural action of PGL(E[p]) on the set of oriented necklaces by
setting g · (C0, . . . Cp) = (

g(C0), . . . , g(Cp)
)

for g in PGL(E[p]). If h ∈ Cγ is such that
h(Ci) = Ci+1 then ghg−1 ∈ Cγ can be used to show that

(
g(C0), . . . , g(Cp)

)
is indeed

an oriented necklace. Since the action of PGL(E[p]) on �(E[p]) is simply 3-transitive,
Lemma 2 implies that the action of PGL(E[p]) on oriented necklaces is transitive. By
definition, for every oriented necklace v, there exists h ∈ Cγ fixing it. Therefore, the
group generated by h, which is a non-split Cartan subgroup in PGL(E[p]), will belong
to the stabiliser of v. It is clear that this is equal to the stabiliser of v. We have shown
the following corollary:

COROLLARY 3. Let G = PGL(E[p]). The set of oriented γ -necklaces is isomorphic
as a G-set to G/H where H is any non-split Cartan group in G. Similarly, the set of
γ -necklaces is G-isomorphic to G/N for the normaliser of a non-split Cartan group N in
G. In particular, there are exactly p(p − 1) oriented necklaces and p(p − 1)/2 necklaces.

2.3. Moduli description. Let H be a non-split Cartan subgroup in G = GL2(�p)
and write N for its normaliser. Let k̄ be an algebraically closed field of characteristic
different from p. Recall that Y (p)(k̄) classifies the k̄-isomorphism classes of pairs(
E, (P, Q)

)
, where E is an elliptic curve over k̄ and (P, Q) is an �p-basis of E[p]. The

group GL2(�p) acts on a pair on the right as usual:
(
E, (P, Q)

) · (
a b
c d

) = (
E, (aP +

cQ, bP + dQ)
)
. A point in YH(k̄) is an orbit under this action by the non-split Cartan

subgroup H. For a given elliptic curve E/k̄, the H-orbits of triples is a G-set isomorphic
to G/H. Corollary 3 has shown us that the set of oriented necklaces on E is also
isomorphic to G/H. Hence we have:

PROPOSITION 4. LetH be a non-split Cartan subgroup in GL2(�p). There is a bijection
between the points in YH(k̄) and the set of k̄-isomorphism classes of pairs (E, v) composed
of an elliptic curve E/k̄ together with an oriented necklace v in E. Similarly, YN (k̄) consists
of pairs (E, v) where v is a necklace in E.

In Section 3.3, we will give the description of k-rational points for fields k that
are not algebraically closed. We will from now on informally say that Y+

nsp and Ynsp
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are coarse moduli spaces for the moduli problem of elliptic curves endowed with a
necklace and an oriented necklace respectively.

In order to make this precise, we would have to extend the definition of necklaces
to elliptic curves over arbitrary schemes. However, as we will now explain briefly, the
most natural definition gives a functor of moduli problem that fails to capture the
correct Galois action, making the situation not entirely satisfactory in this case. Note
that one encounters the same problem for the case of split Cartan subgroup, while the
analogous situation for Y0 and Y1 works nicely.

For any �
[ 1

p

]
-scheme S and elliptic curve E/S, we could define a γ -necklace on

E/S to be a complete list of all p + 1 cyclic S-subgroup schemes (C0, . . . , Cp) of order
p in E[p] up to cyclic permutation verifying the condition with respect to γ as in
Section 2.2. Consider the moduli problem given by the functor F associating to a
�

[ 1
p

]
-scheme S, the set of S-isomorphism classes of (E/S, v) where E/S is an elliptic

curve and v such a γ -necklace on E/S. Then, essentially by the above Proposition, the
scheme Y+

nsp over �
[ 1

p

]
is a coarse moduli scheme for this functor F .

However, contrarily to what happens for the coarse moduli scheme Y0 and a
fortiori for the fine moduli scheme Y1, the morphism of functors F → Y+

nsp does not
necessarily give a surjection F(k) → Y+

nsp(k) when k is a field that is not algebraically
closed: For instance, F(�) is empty for all odd primes p, yet Y+

nsp(�) will contain
points for many primes p. Since we wish to describe all points of Y+

nsp, this functor F
is not the best choice. An option would be to write down a different functor, but that
turns out to be cumbersome. In this paper, we prefer to view points in Y+

nsp(k) for a

field k as points in Y+
nsp(k̄) that are fixed by the absolute Galois group of k. They will

be described in Section 3.3 in term of necklaces.
The above problem is also present for the split Cartan subgroup. The description

of the k̄-rational points using non-ordered pairs of cyclic subgroups together with the
Galois action has nevertheless been used extensively (see for instance [15]). The aim
of this paper is, in a similar spirit, to obtain basic properties of Xnsp and X+

nsp via our
description.

Now, it is very natural to ask about the fibre at p of a good model of Xnsp and
X+

nsp over �. The naive extension of the above definition of necklace for elliptic curves
over �-schemes cannot work as elliptic curves in characteristic p have either one or two
distinct cyclic (in the sense of [11]) subgroup schemes of order p. To find an appropriate
definition of necklaces that would also work for characteristic p should be the topic of
a future investigation.

2.4. The cross-ratio. As before, the action by homography of PGL
(
E[p]

)
on the

projective space �
(
E[p]

)
is denoted on the left. We denote the elements of �1(�p) by

∞ = (1 : 0) and a = (a : 1) for a ∈ �p.
Let A, B, C be three distinct points in �

(
E[p]

)
and D ∈ �

(
E[p]

)
. Recall that

the cross-ratio of A, B, C, D is defined by [A, B; C, D] = f (D), where f : �
(
E[p]

) −→
�1(�p) is the unique isomorphism such that f (A) = ∞, f (B) = 0 and f (C) = 1. After
a choice of basis of E[p] identifying �

(
E[p]

)
with �1(�p), we get

[A, B; C, D] = A − C
B − C

· B − D
A − D

.
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The last formula is independent of the choice of basis since the cross-ratio is PGL
(
E[p]

)
-

invariant. If v = (C0, C1, . . . , Cp) is an oriented necklace, then [C0, C1; C2, C3] =
[Ci, Ci+1; Ci+2, Ci+3] for all 0 � i � p with the index taken modulo p + 1. Hence we can
attach a cross-ratio to each necklace. As described above, the action of PGL

(
E[p]

)
on

oriented necklaces is transitive and hence this cross-ratio [C0, C1; C2, C3] is the same
for all oriented γ -necklaces.

PROPOSITION 5. Let γ be a generator of �×
p2 of trace t and norm n. Set ξγ = t2/(t2 − n).

Then, a list (C0, C1, . . . , Cp) of all distinct cyclic subgroups of order p in E represents a
γ -necklace if and only if [Ci, Ci+1; Ci+2, Ci+3] = ξγ for all 0 � i � p with the index taken
modulo p + 1.

This provides a new possibility of defining necklaces by-passing completely the
use of the automorphism group of E[p], but only relying on the projective geometry of
�(E[p]).

Proof. We only need to compute the cross-ratio for one necklace. We take the basis
such that h = [ 0 −n

1 t ] is in Cγ . The necklace now contains the consecutive pearls ∞, 0,
−n/t and −nt/(−n + t2) from which we obtain the above cross-ratio ξγ . �

Since to each triple (C0, C1, C2) there is a unique C3 such that [C0, C1; C2, C3] = ξγ ,
we have a second proof of Lemma 2.

