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Abstract

Explainability is highly desired in machine learning (ML) systems supporting high-stakes policy decisions in areas
such as health, criminal justice, education, and employment.While the field of explainableMLhas expanded in recent
years, much of this work has not taken real-world needs into account. A majority of proposed methods are designed
with generic explainability goals without well-defined use cases or intended end users and evaluated on simplified
tasks, benchmark problems/datasets, or with proxy users (e.g., Amazon Mechanical Turk). We argue that these
simplified evaluation settings do not capture the nuances and complexities of real-world applications. As a result, the
applicability and effectiveness of this large body of theoretical and methodological work in real-world applications
are unclear. In this work, we take steps toward addressing this gap for the domain of public policy. First, we identify
the primary use cases of explainable MLwithin public policy problems. For each use case, we define the end users of
explanations and the specific goals the explanations have to fulfill. Finally, we map existing work in explainable ML
to these use cases, identify gaps in established capabilities, and propose research directions to fill those gaps to have a
practical societal impact through ML. The contribution is (a) a methodology for explainable ML researchers to
identify use cases and develop methods targeted at them and (b) using that methodology for the domain of public
policy and giving an example for the researchers on developing explainable ML methods that result in real-world
impact.

Policy Significance Statement

Despite a rich body of methodological work in explainable ML, little guidance exists for building systems that
meet the needs of actual policy applications. This article seeks to fill that void by mapping out explainability use
cases in public policy settings and comparing the capabilities of existing methods against the requirements of
each use case’s stakeholders.We believe that this work serves public policy in twoways: (a) for researchers, a call
for empirical, application-focused development and evaluation of explainability methods that will lead to
systems better suited to provide social impact; and (b) for policymakers and ML practitioners, a guide to
navigating the complex landscape ofML explainability when designing and evaluating appliedML systems that
support their policy objectives.
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1. Introduction

Machine learning (ML) systems are increasingly supporting high-stakes public policy decisions in areas
such as criminal justice, education, healthcare, and social services (Caruana et al., 2015; Bauman et al.,
2018; Ye et al., 2019; Potash et al., 2020; Rodolfa et al., 2020). As users of these systems have grown
beyond ML experts and the research community, the need to better interpret and understand them has
grown as well, particularly in the context of high-stakes decisions that affect individuals’ health or well-
being (Lakkaraju et al., 2016; Lipton, 2018; Rudin, 2019). Likewise, new legal frameworks reflecting
these needs are beginning to emerge, such as the right to explanation in the European Union’s General
Data Protection Regulation (Goodman and Flaxman, 2017).

Against this background, research into explainability/interpretability1 of ML models has experienced
rapid expansion and innovation in recent years, with a focus onmethod development. A range of methods
have been developed that broadly fall into two categories: (a) inherently interpretablemodels (Ustun et al.,
2013; Caruana et al., 2015; Lakkaraju et al., 2016; Yang et al., 2017; Rudin, 2019) and (b) post hoc
methods for explaining (opaque) complex models and/or their predictions (Bach et al., 2015; Ribeiro
et al., 2016, 2018; Lundberg and Lee, 2017; Lundberg et al., 2018a, 2018b;Wachter et al., 2018;Mothilal
et al., 2020). While this expansion of the field has yielded a rich body of methodological work, recently,
the community has begun to highlight the shortfalls such as the lack of consistent language and
definitions, the lack of clearly defined explainability goals, and desiderata; and the lack of consensus
on metrics and methods of evaluating the quality of explanations (Doshi-Velez and Kim, 2017; Lipton,
2018; Weller, 2019; Buçinca et al., 2020; Hase and Bansal, 2020; Sokol and Flach, 2020; Bhatt et al.,
2020a, 2020b; Chen et al., 2022). In addition to the critique above, we argue that there are two key areas
where most existing work related to explainable ML methods falls short:

1. Explainabilitymethods are often developed as “general-purpose”methodswith a broad and loosely
defined goal, such as perceived transparency, and not to address specific needs of real-world use
cases.

2. Explainability methods are not rigorously evaluated to adequately reflect their effectiveness in real-
world settings. Barring a few exceptions (Caruana et al., 2015; Lundberg et al., 2018b; Ustun et al.,
2019; Jesus et al., 2021), much of the existing work is designed and developed for benchmark
classification problems, often with synthetic data and usually validated with user studies limited to
users in research settings such as Amazon Mechanical Turk (AMT; Simonyan et al., 2013; Zeiler
and Fergus, 2014; Bach et al., 2015; Ribeiro et al., 2016; Lundberg and Lee, 2017; Plumb et al.,
2018; Hu et al., 2019).

The result is a body of methodological work without clearly identified use cases and, more importantly,
without established real-world utility, making it difficult for practitioners to select and deploy these
methods with any confidence. A necessary first step for filling these gaps is clearly defining how
explainable ML fits into a decision-making process. As explainability is not a monolithic concept and
can play different roles in different applications (Lipton, 2018; Molnar, 2019), this process requires
extensive domain/application-specific efforts.