2.5. Relation to other descriptions. We recall a different description of the Hα-
orbits of points in X(p) where α is a choice in �p2 \ �p. See [14]. Let E/k̄ be an elliptic
curve. Choose a basis P0, P1 of E[p] and identify E[p] with �p2 via P0 �→ 1 and P1 �→ α.
Any basis (P, Q) of E[p] is equal to (P0, P1)g for some g ∈ GL2(�p). Consider the
GL2(�p)-equivariant map that sends (P0, P1) to (1 : α) ∈ �1(�p2 ) \ �1(�p). Since the
action of Hα is now just the multiplication on �p2 , it induces a well-defined GL2(�p)-
equivariant map from the set of Hα-orbits of basis (P, Q) to �1(�p2 ) \ �1(�p). This is a
GL2(�p)-equivariant bijection.

This leads now to a moduli problem description of Xnsp. Each point in Ynsp(k̄) with
k̄ an algebraically closed field of characteristic different from p is a k̄-isomorphism class
of (E,C) where E/k̄ is an elliptic curve and C is an element in �

(
E[p] ⊗ �p2

) \ �
(
E[p]

)
.

The group PGL
(
E[p]

)
acts on the left on �

(
E[p] ⊗ �p2

)
by its action on E[p].

We will now give an explicit PGL
(
E[p]

)
-equivariant bijection between the set of

oriented γ -necklaces of E and �
(
E[p] ⊗ �p2

) \ �
(
E[p]

)
. Write n and t respectively for

the norm and trace of the fixed element γ in �p2 . Consider the map

{γ -necklaces} −→ �
(
E[p] ⊗ �p2

)
(C0, C1, C2, . . . ) �→ 〈P ⊗ (−γ ) + Q ⊗ 1〉, (1)

where (P, Q) is a basis of E[p] such that C0 = 〈P〉, C1 = 〈Q〉 and C2 = 〈−nP + tQ〉.
Note that such a basis exists because neither n nor t could be zero when γ is a
multiplicative generator of �×

p2 . We have to show that this map is well-defined. Let h be
a generator in the stabiliser of v which belongs to Cγ . In the basis (P, Q), this element
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h is represented by the matrix
[

0 −n
1 t

]
. Now,

h
(

P ⊗ (−γ ) + Q ⊗ 1
)

= Q ⊗ (−γ ) + (−nP + tQ) ⊗ 1 = (t − γ ) ·
(

P ⊗ (−γ ) + Q ⊗ 1
)

as (t − γ )(−γ ) = γ 2 − tγ = −n. This shows that the line in �
(
E[p] ⊗ �p2

)
does not

depend on the choices made in the construction. It also is evident from this that the
stabiliser of v is equal to the stabiliser of the image. From the construction, we see that
the map is PGL

(
E[p]

)
-equivariant. Since the actions are transitive, it follows that it is

surjective and hence bijective.
Since we have no geometric object linked to E, which can be thought of directly

as an element in E[p] ⊗ �p2 , we believe that the moduli problem of necklaces has its
advantages.

While finalising this paper, we learnt of yet another moduli interpretation given
by Kohen and Pacetti in [12]: Fix a choice of a quadratic non-residue ε modulo p.
They represent each point in Y+

nsp(k̄) by a k̄-isomorphism class of (E, φ) where E/k̄ is
an elliptic curve and φ ∈ GL

(
E[p]

)
is an element such that φ2 is the multiplication by

ε. See Proposition 1.1 and Remark 1.3 in [12]. The following defines a PGL
(
E[p]

)
-

equivariant bijection between the set of such endomorphisms φ and the set of
necklaces on E. The endomorphism φ defines an element of order two in PGL

(
E[p]

)
without fixed point; so, it belongs to a unique non-split Cartan subgroup H whose
normaliser is the stabiliser of a necklace v. Conversely, every stabiliser of a necklace
contains a unique element in PGL

(
E[p]

)
that lifts to an element φ ∈ GL

(
E[p]

)
with

φ2 = ε.

3. Describing the geometry and arithmetic with necklaces.

3.1. Degeneracy maps. Let A be the group of scalars in GL2(�p) and consider the
associated modular curve XA. Because the group PGL2(�p) acts sharply 3-transitive on
�1(�p), the curve XA represents the moduli problem associating to each elliptic curve
E a triple of distinct cyclic subgroups (C0, C1, C2) of order p in E, which is also called
a projective frame in �(E[p]).

The map πA : X(p) → XA can be chosen to be the following. Let n and t be the
norm and trace of our fixed generator γ in �p2 , respectively. To each basis (P, Q) of the
p-torsion of an elliptic curve E, we associate the triple

(〈P〉, 〈Q〉, 〈−n P + t Q〉). From
the fact that t 	= 0, it is clear that this gives a map X(p) → XA. Next we describe the
map πnsp : XA → Xnsp. We have a natural choice to send the triple (C0, C1, C2) to the
unique oriented necklace C0 → C1 → C2 given by Lemma 2. Similarly, we will send it
to the necklace C0 − C1 − C2 to define the map π+

nsp : XA → X+
nsp.

The advantage of our choices is that πnsp ◦ πA provides an explicit bijection
between the set of orbits of isomorphism classes (E, (P, Q)) under a particular non-
split Cartan subgroup H0 and the set of isomorphism classes (E, v) of elliptic curves
endowed with an oriented necklace. LetH0 be the non-split Cartan subgroup in GL2(�p)
generated by the matrix h0 = (

0 −n
1 t

) = iγ (γ ), which is an element in our chosen class
Cγ for V = �2

p . Let E be an elliptic curve and (P, Q) a basis of E[p]. Denote by
h ∈ PGL(E[p]) the element of order p + 1 defining the necklace v = πnsp ◦ πA(P, Q).
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Then, by construction of πA,

πA
(
(P, Q) · h0

) = h · πA(P, Q).

This insures that the map that sends an orbit (E, (P, Q))H0 to (E, v) where v = πnsp ◦
πA(P, Q) is well defined and it gives the expected bijection.

Under the map (1) in Section 2.5, identifying the set of necklaces with elements in
�

(
E[p] ⊗ �p2

) \ �
(
E[p]

)
, the degeneracy map above can also be described as sending

the basis (P, Q) of E[p] to the projective line 〈P ⊗ (−γ ) + Q ⊗ 1〉 in E[p] ⊗ �p2 .
This provides an explicit bijection between the set of orbits of isomorphism classes
(E, (P, Q)) under H0 and the set of isomorphism classes (E,C) of elliptic curves
endowed with an element C in �

(
E[p] ⊗ �p2

) \ �
(
E[p]

)
.

We will see later in Section 4.7 another naturally defined degeneracy map
π̃+

nsp : XA → X+
nsp.

3.2. Cusps. The following proposition, quoted (but not proved) in [16]
Appendix A.5, can be proved using necklaces:

PROPOSITION 6. The modular curve Xnsp has p − 1 cusps, each ramified of degree p
over the cusp ∞ in X(1).

Proof. In order to determine the structure of the cusps, we use the Tate curve Eq

over �((q)). Formally, one can deduce the proposition using Theorem 10.9.1 in [11]
from the fact that a non-split Cartan subgroup of PGL2(�p) acts transitively on �1(�p)
and that it contains no non-trivial element from any Borel subgroup. In particular, the
formal completion of Xnsp along the cusps is the formal spectrum of �(ζ )[[α]], where
αp = q and ζ is a p-th root of unity.