In this article, we use our experience working with government agencies and nonprofits and focus on
applications of ML to public policy problems. Among the broad range of intervention points that the
domain of policy presents to ML (e.g., policy design, evaluation, and administration), we focus our
attention on policy administration tasks where predictiveMLmodels are used to support human decisions
with objectives of improving the efficiency of resource usage, the effectiveness of interventions, and
equity of outcomes. We seek to define the role of explainable ML in these domains and how we can use it
to improve policy and social outcomes. To that end, this article has the following contributions:

1We combine the two terms interpretability and explainability and use both terms to refer to the ability to understand, interpret,
and explain ML models and their predictions.
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1. identifying the primary use cases of ML explanations in public policy applications;
2. for each use case, identifying the goals of the explanation methods, the end users, and the

explanation needs;
3. identifying research gaps by comparing the known capabilities of the existing body of work to the

needs of the use cases;
4. proposing research directions to develop effective explainable ML systems that would be targeted

for the needs of real-world use cases and lead to improved policy decisions and consequently
improved societal outcomes.

The primary goal of this work is to bridge the gap between methodological research in explainable ML and
the needs of policy applications. We believe that effective human–ML collaborative decision-making can
profoundly impact policy decision-making processes, and the explainability of ML systems plays a critical
role in human–MLcollaboration. Thus, bridging the gap between explainableMLmethods and applications
is paramount. As computer scientists who develop and apply ML algorithms to improve policy decision-
making processes, this article is our attempt at connecting the ML research community with problems in
public policy where explainable ML can impact consequential decisions. It is worth noting that there have
been other pieces in the literature that are similarly motivated in understanding howwe can use explainable
ML in practical applications (Hong et al., 2020; Bhatt et al., 2020a; Belle and Papantonis, 2021). These
efforts have primarily focused on identifying how the ML community is using existing interpretability
methods. For instance,Bhatt et al. (2020a, 2020b) andHonget al. (2020) conduct semi-structured interviews
with different stakeholders in industry to understand how they incorporate interpretable ML in their
workflows and gain valuable insights into how ML practitioners perceive the methods of explainable
ML. We believe that our work supplements said pieces through an in-depth analysis of a single domain
where we look at potential uses, the needs, where there are gaps in current research in meeting those needs,
and how the practitioners and researchers can work together in bridging those gaps. We do not intend this
work to be a thorough survey of existing work in explainable ML (since there are already excellent articles
on that topic; Adadi and Berrada, 2018; Guidotti et al., 2018; Arya et al., 2019; Molnar, 2019; Bhatt et al.,
2020b) but rather to highlight the needs of the domain, map the capabilities of existing approaches to those
needs, identify gaps, and propose concrete steps to bridge those gaps. The primary audience of this work is
theML research community that designs and develops explainableML systems thatmay be implemented in
public policy decision-making systems. We believe that this discussion will serve as a framework for
designing explainable ML methods and evaluation setups with an understanding of the following:

1. the purpose the explanations serve and the related policy/societal outcome;
2. the end user of the explanations, the exact decisions they would make based on the explanations,

and the intended impact of explanations on their decisions;
3. how to measure the effectiveness of generated explanations in helping end users make better

decisions that result in improved public outcomes (e.g., metrics that reflect decision outcomes).

Furthermore, we believe that this work could serve as a guide for policy practitioners who procure and
embed ML systems in their decision processes to perform more informed evaluations of the explainable
ML systems they procure.

Although the focus on public policy applications reflects the area of expertise of the authors and a
domain that is beginning to use ML tools for assisting many high-stakes decisions, we believe that our
approach to defining the role of explainable ML in this setting will be valuable as a template for other
domains as well.

2. Use of Machine Learning in Public Policy Problems

ML models can analyze large amounts of data to identify patterns and make predictions about future
events (e.g., the risk of an evicted individual ending up homeless in the next year, the risk of a student not
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graduating high school on time, processing legislative bills to understand the policy areas covered in the
bill). These predictions can provide data-driven insights to supplement human expertise to inform
decision making and the policy domain presents a range of such decision points. However, it is important
to note that policy decision-making is a complex, human, and political process, and there are many
challenges to using ML in this domain. For instance, policymaking typically involves trade-offs between
competing social values (Parkhurst, 2016; Saltelli andGiampietro, 2017), whereasML algorithms require
explicitly defined objectives and weighing competing objectives (Coyle andWeller, 2020). Additionally,
while ML predictions can provide useful information, policy decisions are typically not solely based on
technical evidence (Parkhurst, 2016), and the power of persuasion and in some cases manipulation, plays
a critical role in legislative processes (Zahariadis, 2003; Cairney and Oliver, 2017).