However, we can also view it on the necklaces of Eq. The Tate curve has a
distinguished cyclic subgroup μp of order p. Any oriented necklace v can be turned in
such a way that C0 = μp. The two following pearls C1 and C2 have each a generator
which is a p-th root of q, say αζ i and αζ j, respectively, where 0 � i 	= j < p. From the
action of the inertia group of the extension �((q))[α, ζ ] over �((q)), we see that all the p
necklaces with a given i − j ∈ �×

p meet at the same cusp in the special fibre at (q). �
The cusps are not defined over � but over the cyclotomic field �(μp) only, forming

one orbit under the action of the Galois group, despite the fact that Xnsp is defined over
�. See Appendix A.5 in [16]. As a consequence, there are p − 1 choices of embeddings
Xnsp ↪→ Jac(Xnsp), all defined over �(μp) only and none of them is a canonical choice.

With the same proof we show that X+
nsp has (p − 1)/2 cusps defined over the

maximal real subfield of �(μp).

3.3. Galois action. Let k be a field of characteristic different from p and write Gk

for its absolute Galois group. For any σ in Gk and point x ∈ Ynsp(k̄), represented by the
pair (E, v), we define σ (x) in the obvious way as the k̄-isomorphism class of the pair(
Eσ , σ (v)

)
. Here, σ

(
(C0, C1, . . . )

)
is the necklace

(
σ (C0), σ (C1), . . .

)
. Write Ynsp(k) for

the elements in Ynsp(k̄) fixed by Gk.

PROPOSITION 7. Let x ∈ Ynsp(k). Then, there exists a pair (E, v) representing x such
that E is defined over k. If j(E) 	∈ {0, 1728} then the oriented necklace v is also defined over
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k, in the sense that σ (v) = v for all σ ∈ Gk. In particular, the image of the residual Galois
representation ρ̄p(E) : Gk → GL

(
E[p]

)
has its image in a non-split Cartan subgroup.

Proof. Let (E, v) be a representation of x. So, Eσ is k̄-isomorphic to E. As usual
σ
(
j(E)

) = j(Eσ ) = j(E), which shows that j(E) ∈ k and hence we may assume that E is
defined over k.

For every σ ∈ Gk, there is an automorphism �σ ∈ Autk̄(E) such that �σ (v) = σ (v).
If j(E) 	∈ {0, 1728}, then there are no additional automorphisms besides [±1]. Therefore,
they all act by scalars on E[p], and thus they act trivially on �

(
E[p]

)
. It follows that

v = σ (v). So, the image of ρ̄p(E) lands in the stabiliser of v, which is a non-split Cartan
subgroup. �

If v is defined over k, then there exists a cyclic extension L/k of degree dividing
p + 1 such that all cyclic subgroups C of E[p] are defined over L.

The analogous statement holds for Y+
nsp(k): Every point in Y+

nsp(k) can be
represented by a pair (E, v) with E being defined over k. If j(E) 	∈ {0, 1728}, then
the necklace v has also to be defined over k, and the residual Galois representation
takes values in the normaliser of a non-split Cartan subgroup of GL

(
E[p]

)
.

The fibres in Ynsp and Y+
nsp above the points j = 0 or j = 1728 contain ramified

points and elliptic points. We will discuss the elliptic points in detail in Section 3.5. A
ramified point x in one of those fibres can still be represented by (E, v) with E defined
over �. However, we will show now that the field of definition of x is not equal to the
field of definition of v if p > 3: In both cases, the curve E has complex multiplication
and by a general result (see Corollary 5.20 in Rubin’s part in [2]), the image of the Galois
representation ρ : G� → GL

(
E[p]

)
contains the image of all the automorphisms of E.

Since x is ramified, there is an automorphism g such that g(v) 	= v. Hence, there is an
element σ ∈ G� that sends v to g(v). Now, σ does not fix v, but it fixes x, which is also
represented by

(
E, g(v)

)
.

3.4. A lemma on antipodal pearls and cross-ratios. Let
E an elliptic curve over an algebraically closed field k̄ of
characteristic different from p. The following definition and
lemma will be used in many places later on.

DEFINITION. Let v = (C0, C1, . . . , Cp) be a necklace in
E. Two pearls Ci and Cj are called antipodal in v if i ≡ j +
p+1

2 (mod p + 1); in other words, if they are diametrically
opposed when we represent the necklace as a regular (p + 1)-
gon. If A and B are antipodal in v, we write A � B ∈ v.

LEMMA 8. Let A, B, C, D be four distinct cyclic subgroups of order p in an elliptic
curve E. There are (p − 1)/2 necklaces in which A � B. If the cross-ratio [A, B; C, D]
is a square in �×

p , then there is no necklace v such that A � B ∈ v and C � D ∈ v. If
instead [A, B; C, D] is a non-square in �×

p , then there is exactly one necklace v such that
A � B ∈ v and C � D ∈ v.

Proof. We may choose a basis of E[p] identifying �(E[p]) with �1(�p) in such a way
that A = ∞, B = 0 and C = 1. Then, D = d for some d ∈ �×

p \ {1}. Now, [A, B; C, D] =
d.

If d is a non-square, then the matrix g = [ 0 d
1 0 ] is an element of order two without

a fixed point in �1(�p). Hence, it belongs to a unique non-split Cartan subgroup H.
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Then, the necklace v whose stabiliser is the normaliser of H is a necklace such that
A � B ∈ v and C � D ∈ v as g(A) = B and g(C) = D.

Conversely, if we have such a necklace v for A, B, C, D, then the unique element
of order 2, which preserves the orientation on v, must send A to B and C to D. Hence,
it is of the form g = [ 0 d

1 0 ]. However, if it has no fixed points in �1(�p), then d has to be
a non-square in �×

p .
Finally, we have to count how many necklaces have A � B ∈ v. By the above proof,

this is the same as to count how many matrices g = [ 0 d
1 0 ] belong to a non-split Cartan

subgroup. That is, p−1
2 as there are that many non-squares d in �×

p . �

3.5. Elliptic points. We proceed to count elliptic points using our moduli
description. Our results in Propositions 9 and 12 agree with the more general
calculations by Baran in Proposition 7.10 in [1]. Assume for this that p > 3.

Consider the canonical coverings Xnsp −→ X(1) and X+
nsp −→ X(1). An elliptic

point on Xnsp or X+
nsp is a point in the fibre of a point in X(1) represented by an elliptic

curve E with Aut(E) 	= {±1}. Hence, an elliptic point on Xnsp can be represented by a
pair (E, v) such that there is an automorphism on E that induces a non-trivial element
g ∈ PGL

(
E[p]

)
, which fixes v. Consider the involution w on Xnsp that reverses the

orientation of the oriented necklaces. An elliptic point on X+
nsp can be viewed as a pair

(E, {v, wv}) with an automorphism g ∈ PGL
(
E[p]

)
and an oriented necklace v such

that either g(v) = v or g(v) = w(v). In the latter case, we say that v and its necklace
{v, w(v)} is flipped by g.

First note that if (E, ·) is an elliptic point, then j(E) = 1728 and g is of order two or
j(E) = 0 and g is of order three. These are elliptic curves with complex multiplication
and E[p] becomes a free End(E)/p End(E)-module of rank 1. So, if g is of order 2 and
p ≡ 3 (mod 4) or if g is of order 3 and p ≡ 2 (mod 3), then End(E)/p End(E) ∼= �p2 ,
and hence g belongs to a unique non-split Cartan subgroup of PGL

(
E[p]

)
. Instead,

if g is of order 2 and p ≡ 1 (mod 4) or if g is of order 3 and p ≡ 1 (mod 3), then
End(E)/p End(E) ∼= �p ⊕ �p, and therefore g belongs to a unique split Cartan subgroup
as it will have exactly two fixed points.

3.5.1. Fixed oriented necklaces. Let (E, v) be an elliptic point on Xnsp with the
oriented necklace v fixed by g. Then, g is in the non-split Cartan subgroup stabilising v.
Hence, by the above, p ≡ 3 (mod 4) if g has order 2 and p ≡ 2 (mod 3) if g has order 3.
Conversely, if these congruence conditions are satisfied, then g is in a unique non-split
Cartan subgroup that is the stabiliser of exactly two oriented necklaces, namely v and
wv. This gives the following result.

PROPOSITION 9. For r = 2 and 3, let er be the number of elliptic points in Xnsp with g
of order r. Then,

e2 = 1 −
(−1

p

)
=

{
0 if p ≡ 1 (mod 4),

2 if p ≡ 3 (mod 4),
and

e3 = 1 −
(−3

p

)
=

{
0 if p ≡ 1 (mod 3),

2 if p ≡ 2 (mod 3).

In the cases where er = 2, the two corresponding oriented necklaces are in the same
w-orbit.
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3.5.2. Flipped necklaces. Let (E, v) be an elliptic point on X+
nsp where the necklace

v = {�v, w�v} is flipped by g. If g were of order 3, we would have �v = g3(�v) = w(�v). Hence,
g is of order 2. The involution g is in a split Cartan subgroup if p ≡ 1 (mod 4) and in
a non-split Cartan subgroup if p ≡ 3 (mod 4).

LEMMA 10. Suppose that p ≡ 1 (mod 4) and let A, A′ denote the two fixed points
of g in �(E[p]). A necklace v is flipped by g if and only if A and A′ are antipodal in v.
Consequently, there are p−1

2 necklaces flipped by g.

Proof. Let �v = (C0, C1, C2, . . . , Cp) be a flipped oriented necklace with C0 = A.
From g(�v) = w(�v), we get g(Ck) = Cp+1−k for all k, where the indices are taken modulo
p + 1. It follows that if A′ = Ck, then A′ = g(A′) =
Cp+1−k, so k = (p + 1)/2 and A and A′ are antipodals
in v = {�v, w�v}. Moreover, from g(Ck) = Cp+1−k, we see
that g will act on v, represented as a regular (p + 1)-
gon, as the reflection through the axis passing through A
and A′.

Conversely, let v be a necklace in which A � A′. Let
B � B′ be two other antipodal pearls in v. Let h be the element of order 2 in the
normaliser of the non-split Cartan subgroup stabilising v. As it exchanges antipodal
pairs in v, we have h(A) = A′ and h(B) = B′. Since hgh−1 is also an involution that fixes
A and A′, it follows that hgh−1 = g as there is a unique involution fixing two given
points. Therefore, hg(B) = gh(B) = g(B′), which implies that g(B) � g(B′) ∈ v.

As g sends antipodal pairs in v to antipodal pairs in g(v), we also have A � A′

and g(B) � g(B′) in g(v). Hence, by Lemma 8, either g(�v) = �v or g(�v) = w�v, where
{�v, w�v} = v. The first case is excluded because g does not belong to a non-split Cartan
subgroup if p ≡ 1 (mod 4).

The end of the proof follows from the fact that there are (p − 1)/2 necklaces such
that A and A′ are antipodal, again by Lemma 8. �

LEMMA 11. Suppose that p ≡ 3 (mod 4). Let A ∈ �
(
E[p]

)
. Consider the map

sending a necklace v to the pearl antipodal to A in v. This is a bijection between necklaces v

flipped by g and the set of pearls B 	∈ {A, g(A)} such that [A, B; g(A), g(B)] is a non-square
in �p.

Proof. Let v be a necklace flipped by g. As above, from g(�v) = w(�v) we get
g(Ck) = Cp+1−k for all k and one can see that, since p ≡ 3 (mod 4), g will act on v

as a reflection through an axis that does not pass through a corner of the regular
(p + 1)-gon. Let B be antipodal to A in v. So B 	= A. If
B were equal to g(A), then A and B would be on the line
orthogonal to the axis of reflection of g. But this would
imply that p + 1 ≡ 2 (mod 4), and hence B 	= g(A). Finally,
since g flips v, we see that g(A) � g(B) ∈ v. By Lemma 8,
it follows that [A, B; g(A), g(B)] is a non-square modulo p.
The same lemma also shows that our map v �→ B is injective.

Conversely, suppose that B 	∈ {A, g(A)} is such that the
cross-ratio [A, B; g(A), g(B)] is a non-square modulo p. Since A, B, g(A) and g(B)
are all distinct, Lemma 8 applies to show that there is a necklace v with A � B and
g(A) � g(B). Now g(v) has also g(A) � g(B) and A � B. The same lemma now shows
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that g(v) = v. If the orientation of v were fixed rather than flipped, then g(A) would be
B. Hence our map is surjective, too. �

PROPOSITION 12. For r = 2 or 3, let e+
r be the number of elliptic points with g of order

r in X+
nsp. Then,

e+
2 = p + 1

2
−

(−1
p

)
=

{
p−1

2 if p ≡ 1 (mod 4),
p+3

2 if p ≡ 3 (mod 4),

and

e+
3 = 1

2
− 1

2

(−3
p

)
=

{
0 if p ≡ 1 (mod 3),

1 if p ≡ 2 (mod 3).

Proof. The number of elliptic points for X+
nsp is the sum of the number of fixed and

the number of flipped necklaces. In Proposition 9, we counted the fixed ones. We have
already counted the flipped necklaces for p ≡ 1 (mod 4) in Lemma 10. Now, suppose
p ≡ 3 (mod 4) and let A ∈ �(E[p]). By Lemma 11, we must count how many pearls B
there are such that B 	∈ {A, g(A)} and [A, B; g(A), g(B)] is a non-square in �p.

Let us choose a basis of E[p] such that A = ∞ and g(A) = 0. Let b ∈ �×
p such that

B = 1/b. Then g = [ 0 −1
1 0 ] and g(B) = −b. Hence [A, B; g(A), g(B)] = 1 + b2. So, we

have to count the number of b ∈ �×
p such that 1 + b2 is a non-square. One finds that

there are p+1
2 such b by counting the cases when 1 + b2 is a square using that there are

p + 1 points on a projective conic a2 + b2 = c2. �

3.6. Genus. From the above, we can now proceed to compute the genus of
our modular curves. Of course, we find the well-known formulae, as for instance
in Appendix A.5 to [16], [1] or [3]. The reader can also find tables for the genus of Xnsp

and X+
nsp for small primes p in [1].

The Riemann–Hurwitz formula applied to the modular curve XH associated to a
subgroup of finite index H of GL2(�p) and with the canonical morphism XH → X(1)
of degree d gives the following formula for the genus g(XH) of XH:

g(XH) = 1 + d
12

− e2

4
− e3

3
− e∞

2
,

where er is the number of elliptic points in XH of order r and e∞ is the number of cusps.
With the results of Sections 3.5 and 3.2, a straightforward computation gives the

following.

PROPOSITION 13. The genera of Xnsp and X+
nsp are

g(Xnsp) = 1
12

(
p2 − 7p + 11 + 3

(−1
p

)
+ 4

(−3
p

))

and

g(X+
nsp) = 1

24

(
p2 − 10p + 23 + 6

(−1
p

)
+ 4

(−3
p

))
.
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With the same method, one can compute the genus of other modular curves, for
instance X0 and X+

sp. The classical results (see for instance [17] and [3]) for their genus
are

g
(
X+

sp

) = 1
24

(
p2 − 8p + 11 − 4

(−3
p

))
and

g
(
X0

) = 1
12

(
p − 6 − 3

(−1
p

)
− 4

(−3
p

))
.