In this work, we focus on policy administration decisions where ML predictions assist resource
allocation and intervention decisions at a highly granular level (e.g., predicting the risk of future mental
health crises to do individual-level proactive mental health outreach). Typically, these systems are
designed to improve the efficiency of resource utilization, intervention effectiveness, and equity of
outcomes. To mitigate the ambiguity and uncertainty inherent to policy processes, we assume a
continuous partnership between partnering policy practitioners and ML practitioners in defining the
goals, parameters of operationalizing ML predictions, how to measure success, possible risks, and
mitigation strategies (e.g., bias and equity). In this work, we draw on our experience in partnering with
governments to develop and implement human–ML collaborative policy administrative systems where
ML predictions (and potential ML explanations) supplement decision-makers’ domain expertise.

To illustrate the applicability of ML to policy administration settings, we focus on the common task of
early warning systems (EWSs) that are prevalent in different policy domains. In an EWS, theMLmodel is
used to identify entities (e.g., people, schools, buildings, and locations) for some intervention, based on a
predicted risk of some (often adverse) outcome, such as an individual getting diagnosed with a disease in
the next year, a student not graduating high school or college on time, a tenant getting harassed by their
landlord, or for a child getting lead poisoning within the next year (Bauman et al., 2018; Ye et al., 2019;
Rodolfa et al., 2020). While there are several other policy problem templates that ML is used for, such as
inspection targeting, scheduling, routing, and policy evaluation, we use EWSs to illustrate our ideas in this
article.

2.1. Characteristics of ML applications in public policy

Several characteristics of typical public policy problems set them apart from standard benchmark ML
problems and datasets often used to evaluate newly proposed algorithms.

2.1.1. Nonstationary environments
In a policy context, ML models use data about historical events to predict the likelihood of either the
occurrence of an event in the future or the existence of a present need, and the context around the problem
changes over time. This nonstationary nature of the data introduces strong temporal dependencies that
should be considered throughout themodeling pipeline andmakes these models susceptible to errors such
as data leakage (Kaufman et al., 2011; Samala et al., 2020). For instance, the use of standard randomized
k-fold cross-validation as a model selection strategy can create training sets with information from the
future, which would not have been available at model training time.

2.1.2. Evaluation metrics reflect real-world resource constraints
The mental health outreach in Bauman et al. (2018) was limited by staffing capacity to intervene on only
200 individuals at a time, and the rental inspections team in Ye et al. (2019) could only inspect around
300 buildings per month. Resource constraints such as these are inherent in policy contexts, and the metrics
used to evaluate and selectmodels should reflect the deployment context.As such, these applications fall into
the top-k setting, where the task involves selecting exactly k instances as the “positive” class (Liu et al.,
2016). In such a setting,we are concernedwith selectingmodels thatworkwell for precision in the top k%of
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predicted scores (Boyd et al., 2012) rather than optimizing accuracy or area under the ROC curve (AUC-
ROC) as often done in “standard” classification problems, which would be suboptimal.

2.1.3. Heterogeneous data sources with strong spatiotemporal patterns
Developing a feature set that adequately represents individuals in policy applications typically entails
combining several heterogeneous data sources, often introducing complex correlation structures to the
feature space not usually encountered in ML problems used in research settings. For instance, in Bauman
et al. (2018), the ML model combines data sources such as criminal justice data (jail bookings),
emergency medical services data (ambulance dispatches), and mental health data (electronic case files)
to gain a meaningful picture of an individual’s state. Additionally, temporal patterns in the data are often
particularly instructive, requiring further expansion of the feature space to capture the variability of
features across time (number of jail bookings in the last 6 months, 12 months, and 5 years). The
combination of such features across a range of domains, geographies, and time frames yields a large
(and densely populated) feature space compared to typical structural data-based ML problems we
encounter in research settings.

2.2. Socio-technical systems

Typical ML-supported public policy decision-making systems have at least four types of users that
interact with ML models at different stages of the process:

1. ML practitioners who build the ML components of the system.
2. High-level decision-makers/regulators who determine whether to adopt the ML models in their

decision-making processes or are responsible for auditing theMLmodels to ensure intended policy
outcomes.

3. Action-takers (e.g., social workers, health workers, and employment counselors) who act and
intervene based on the recommendation of the ML model. Most policy applications of ML do not
involve fully automated decision-making, but rather a combined system of ML model and action-
taker that we consider as one decision-making entity. Action-takers often make two types of
decisions: (a) deciding whether to accept/override the model prediction for a given entity (whether
to intervene) and (b) deciding which intervention to select in each case (how to intervene).

4. Affected individualswho are impacted by the decisions made by the combined human–ML system.

3. The Role of Explainable ML in Public Policy Applications

Based on our extensive experience working on over 100 such projects in collaboration with governments
and nonprofits and through extensive discussions with stakeholders in public policy settings including
policymakers, directors of agencies, policy analysts, end users such as counselors and social workers, as
well as the public that is impacted, we identify five primary use cases for explainableML in a public policy
decision-making process (see Table 1). For each use case, we identify the end user(s) of the explanations,
the goal of the explanations, and the desired characteristics of the explanations to reach that goal for that
user. To better illustrate the use cases, we will make use of concrete applications drawn from our work—
preventing adverse interactions between police and the public (citation omitted due to blind review)—to
serve as a running example.Many appliedML contexts share a similar structure, such as: supporting child
welfare screening decisions (Chouldechova et al., 2018), allocating mental health interventions to reduce
recidivism (Bauman et al., 2018; Rodolfa et al., 2020), intervening in hospital environments to reduce
future complications or readmission (Ramachandran et al., 2020), and recommending training programs
to reduce risk of long-term unemployment (Zejnilović et al., 2020).