Then, one can verify easily the relation noticed by Birch following Chen’s calculation
of genus and confirmed by Chen’s isogeny

g
(
X+

nsp

) + g
(
X0

) = g
(
X+

sp

)
. (2)

3.7. Hecke operators. Let � be any prime distinct from p. Denote by X+
0,nsp(�, p) =

X0(�) ×X(1) X+
nsp(p). We recall how the Hecke correspondence T� is defined through

the following two natural degeneracy maps ρ and ρ ′ : X+
0,nsp(�, p) −→ X+

nsp(p). The
modular curve X+

0,nsp(�, p) parametrises isomorphism classes (E, (f, v)) of elliptic curves
E endowed with an �-isogeny f : E → E′ and a necklace v. Let ρ be the map obtained
by forgetting the �-structure and ρ ′ the map which sends (E, (f, v)) to (E′, f (v)). The
image f (v), defined as (f (C0), f (C1), . . . , f (Cp)) when v = (C0, . . . , Cp), is indeed a
necklace on E′ = f (E) since � 	= p.

The correspondence T� on X+
nsp is now defined as ρ∗ ◦ ρ ′

∗. It induces an
endomorphism on Pic(X+

nsp) by Picard functoriality. On the divisor (z) with the point
z in X+

nsp represented by (E, v), it is defined as

T�(z) =
∑

f : E→E′
deg f =�

(
E′, f (v)

)
,

where the sum runs over all isogenies f from E of degree �.
We will now verify that this moduli-theoretic description of T� via these

correspondences coincide with the Hecke operators defined by double coset.
Let us denote by N a normaliser of a non-split Cartan in GL2(�p), by � the

congruence subgroup of matrices in SL2(�) with image in N modulo p, and by � the
set of integral matrices whose determinant is positive and coprime to p and which
reduces to a matrix in N modulo p. Then, T� as a double coset is defined by �α� for
any α ∈ � of determinant �. Since such an element α reduces modulo � to a non-zero
matrix of determinant 0, there exist γ and γ ′ in � such that γαγ ′ is of the form

(
a b�
c� d�

)
with integers a, b, c, and d. (Note that we can impose conditions modulo p on γ, γ ′

because p and � are coprime.) In other words, �α� contains an element of the form
β

(
1 0
0 �

)
with β ∈ �0(�), so we may now suppose that α = β

(
1 0
0 �

)
, with β ∈ �0(�).

We will then prove that � ∩ α−1�α = � ∩ �0(�), where we denote by �0(�) the
matrices in SL2(�) with right upper entry equal to 0 modulo �: Since β ∈ SL2(�), we
have β−1�β ⊂ SL2(�); hence,

(
1 0
0 �

)−1
β−1�β

(
1 0
0 �

)
are matrices of the form

(
a b�

c/� d
)

and
this shows the first inclusion. Conversely, if γ ∈ � ∩ �0(�), since α and γ belong to C
modulo p, the product αγα−1 also belongs to it, so αγα−1 ∈ �.
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Similarly, one can show that � ∩ α�α−1 = � ∩ �0(�). Now, from the fact that
� ∩ α−1�α = � ∩ �0(�) or � ∩ α�α−1 = � ∩ �0(�), we deduce in a classical manner,
as explained for instance in Section 6.3 in [7] taking �1 = �2 = �, that the double
coset description of T� coincides with the moduli-theoretic the description we obtained
above. Compare with Theorem 1.11 in [12] for a different proof.

3.8. A pairing. Given two necklaces v and w in E, we set

〈v,w〉 = #
{
{A, B}

∣∣∣ A � B ∈ v and A � B ∈ w

}
.

It is the number of antipodal pearls that v and w have in common. We can extend it
linearly to

⊕
all v �v regarded as an abelian group with an action by PGL(E[p]).

PROPOSITION 14. The pairing 〈·, ·〉 is a positive non-degenerate symmetric PGL(E[p])-
equivariant bilinear form on

⊕
v �v. We have 〈v, v〉 = p+1

2 and 〈v,w〉 ∈ {0, 1} for all
necklaces v 	= w.

First, we note that we are left to prove that the pairing is positive, takes value
0 or 1 on distinct necklaces, and is non-degenerate. In this section, we only give the
proof of the two first facts. The proof of non-degeneracy will be given in Section 4.5
and numerical examples are in Section 5. We will see that this pairing gives a more
conceptual understanding of the eigenvalues computed by Chen [4] in his Table 2.

Proof. The statement that 〈v,w〉 ∈ {0, 1} for v 	= w is a direct consequence of
Lemma 8: If 〈v,w〉 � 2, then there are four distinct A, B, C, D with both A � B and
C � D in v and w, contradicting the lemma.

Let u = ∑
av v be an element in

⊕
� v. We have

〈u, u〉 =
∑

v

∑
w

av aw 〈v,w〉 =
∑
{A,B}

∑
v with

A�B∈v

∑
w with

A�B∈w

av aw =
∑
{A,B}

⎛
⎜⎝ ∑

v with
A�B∈v

av

⎞
⎟⎠

2

� 0,

where
∑

{A,B} is the sum running over all unordered pairs of distinct cyclic subgroups
of E[p]. Hence, the pairing is positive. The non-degeneracy of the pairing will be shown
in Section 4.5. �

4. Chen’s isogeny.

4.1. Definitions and statement. In [3], Chen proved that Jac(X+
nsp) =

Jac(X+
0 (p2))new. Edixhoven and de Smit [8, 9] found a different and rather elegant

proof. Finally, Chen gave in [4] an explicit description of his morphism:

Jac(X+
sp) → Jac(X+

nsp) × Jac(X0).

With our new moduli description, this morphism can be described yet in another
manner. Let k̄ be an algebraically closed field of characteristic different from p. In
Section 3.6, we have given the definitions of the modular curves X0 and X+

sp. The

points in X+
sp(k̄) can be represented as k̄-isomorphism classes of the form (E, {A, B}),

where {A, B} is a unordered pair of distinct cyclic subgroups of order p in E. Let
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X(p)

XA

π0
π+
sp

π̃+
nsp

X0

ψ

j0

X+
sp

ϕ

μ

j+
sp

X+
nsp

j+
nsp

λ

X(1) ∼= P
1

ψ E,A =
B with
B=A

E, {A, B}

μ E, {A, B} = E,A + E,B

ϕ E, {A, B} =
v with

v A B

E, v

λ E, v =
{A,B} with

A B∈v

E, {A, B}

Figure 1. The various maps in Chen’s theorem.

y = (E, {A, B}) be a point in X+
sp. We define ϕ(y) on the divisor (y) to be the sum of

(E, v) where v runs over all necklaces in which the pearls A and B are antipodal. This
extends linearly to a map on the Jacobians.

Further, we define the maps ψ , μ, and λ in the diagram on the right as follows. If y
is the point (E, {A, B}) as above, then μ(y) is the sum of the points (E, A) and (E, B) in
X0. If x = (E, A) with A a cyclic subgroup of order p in E is a point on X0, then we set
ψ(x) equal to the sum of (E, {A, B}) where B runs through all cyclic subgroups of order
p in E distinct from A. Finally, if z = (E, v) is a point on Xnsp for some necklace v, then
λ(z) is the sum of all (E, {A, B}) where A and B run through all pairs of antipodal pearls
in the necklace v. All these three correspondences extend linearly to the corresponding
Jacobians. As explained in Section 4.7, those correspondences comes from degeneracy
maps (where we replace π+

nsp by π̃+
nsp, which will be defined in Section 4.7).

To recapitulate, we list in Figure 1 the definitions for future reference next to a
diagram involving all relevant maps.

We proceed to give a new proof of Chen’s result. Even if we believe that our proof
is simpler and conceptually better visualised than the original proof in [4], we have to
emphasise that it is mostly a reformulation or translation of Chen’s proof into our new
language: As we explore it in detail in Section 4.7, the main argument is of the same
nature as in Chen’s proof.

THEOREM 15 Chen–Edixhoven. There are two complexes of abelian varieties over �:

0 �� Jac
(
X0

) ψ �� Jac
(
X+

sp

) ϕ �� Jac
(
X+

nsp

)
�� 0,

0 Jac
(
X0

)
�� Jac

(
X+

sp

)
μ

�� Jac
(
X+

nsp

)
λ

�� 0,��

whose cohomologies are finite groups.

We could also reformulate the theorem by saying that

Jac
(
X0

) ⊕ Jac
(
X+

nsp

) ψ+λ �� Jac
(
X+

sp

)
μ⊕ϕ

��

are isogenies defined over �; however, they are not dual to each other.
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4.2. The easier part of the proof.

LEMMA 16. The two sequences in Theorem 15 are complexes and μ ◦ ψ = [p − 1] on
the Jacobian of X0.

Proof. Let x = (E, A) be a point in X0. Then,

ϕ ◦ ψ(x) = ϕ

⎛
⎝∑

B 	=A

(
E, {A, B})

⎞
⎠ =

∑
B 	=A

∑
v�A�B

(E, v),

where the last sum runs over all necklaces v in which A and B are antipodal. Now, A
will appear in each necklace once, and for each necklace, there is a unique B that is
antipodal to A in v. Hence, ϕ ◦ ψ(x) is equal to the sum over all possible necklaces of
E. However,

ϕ ◦ ψ(x) =
∑

v

(E, v) = j∗nsp(E)

is the pullback of a divisor (E) on X(1) by the natural projection j+nsp : X+
nsp → X(1).

Since X(1) ∼= �1 has trivial Jacobian, we find ϕ ◦ ψ = 0 on the Jacobians. This proof
was already noted by Merel in [14, p. 189].

Next, for a point z = (E, v) in X+
nsp, we have

μ ◦ λ(z) = μ

(
1
2

∑
A

(
E, {A, B})

)
= 1

2

∑
A

(
(E, A) + (E, B)

)
=

∑
A

(E, A) = j∗0(E),

where B in the sums denotes the unique pearl that is antipodal to A in v and where
j0 : X0 → X(1). Hence, μ ◦ λ = 0 on the Jacobians.

Finally, we obtain

μ ◦ ψ(x) = μ

⎛
⎝∑

B 	=A

(
E, {A, B})

⎞
⎠ =

∑
B 	=A

(
(E, A) + (E, B)

)

= (p − 1) · (E, A) +
∑

B

(E, B) = (p − 1) · x + j∗0(E),

and hence μ ◦ ψ = [p − 1] on the Jacobian of X0. �
COROLLARY 17. The kernel ker ψ ⊂ Jac(X0)[p − 1] and the cokernel coker(μ) = 0

are finite.

4.3. Making use of antipodal pearls. We deduce from the earlier Lemma 8 the
following result.

COROLLARY 18. For every (E, {A, B}) ∈ X+
sp, we have

λ ◦ ϕ
(
E, {A, B}) = p − 1

2
· (

E, {A, B}) +
∑

{C,D} with
[A,B;C,D]	∈�

(
E, {C, D})
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with the sum running over all {C, D} disjoint from {A, B} such that the cross-ratio
[A, B; C, D] is a non-square in �×

p .

Proof. Since

λ ◦ ϕ
(
E, {A, B}) =

∑
v with

A�B∈v

∑
{C,D} with
C�D∈v

(
E, {C, D}),

we are asked to count how many necklaces have both {A, B} and {C, D} as antipodal
pairs in common. If the four pearls are distinct, Lemma 8 gives the answer. If A = B,
but C 	= D, then there are no such v, and if {A, B} = {C, D}, then we have to count
how many necklaces have A � B ∈ v; this is p−1

2 by Lemma 8 again. �

We now define yet another map α : Jac
(
X+

sp

) → Jac
(
X+

sp

)
. For a point y =

(E, {A, B}), we define α(E, {A, B}) to be the sum
∑{C, D} running over all unordered

pairs {C, D} such that [A, B; C, D] = −1.

LEMMA 19. We have

α ◦ α
(
E, {A, B}) = p − 1

2
· (

E, {A, B}) +
∑

{C,D} with
[A,B;C,D]∈�

(
E, {C, D}),

where the second sum runs over all unordered pairs {C, D} such that the cross-ratio
[A, B; C, D] is a square in �×

p .

Proof. By definition, we have

α ◦ α
(
E, {A, B}) =

∑
{X,Y} with

[A,B;X,Y ]=−1

∑
{C,D} with

[X,Y ;C,D]=−1

{C, D}.

Given {C, D}, we wish to determine how many {X, Y} exist with [A, B; X, Y ] =
[X, Y ; C, D] = −1. Assume first that A, B, C, D are all distinct. It follows that X
and Y are distinct from any of the four. Then, we choose a basis, identifying �(E[p])
with �1(�p), such that A = ∞, B = 0 and C = 1. Through this identification, we write
D = d, X = x and Y = y. The two equations give

−1 = [A, B; X, Y ] = x/y

−1 = [X, Y ; C, D] = x − 1
y − 1

· y − d
x − d

.

They simplify to x = −y and x2 = d = [A, B; C, D]. Hence, if [A, B; C, D] is a non-
square in �p, then there are no {X, Y}, and if it is a square, then there is exactly one
pair {X, Y}.

Finally, suppose they are not all distinct, say C = A. If D 	= B, then there cannot
be any {X, Y}. If {A, B} = {C, D}, then all pairs {X, Y} with [A, B; X, Y ] = −1 will
contribute to the sum, and there are p−1

2 such pairs. �
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PROPOSITION 20. Let jsp : X+
sp → X(1) be the natural projection. The relation

(
λ ◦ ϕ + α ◦ α + ψ ◦ μ

)(
E, {A, B}) = p · (E, {A, B}) + j∗sp(E) (3)

holds for all (E, {A, B}) ∈ X+
sp.

Proof. This is just the combination of Corollary 18, Lemma 19, the equality

ψ ◦ μ
(
E, {A, B}) = 2 · (

E, {A, B}) +
∑

C 	=A,B

((
E, {A, C}) + (

E, {B, C})),

and counting how often (E, {A, B}) appears on both sides. �

4.4. Representation theoretic argument. The main argument in [8, 9], that an
isogeny must exist between the Jacobians, and even some information about its
degree, is directly deduced from the Brauer relation between certain permutation
representation. Denote by B, S and N a Borel subgroup, a normaliser of a split Cartan
subgroup and a normaliser of a non-split Cartan subgroup of a group G isomorphic
to PGL2(�p), respectively. Then (see [8, 9])

�[G/S] ⊕ �[G/G] ∼= �[G/N ] ⊕ �[G/B].

We fix an elliptic curve E over an algebraically closed field of characteristic
different from p. Write G = PGL(E[p]). We consider the �[G]-modules U =⊕

v � (E, v), which is isomorphic to �[G/N ], and V = ⊕
{A,B} � (E, {A, B}) ∼=

�[G/S]. Equation (3) is a relation between �[G]-endomorphisms of V : λ ◦ ϕ + α ◦
α + ψ ◦ μ = [p] + j, where we still denote by ψ, ϕ, α, λ, μ the morphisms induced
on �[G]-modules and where j : V → V sends (E, {A, B}) to the sum of all
(E, {C, D}).