Illustrative example:Adverse incidents between the public and police officers, such as unjustified use
of force or misconduct, can result in deadly harm to citizens, decaying trust in police, and less safety in
affected communities. To proactively identify officers at risk for involvement in adverse incidents and
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prioritize preventative interventions (e.g., counseling, training, and adjustments to duties), many police
departments make use of early intervention systems (EIS), including severalML-based systems (see, e.g.,
Carton et al., 2016). The prediction task of the EIS is to identify k currently active officers who are most
likely to be involved in an adverse incident in a given period in the future (in the next 12 months), where
the intervention capacity of the police department determines k. The EIS uses a combination of data
sources such as officer dispatch events; citizen reports of crimes; citations, traffic stops, and arrests; and
employee records to represent individual officers and generates labels using their history of adverse
incidents (Carton et al., 2016).

3.1. Use Case 1: Model debugging

ML model-building workflows are inherently iterative, and one critical piece of this workflow is the
continuous feedback provided by sanity checks on themodel(s) to see if theymake sense and are free from
errors. A primary goal of explanations at this early stage is to help the system developers identify and
correct errors in the models. Common errors such as data leakage (the model having access to information
at training/building time that it would not have at test/deployment/prediction time; Kaufman et al., 2011),
and spurious correlations/biases (that exist in training data but do not reflect the deployment context of the
model) are often found by observingmodel explanations and finding predictors that should not show up as
highly predictive (Caruana et al., 2015; Ribeiro et al., 2016). ML models trained to predict/detect real-
world events typically learn frommessy data that capture only a partial view of individuals or entities and
are highly susceptible to surfacing spurious correlations. Therefore, having additional insight into what
the ML model is learning and how it makes decisions through explainable ML can support the model
evaluation process. For instance, in Caruana et al. (2015), the authors elaborate on how explanations
helped surface such errors in a model trained to identify pneumonia patients with high mortality risk. The
model explanations showed that the model assigned low-risk scores to asthma patients because the model
did not have access to the information that asthma patients routinely received a more intensive care
regimen.

Example. In the EIS, an adverse incident gets determined to be unjustified a long time after the incident
date. When training an ML model with the entire incident record, accidentally using the future deter-
mination state of the incident can introduce data leakage. In this case, explanations could uncover that a
feature such as the case disposition code is considered important by themodel when it takes a value related

Table 1. Use cases of explainable ML in public policy applications

Use case End users Intended use of explanations

Model debugging ML system developers Uncover and fix errors in the ML pipeline such as
leakage or biases

Trust and adoption Policymakers,
regulators, and
action-takers

Help users understand how the model makes decisions,
evaluate its reasonableness, and sufficiently trust the
model for adoption

Whether to intervene Action-takers Improve the decision-making system performance by
helping action-takers identify correct and unreliable
predictions by explaining how the model arrived at
individual risk scores

How to intervene Action-takers Improve intervention choices by helping action-takers
understand factors that contribute to risk

Recourse Affected individuals Help affected individuals take action to improve their
outcomes in the future or appeal decisions based on
inaccurate data
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to the determination state and can point the ML practitioner or a domain expert to recognize that
information has leaked from the future.

3.2. Use Case 2: Building trust for model adoption

Decision-makers have to sufficiently trust theMLmodel to adopt and use them in their processes. Trust, in
general, is a commonmotivating theme cited by explainableMLwork (Ribeiro et al., 2016; Lipton, 2018;
Lundberg et al., 2018a). Furthermore, there has been significant emphasis laid on developing “trustworthy
ML” systems of which explainable ML is considered to be a key element (Li et al., 2022). In our
experience, trust in human–ML collaboration takes two forms in policy contexts: (a) high-level decision-
maker’s trust in the model that leads to its adoption and (b) action-taker’s trust in the model’s predictions
that leads to individual actions/interventions. This use case focuses on the former, where the goal of
explanations is to help users (policymakers, organizational leadership, etc.) understand and adequately
trust the model’s overall decision-making process.2

The role of the explanation, in this use case, is to help the users understandwhat factors are affecting the
model predictions, as well as the characteristics of individuals that are being scored as high or low risk.
Since the user in this instance is not an ML expert but has expertise in the application domain,
communicating the explanation in a way that increases the chances of building trust is critical.

Example. In the EIS, the explanations should inform the ranking officer at the PD—who acts as the
regulator—of the factors that lead to increasing/decreasing a police officer’s risk score (Carton et al.,
2016). In that instance, “A high number of investigations in the last 15 years” is an interpretable indicator
while “positive first principal component of the arrest code” is not.