From the fact that the middle line (for T ′) in Table 2.2 in [9] only contains 0 and
1, we see that V ⊗ � decomposes into a sum of distinct irreducible �[G]-modules.
We denote by χW the character and eW = 1/|G| · ∑

g∈G χW (g) g−1 the idempotent
associated to such an irreducible �[G]-submodule W of V . For f a �[G]-endomorphism
of V , Schur’s Lemma implies that f |W is the multiplication by a scalar cW (f ) ∈ �.
Let K be the cyclotomic field �(ζp−1, ζp+1). A look at the character table (for
instance, Table 2.1 in [9]) of G ∼= PGL2(�p) shows that all values of characters are
contained in K . Since cW (f ) = 1/ dim(W ) · tr(eW ◦ f ), we see that cW (f ) belongs to
�(χW ) ⊂ K .

We will now consider these scaling factors for the �[G]-endomorphisms in
equation (3). Let W be an irreducible complex representation that appears in the
decomposition of V ⊗ � but not in the image of ψ ⊗ � :

⊕
A � (E, A) → V ⊗ �.

Then, cW (ψ ◦ μ) = 0. By the Brauer relation, since
⊕

A � (E, A) ∼= �[G/B], the
representation W also appears in the decomposition of U ⊗ �. Then, similarly
cW (j) = 0. Hence, equation (3) gives

cW (λ ◦ ϕ) = cW ([p]) − cW (α ◦ α) = p − cW (α)2.

However, since cW (α) ∈ K , it cannot be equal to ±√
p. This shows that cW (λ ◦ ϕ) 	= 0

for all irreducible W that do not appear in the image of ψ .
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Therefore, the map ϕ is a G-isomorphism from V/ im ψ into the non-trivial part
of U . Moreover, the map ϕ ◦ λ : U → U has the same scalar factors cW (ϕ ◦ λ) =
cW (λ ◦ ϕ) 	= 0 and on the trivial part it is the scalar multiplication by (p2 − 1)/4 	= 0.
It follows that ϕ ◦ λ is a G-automorphism of U .

4.5. End of proof of Proposition 14. We compute

ϕ ◦ λ (v) = ϕ

⎛
⎜⎝ ∑

{A,B} with
A�B∈v

{A, B}

⎞
⎟⎠ =

∑
{A,B} with
A�B∈v

∑
w with

A�B∈w

w =
∑
w

〈v,w〉 · w.

We deduce from the above representation theoretic input that the pairing in Section 3.8
is non-degenerate.

This concludes the proof of Proposition 14. It is to note that the non-degeneracy
of the pairing is equivalent to the difficult part of the proof of Chen’s isogeny in
Theorem 15. It would be nice to find a purely combinatorial proof of the non-
degeneracy of this pairing.

4.6. End of proof of Theorem 15. In Section 4.4, we have shown that the map
ϕ ◦ λ :

⊕
v � (E, v) → ⊕

v � (E, v) has finite kernel and cokernel. In other words, the
map

ϕ ◦ λ : Div(X+
nsp) → Div(X+

nsp)

has finite kernel and cokernel in each fibre. Since the size of them is independent of
the fibre, the above map has kernel and cokernel of finite exponent. Now, consider the
induced map

ϕ ◦ λ : Jac(X+
nsp) → Jac(X+

nsp)

on the Jacobian. If [D] is a divisor class in Jac(X+
nsp), then there is a multiple [mD] that

is in the image of ϕ ◦ λ. Therefore, the map ϕ ◦ λ has finite cokernel on the Jacobians.
Comparing the dimensions it follows that it has finite kernel, too. This implies that ϕ

has finite cokernel and λ has finite kernel in the sequences in Theorem 15.
To conclude we have to verify that the sequences have finite cohomology in the

middle term. This can be deduced from counting the dimension together with all the
known parts of the theorem: We know from (2) in Section 3.6 that the dimension of
Jac(X+

sp) is equal to the sum of the dimensions of Jac(X0) and Jac(X+
nsp). Since ϕ has

finite cokernel, its kernel has now the same dimension as Jac(X0), which is also the
dimension of the image of ψ . Because the sequence is a complex, we have im ψ ⊂ ker ϕ

and the quotient is finite because they have the same dimension. The argument for the
second sequence is similar. This concludes the proof of Theorem 15.

4.7. Relation to Chen’s computations. In this subsection, we relate our proof to
the previous proof in [4] by establishing a translation. The first difference is that we work
with PGL2(�p) rather than with GL2(�p), but that does not make any real difference.

Fix an elliptic curve E over an algebraically closed field of characteristic different
from p. Let us fix two distinct subgroups A0 and B0 in E. Further, we choose a necklace
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v0 in which A0 is antipodal to B0. Let B be the stabiliser of A0 in G = PGL(E[p]), which
is a Borel subgroup, let S be the stabiliser of {A0, B0}, which is the normaliser of a
split Cartan subgroup, and let N be the stabiliser of v0, which is the normaliser of a
non-split Cartan. Then, we define three G-isomorphisms:

ι0 : �
[
G/B

] −→
⊕

A

� A , ιsp : �
[
G/S

] −→
⊕
{A,B}

� {A, B} ,

ιnsp : �
[
G/N

] −→
⊕

v

� v

by ι0(B) = A0, ιsp(S) = {A0, B0} and ιnsp(N ) = v0, respectively. The importance of the
exact choices here is that N ∩ S contains four elements. Had we taken ‘adjacent’ rather
than ‘antipodal’ pearls in the necklace, we would only have two elements. Compare
with remarque 3 in [8].

Recall from [4] that for each double coset HgH′ for some subgroups H and H′ of
G and g ∈ G, there is a G-morphism �(HgH′) : �[G/H] → �[G/H′] sending H to the
sum

∑
s∈� sH′ such that

⋃
s∈� sH′ = HgH′ is a disjoint union.

LEMMA 21. We have

ψ = ιsp ◦ �(B1S) ◦ ι−1
0 , μ = ι0 ◦ �(S1B) ◦ ι−1

sp , ϕ = ιnsp ◦ �(S1N ) ◦ ι−1
sp , and

λ = ιsp ◦ �(N1S) ◦ ι−1
nsp.

Further we have α = ιsp ◦ �(SgS) ◦ ι−1
sp with g = [ 1 1

1 −1 ].

Proof. We only illustrate the first equality as the proof is very similar for all of the
first four equalities. The map �(B1S) sends B = ι−1

0 (A0) to the sum of sS where s runs
over a system � of representatives of B/(B ∩ S). The quotient group is the group of
elements in G fixing A0 modulo the subgroup of elements also fixing B0. So

ιsp ◦ �(B1S)(B) =
∑
s∈�

{A0, sB0}.

SinceB acts transitively on �(E[p]) \ {A0}, each {A0, B} with B 	= A0 will appear exactly
once in this sum. Hence,

ιsp ◦ �(B1S)(B) =
∑

B 	=A0

{A0, B} = ψ(A0).