3.3. Use Case 3: Deciding whether to intervene

NoMLmodel makes perfect predictions, especially when predicting rare real-world events. For example,
consider anMLmodel that predicts children and homes at risk of future lead hazards for allocating limited
inspection and remediation resources. If only 5% of households have lead hazards, a model that identifies
these hazardswith a 30% success rate (precision) would provide a significant improvement over a strategy
of performing random inspections, but would still be incorrect 70% of the time. In the ideal case, the
action-taker in the loop (the lead inspection team) would use their expertise to determine when to follow
and act on the model’s recommendation and when to override it, resulting in an improved list of k entities.
This use case is closely related to the notion of trust we discussed in the above use case, but at the level of
individual predictions and with the end user being the action-taker.

Effective explanations can help users, combined with their domain expertise, determine when the
model is wrong and improve the overall decisions made by the combined human–ML system.
Therefore, the goal of explanations in this use case is to help the action-taker decide whether to
intervene given the model prediction and its explanations such that the performance of the decision-
making system improves (e.g., precision@k in the example above). As the end users are domain
experts, the user-interpretability requirement from the above use case holds for the explanations. This
use case has been the most commonly studied in explainable ML literature, albeit in non-policy
settings. For instance, in Ribeiro et al. (2016), the authors study whether explanations generated
from their method (LIME) can highlight the predictors that contributed to the prediction and assist
users to identify “unreasonable” predictions through a simulated-user study, Lundberg et al. (2018b)
studied the ability of explanations to assist physicians to detect hypoxemia risk during surgery, Jesus
et al. (2021) studied the ability to assist fraud analysts to detect credit card fraud with explanations of
ML predictions.

2 It is important to note that explainability is not the only factor that affects user trust. In a policy context, factors such as
(a) stability of predictions, (b) the training users have received, and (c) user involvement in the modeling process, also impacts user
trust (Ackermann et al., 2018).
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Example. In the EIS, if an explanation exists for each officer in the top-k, outlining the factors
contributing to the risk score, the internal affairs division—who decides whether to intervene—can
use those explanations to determine the reliability of the model’s recommendation to act on it or
override it.

3.4. Use Case 4: Deciding how to intervene

WhileMLmodels can help identify entities that need intervention, they often provide little to no guidance
on selecting interventions. For instance, consider a model that predicts students’ risk of not graduating
high school on time. A student might be at risk due to several reasons, such as struggling with a specific
course, bullying, transportation issues, health issues, or family obligations. Each of those reasons would
require a different type of assistive intervention. ML explanations can highlight the predictors that
contribute to the risk score and could help a teacher or other domain expert identify the reasons behind
the predicted high risk of a student.

Therefore, in this use case, the goal of the explanation is to help the action-taker decide how to intervene
and often choose among one of many possible interventions available. While typical ML explanations are
not truly causal, the factors highlighted in the explanation can provide valuable information to a domain
expert in choosing interventions.While there have not been studies on this use case for policy administration
decisions to the best of our knowledge, there have been a few efforts in other domains where researchers
have investigated using explainable ML for supporting recommending actions. For instance, Afzaal et al.
(2021) showed that explanations of student performance predictions can be used to recommend actions to
students in self-regulated learning, Albreiki (2022) studied how explanations from ML can be used to
recommend remedial actions to low-performing students with the goal of improving learning outcomes, and
Sajja et al. (2021) demonstrated the use of explainable ML predictions of consumer behavior in helping
fashion designers plan for new products.

Example. Consider an officer flagged by the EIS, with an explanation indicating that the model is
prioritizing features related to the type of dispatches the officer was assigned to in the last few months.
Upon further inspection of the data, it can be seen that the officer had been dispatched to high-stress
situations regularly. In this instance, a possible intervention is reassigning duties or putting them on low-
stress dispatches after a series of high-stress dispatches.

3.5. Use Case 5: Recourse

When individuals are negatively impacted by ML-aided decisions, providing them with a concrete set of
actionable changes that would lead to a different decision is critical. This ability of an individual to affect
model outcomes through actionable changes is called recourse (Ustun and Rudin, 2019). While recourse
has been studied independently from explainable ML (Ustun and Rudin, 2019; König et al., 2021), ML
explanations have the potential to help individuals seek recourse in public policy applications (Wachter
et al., 2018; Karimi et al., 2020, 2021b).

In this use case, there are two explanation goals: (a) helping the user understand the reasons behind the
current decision, allowing them to discover any inaccuracies in the model and/or data and dispute the
decision, and (b) helping the user identify the set of actionable changes that would lead to an improved
decision in the future. As the user in this use case is the affected individual, the explanations that indicate
the reasons behind the decisions should be mapped to a domain that is understandable by the individual.
Furthermore, the explanations should recommend feasible and actionable changes (e.g., reducing age by
10 years vs. reducing debt).

Example. In the EIS, the affected individual is the flagged officer. If the officer is provided with
explanations indicating the reasons behind the elevated risk score and actionable changes that could
reduce their risk score, they could either point to any inaccuracies or take measures themselves
(in addition to the intervention by the PD) to reduce the risk score.
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4. Current State of Explainable ML

In this section, we summarize the existing approaches in explainable ML. It is worth noting that the
intention here is not to provide an in-depth and comprehensive literature review but rather a broad view of
existing approaches and discuss how they apply to the public policy settings described above. We refer
readers to Adadi and Berrada (2018), Guidotti et al. (2018), Arya et al. (2019), Molnar (2019), and Bhatt
et al. (2020b) for more comprehensive reviews of existing work.

4.1. Existing work in explainable/interpretable ML

Existing approaches broadly fall into two categories: (a) inherently interpretable MLmodels and (b) post
hoc methods for explaining opaque ML models.3 ML explanations take two forms: (a) explaining
individual predictions (local explanation) and (b) explaining the overall behavior of the models (global
explanation). Typically, local explanations are intended to help users understandwhy the model arrived at
the given prediction for a given instance, while global explanations explain how the model generally
behaves (Plumb et al., 2018). Table 2 summarizes the existing approaches.

4.1.1. Inherently interpretable ML models
Inherently interpretable ML models are designed such that an end user could understand its decision-
making process (Lakkaraju et al., 2016; Rudin, 2019). In a policy context, an interpretable model could
allow a user to (a) understand how the model calculates a risk score (global explanation) and
(b) understand what factors contributed to the predicted risk score (local explanation) for a given instance.
Several efforts have focused on developing interpretable models for policy domains, such as those for
healthcare and criminal justice (Caruana et al., 2015; Zeng et al., 2017). These include sparse linear
models (Ustun et al., 2013; Ustun and Rudin, 2019), sparse decision trees (Hu et al., 2019), generalized
additive models (Hastie and Tibshirani, 1990; Lou et al., 2012, 2013; Caruana et al., 2015), and
interpretable decision sets (Lakkaraju et al., 2016).

Interpretable models often rely on carefully curated representations of data with meaningful input
features (Rudin, 2019), often through discretization or binary encoding (Caruana et al., 2015; Lakkaraju
et al., 2016; Ustun and Rudin, 2019). Distilling complex data spaces into a handful of optimally
discretized and meaningful features can entail extensive effort and optimization of its own. While careful
feature preparation is indispensable in any ML application, regardless of the employed ML algorithm
complexity, distilling complex and heterogeneous feature spaces typically found in policy settings into a
handful of simple features can prove to be particularly challenging.

4.1.2. Post hoc methods for explaining black-box ML models
Post hoc methods derive explanations from already trained black-box/opaque ML models. As post hoc
methods do not interfere with the model’s training process, they enable the use of complexMLmodels to
achieve explainability without the risk of sacrificing performance. However, as black-boxMLmodels are
often too complex to be explained entirely, post hoc methods typically derive an approximate explanation
(Gilpin et al., 2018; Rudin, 2019), which makes ensuring the fidelity of the explanations to the model a
key challenge in this work. Unlike inherently interpretable models, local and global explanations for
opaque complex ML models require different methods. For both types of explanations, both model-
specific and model-agnostic methods exist in the literature.

Post hoc local explanations. A local explanation in a typical public policy problem is used to
understand which factors affected the predicted risk score for an individual entity. The most common
format of local explanation is feature attribution—also known as feature importance or saliency—where
each input feature is assigned an importance score that quantifies its contribution to the model prediction

3Note that model opacity can be a reflection of either (a) the model being too complex to be comprehensible, or (b) the model
being proprietary (Rudin, 2019). In this paper, we focus on opacity created through model complexity.
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Table 2. A summary of existing approaches for explainable ML

Approach

Post hoc methods

Interpretable models

Local Global

Model-agnostic Model-specific Model-agnostic Model-specific

Sparse modelsa ✓

Decision rules and setsb ✓

Gen. additive modelsc ✓

Local surrogate modelsd ✓ ✓

Permutation (Shapley values)e ✓ ✓ ✓

Global rule extractionf ✓ ✓

Gradient-propagationg ✓

Counterfactualsh ✓ ✓

Example basedi ✓ ✓

aUstun et al. (2013, 2019), Zeng et al. (2017), Hu et al. (2019).
bLetham et al. (2015), Lakkaraju et al. (2016), Ye et al. (2019).
cHastie and Tibshirani, (1990), Lou et al. (2012), Caruana et al. (2015).
dRibeiro et al. (2016), Plumb et al. (2018).
eLundberg and Lee, (2017), Lundberg et al. (2018a, 2018b, 2020).
fTsukimoto, (2000), Ribeiro et al., (2018).
gBaehrens et al. (2010), Simonyan et al. (2013), Zeiler and Fergus, (2014), Bach et al. (2015).
hWachter et al. (2018), Ustun et al. (2019), Mothilal et al. (2020), Poyiadzi et al. (2020).
iKim et al. (2016), Koh and Liang, (2017).
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(Baehrens et al., 2010; Bhatt et al., 2020b). Several approaches exist for deriving feature importance
scores such as: fitting an interpretable surrogate model (linear classifier) around a local neighborhood of
the instance in question (Ribeiro et al., 2016; Plumb et al., 2018); feature perturbation- based methods for
approximating each feature’s importance using game-theoretic Shapely values (Lundberg and Lee, 2017;
Lundberg et al., 2018a); and gradient-based techniques (Simonyan et al., 2013; Zeiler and Fergus, 2014;
Bach et al., 2015). Among these approaches, methods such as LIME (Ribeiro et al., 2016), SHAP
(Lundberg and Lee, 2017), and SA (Zeiler and Fergus, 2014) are model-agnostic methods, whereas LRP
(Bach et al., 2015), deconvolution (Simonyan et al., 2013), and TreeSHAP (Lundberg et al., 2018b) are
model specificmethods.MAPLE (Plumb et al., 2018) stands out among thesemethods as it can act both as
an inherently interpretable model as well as a model-specific post hoc local explainer.