To prove the last equality, note that with C0 = gA0 and D0 = gB0, we get
[A0, B0; C0, D0] = −1 and gSg−1 is the stabiliser in G of {C0, D0}. So, the quotient
S/(S ∩ gSg−1) is the group of elements fixing {A0, B0} modulo elements also fixing
{C0, D0}. It follows that

ιsp ◦ �(SgS)(S) =
∑
s∈�′

sg{A0, B0} =
∑
s∈�′

{sC0, sD0},

where �′ is a system of representatives of S/(S ∩ gSg−1). This is exactly the sum
of all {C, D} with [A0, B0; C, D] = −1, because the action of S on the set of pairs
{C, D} is transitive and for s ∈ �, we have [A0, B0; sC0, sD0] = [sA0, sB0; sC0, sD0] =
[A0, B0; C0, D0] = −1. �
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Now it is clear that equation (3) is exactly what Chen proves in Propositions 8.6
and 8.7 in [4]. His proof is a computation in double coset operators. He then goes on to
give formulae for the values of cW (λ ◦ ϕ) in terms of character sums. However, his final
argument that they are non-zero can be shortened as we did in Section 4.4 without
making the values more explicit.

Finally, we wish to point out that Chen also describes the maps using the
degeneracy morphisms. See his Theorem 2 in [4]. For instance, let consider the
usual degeneracy morphisms π0 : XA −→ X0 defined by (E, (A, B, C)) �→ (E, A) and
π+

sp : XA −→ X+
sp defined by (E, (A, B, C)) �→ (E, {A, B}). It is easy to see from our

definitions that

(p − 1) · ψ = (π+
sp)∗ ◦ (π0)∗ and (p − 1) · μ = (π0)∗ ◦ (π+

sp)∗

hold as maps on divisors. To explain ϕ and λ, we have to replace π+
nsp by another

degeneracy map. Let ε be a non-square in �p. We define π̃+
nsp : XA → X+

nsp by sending(
E, (A, B, C)

)
to the following necklace v in E. First, there exist a unique D distinct

from A, B, and C such that [A, B; C, D] = ε. Then, by Lemma 8, there is a unique v

such that A � B ∈ v and C � D ∈ v. It is also this lemma that shows that this map is
PGL

(
E[p]

)
-equivariant.

LEMMA 22. We have

4 · ϕ = (π̃+
nsp)∗ ◦ (π+

sp)∗ and 4 · λ = (π+
sp)∗ ◦ (π̃+

nsp)∗.

Proof. Let A and B be two distinct cyclic subgroups of order p of some elliptic
curve E. By definition, we have

(π̃+
nsp)∗ ◦ (π+

sp)∗
(
E, {A, B}) =

∑
C 	∈{A,B}

π̃+
nsp

(
E, (A, B, C)

) +
∑

D	∈{A,B}
π̃+

nsp

(
E, (B, A, D)

)
= 2

∑
X 	∈{A,B}

π̃+
nsp

(
E, (A, B, X)

)
,

since [A, B; C, D] = [B, A; D, C] for all C, D. Each necklace in this sum will have A
and B as antipodal pearls. Let v be a necklace with A � B ∈ v. We wish to determine
how often v appears in the above sum, that is to say how many X 	∈ {A, B} are there
such that v = π̃+

nsp

(
E, (A, B, X)

)
. In other words, we wish to count the X such that

[A, B; X, X ′] = ε, where X ′ is the antipodal pearl to X in v. We can choose a basis of E[p]
such that A = ∞, B = 0 and the subgroups X 	∈ {A, B} are X = 1/a for some a ∈ �×

p .
The involution in the stabiliser of v is then represented by a matrix g = [ 0 d

1 0 ] with d non-
square and the antipodal pearl to X in v is X ′ = da. It follows that [A, B; X, X ′] = da2.
Since ε and d are non-squares, the equation da2 = ε has two solutions in �×

p . Hence,
there are two pearls X 	∈ {A, B} such that v = π̃+

nsp

(
E, (A, B, X)

)
and consequently

(π̃+
nsp)∗ ◦ (π+

sp)∗
(
E, {A, B}) = 4

∑
v with

A�B∈v

v.

The second equality follows from an analogous argument. �
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5. Examples. We add some numerical examples for small primes, mainly on the
eigenvalues of the pairing in Section 3.8.

5.1. Necklaces for p = 5. There is a unique conjugacy class Cγ in PGL2(�5). We
have t = 1 and n = 2. We spell out the 10 necklaces below by giving them as a list of
all points in �1(�5):(
0, 1, 2, 4,∞, 3

)
,
(
0, 1, 3,∞, 2, 4

)
,
(
0, 1, 4, 2, 3,∞)

,
(
0, 1,∞, 3, 4, 2

)
,
(
0, 2, 1,∞, 4, 3

)
,(

0, 3, 1, 2,∞, 4
)
,
(
0, 3, 2, 1, 4,∞)

,
(
0, 2, 3, 4, 1,∞)

,
(
0, 2,∞, 1, 3, 4

)
,
(
0, 4, 1, 3, 2,∞)

.

It is now easy to read off the pairing 〈·, ·〉 defined in Section 3.8. Let v be the first
necklace in the list. Of course, we have 〈v, v〉 = 3. On the one hand, we have 〈v,w〉 = 0
for w being any of the necklaces from the second to the seventh and, on the other
hand, 〈v,w〉 = 1 when w is any of the last three necklaces.

The resulting matrix (〈v,w〉)v,w is non-singular. Its eigenvalues are 6, four times
1, and five times 4.

5.2. Necklaces for p = 7. For p = 7, we have two choices for γ . We take t = 1
and n = 3, here.

(
0,∞, 2, 3, 5, 1, 4, 6

)
,
(
0, 6, 3, 5,∞, 2, 4, 1

)
,
(
0,∞, 3, 1, 4, 5, 6, 2

)
,
(
0,∞, 1, 5, 6, 4, 2, 3

)
,(

0, 3,∞, 2, 5, 4, 6, 1
)
,
(
0, 3, 4, 5, 1, 6,∞, 2

)
,
(
0, 2, 1, 4,∞, 3, 6, 5

)
,
(
0, 2, 3,∞, 5, 6, 1, 4

)
,(

0, 5, 4,∞, 2, 1, 6, 3
)
,
(
0, 5,∞, 1, 6, 2, 3, 4

)
,
(
0, 3, 5, 6,∞, 1, 2, 4

)
,
(
0, 5, 1, 2, 3, 6, 4,∞)

,(
0, 3, 1,∞, 4, 2, 5, 6

)
,
(
0, 1,∞, 3, 4, 6, 2, 5

)
,
(
0,∞, 5, 4, 2, 6, 3, 1

)
,
(
0, 2, 4, 3, 6,∞, 5, 1

)
,(

0, 6, 2,∞, 1, 4, 3, 5
)
,
(
0, 4,∞, 5, 2, 3, 1, 6

)
,
(
0,∞, 6, 2, 1, 3, 5, 4

)
,
(
0, 4, 6,∞, 3, 5, 2, 1

)
,(

0, 6,∞, 4, 3, 1, 5, 2
)
.

Again the pairing is non-degenerate with eigenvalues 12, six times 4 + 2
√

2, six times
4 − 2

√
2 and eight times 3.

5.3. Larger primes. We list the characteristic polynomial of the matrix (〈v,w〉)v,w

for the next few primes.

p char. polynomial of 〈·, ·〉
11 (X − 30) · (X − 2)10 · (X − 8)20 · (X2 − 10 X + 5)12

13 (X − 42) · (X3 − 19 X2 + 83 X − 1)12 · (X − 12)14 · (X − 4)27

17 (X − 72) · (X − 1)16 · (X3 − 27 X2 + 195 X − 361)16 · (X − 16)17·
·(X − 8)18 · (X2 − 16 X + 32)18

19 (X − 90) · (X − 18)18 · (X4 − 32 X3 + 304 X2 − 768 X + 256)18·
·(X − 3)20 · (X3 − 33 X2 + 315 X − 867)20

These values for the eigenvalues cW (ϕ ◦ λ) coincide with Chen’s computation in his
Table 2 in [4].
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