Other approaches such as influence functions (Koh and Liang, 2017) as well as prototypes and
criticisms (Kim et al., 2016)make use of data instances, rather than features, to provide local explanations.
A special form of example-based explanation is counterfactual explanations, which seeks to answer the
following question: “what’s the smallest change in data that would result in a different model outcome?”
(van der Waa et al., 2018; Wachter et al., 2018; Molnar, 2019; Barocas et al., 2020; Mothilal et al., 2020;
Karimi et al., 2021b). In a top-k setting, the change in outcome can be the inclusion versus exclusion of the
individual from the top-k list. Counterfactual explanations can provide insight into how to act to change
the risk score, supplementing the feature attributionmethods that explainwhy themodel arrived at the risk
score.

Post hoc global explanations.Aglobal explanation in a typical policy problemwould be a summary of
factors/patterns that are generally associatedwith high-risk scores, often expressed as a set of rules (Plumb
et al., 2018; Ribeiro et al., 2018). Global explanations should enable the users to accurately predict,
sufficiently frequently, how the model would behave in a given instance. However, deriving global
explanations of models that learn highly complex nonlinear decision boundaries is very difficult (Ribeiro
et al., 2016). As a result, the area of deriving post hoc global explanations is not as developed as local
explanation methods.

Some approaches for global explanations from black-box ML models include (a) aggregation of
local explanations (Lundberg et al., 2020), (b) global surrogate models (Frosst and Hinton, 2017), and
(c) rule extraction from trained models (Tsukimoto, 2000). A noteworthy contribution to deriving
globally faithful explanations is ANCHORS (Ribeiro et al., 2018). ANCHORS identifies feature
behavior patterns that have high precision and coverage in terms of their contribution to the model
predictions of a particular class. Methods proposed by Lundberg et al. (2020) and Ribeiro et al. (2018)
are model-agnostic and methods presented by Frosst and Hinton (2017) and Tsukimoto (2000) are
model-specific.

4.2. Capabilities of existing explainable ML methods and public policy use cases

In this section, we characterize the established capabilities of the existing explainableMLmethods classes
with respect to the use cases we identified. To rank capabilities, we use a three-point scale that is based on
the level of evidence that existingmethod evaluations demonstrate for an individual use case (see Table 3).
Highlighting the multi-faceted nature of evaluating explainable ML methods, Doshi-Velez and Kim
(2017) called for more rigorous approaches in the field and mapped these evaluation studies into a three-
tiered framework: (a) functional-grounded evaluation, where the intrinsic qualities of the explanation are
evaluated purely through algorithmic means, for example, the fidelity of the explanation to the underlying
ML model is a commonly used metric in functional-grounded evaluation, (b) human-grounded evalu-
ation, where the utility of the explanations are assessed using proxy users or simplified tasks, for example,
users from AMT performing a task such as simulating the ML model’s prediction given the data and
explanation is a commonly used human-grounded evaluation setup, and (c) application-grounded
evaluation, where the utility of explainable ML is tested at helping real users (domain experts) perform
a real-world task. The three-point scale that we present is primarily based on human-grounded and
application-grounded evaluations aswe are interested in highlighting the proven utility of explainableML
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methods in the identified use cases. Our goal for this ranking is to highlight where the established
capabilities in the field fall short of the needs of the use cases based on our research and our experience
implementing and evaluating them. We use the three broad method categories—post hoc local methods,
post hoc global methods, and inherently interpretable models—for this ranking and assign a rating to the
whole group if at least one method in the group satisfies the requirements. We define the three-point scale
as follows:

★☆☆: Methods are potentially applicable to the use case. However, we have not found any human-
grounded or application-grounded studies where any method in the class is directly evaluated on the use
case and shown to be effective.
★★☆: Some evidence of efficacy in the use case exists through evaluations on simplified/proxy
problems and proxy users (human-grounded evaluations). However, no application-grounded studies
exist where the efficacy of any method is empirically validated through a well-designed user study in a
real-world setting where real users are performing a real task.
★★★: At least one method in the group is validated with an application-grounded evaluation on the use
case with a well-designed user study, which implements the method on a real task, uses real data, presents
explanations to real users of the system, and empirically demonstrates the method’s efficacy at improving
outcomes of interest.
�: Methods in the group are not applicable to the use case.

The discussion below summarizes how existing work maps to each use case and our assessment of the
status of current work with respect to these applications. It is worth noting that inherently interpretable
models are potentially applicable to all the use cases. Therefore, we focus on the post hoc methods in the
summaries below.

4.2.1. Model debugging
Methods for both local and global post hoc explanations are potentially useful in this use case. Global
explanations could help identify errors in overall decision-making patterns (e.g., globally important
features can help identify data leakage), and local explanations can help to uncover errors in individual
predictions.

Although some recent work lends evidence for the utility of explanations in discovering model errors
(Caruana et al., 2015; Ribeiro et al., 2016; Adebayo et al., 2020; Abid et al., 2022), the efficacy of these
methods is not empirically validated through well-defined user trials in real-world applications. For
instance, Ribeiro et al. (2016) demonstrate howLIME explanations could help users identifymodel errors
through a simplified image classification task and a text classification task. While these studies show that
users performed better with the availability of explanations, we argue the fact that both classification tasks

Table 3. Capabilities of existing methods with respect to the public policy use cases

Use case Post hoc local Post hoc global Interpretable models

Model debugginga ★★☆ ★★☆ ★★☆

Trust and adoptionb ★☆☆ ★☆☆ ★☆☆

Whether to intervenec ★★☆ � ★☆☆

How to intervened ★☆☆ � ★☆☆

Recoursee ★★☆ � �
Note. Please note that the references cited in the table indicate the publications the highest rating received is based on.
aCaruana et al. (2015), Ribeiro et al. (2016).
bRibeiro et al. (2016), Ribeiro et al. (2018), Buçinca et al. (2020), Hase and Bansal, (2020), Jacovi et al. (2021).
cRibeiro et al. (2016), Lundberg and Lee, (2017), Lundberg et al. (2018a), Jesus et al. (2021).
dLou et al. (2012), Bach et al. (2015), Lakkaraju et al. (2016), Ribeiro et al. (2016), Lundberg and Lee, (2017), Plumb et al. (2018), Lundberg et al.
(2018a), Hu et al. (2019), Ustun et al. (2019).
eUstun et al. (2019), Karimi et al. (2020, 2021b, 2021a), Mothilal et al. (2020).
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were simplified by introducing errors to the model, and explanations were presented to users from AMT
oversimplifies the task and deviates the experimental setting from real-world applications, rendering the
efficacy of the method to be inconclusive.

4.2.2. Model trust and adoption
As with model debugging, both global and local explanation methods are potentially applicable.
However, as the end user is the domain expert, explanations will need to be extended beyond feature
attribution while preserving fidelity to what the model has learned. While existing methods discuss user
trust as a broad goal, to the best of our knowledge, their ability to help regulators or decision-makers
adequately trust ML models is not demonstrated through well-defined evaluations or user trials. The
experimental work on the notion of trust has relied on subjective, self-reported measures of trust in
performing a simplified task (Ribeiro et al., 2016; Weitz et al., 2019; Buçinca et al., 2020). However,
Jacovi et al. (2021) in their effort of formalizing the notion of trust inML, argue that simply asking the user
whether they trust themodel for a simple task does not evaluate the notion of trust inAI, as the users are not
assuming any risk, and they argue that relying on an AI with assumed risk is a prerequisite for trust. A
proxy task that is often employed in the evaluation of explainable ML is “forward-simulation” (Ribeiro
et al., 2016, 2018; Doshi-Velez and Kim, 2017), that is, a person predicting the ML model’s outcome
given the input and explanation. This ability to accurately anticipate the model’s output is considered a
proxy signal of trust (Hase and Bansal, 2020; Jacovi et al., 2021). However, despite these initial efforts, to
the best of our knowledge, there have not been experimental efforts that study how existing explainable
MLmethods impact the notion of trust related tomodel adoption in decision-making processes, and how it
relates to the societal outcomes of interest.

4.2.3. Improving decision-making system performance
Feature attribution-based local explanations are potentially applicable to provide the necessary informa-
tion to the user. However, feature attribution alone may not be sufficient. Users may needmore contextual
information such as How does the instance fit into the training data distribution? How does the model
behave for similar examples? And what factors did it rely on for those predictions? To that end, there have
been some efforts to present visual summaries of explanations to the user (Lundberg and Lee, 2017;
Ribeiro et al., 2018; Lundberg et al., 2018b) which could potentially be useful in this use case. Therefore,
available local explanation methods do provide a good starting point.

In contrast to the above use cases, there have been a couple of instanceswhere explainableMLmethods
were tested using an experimental setting consisting of a real task, real data, and real users. Lundberg et al.
(2018b) studied the ability of an explainable ML system to assist anesthesiologists to detect hypoxemia
risk during surgery for proactive intervention. They showed that their system—Prescience—armed with
an ML model and SHAP explanations was able to outperform the anesthesiologists in identifying real-
time hypoxemia risk. However, their experiment failed to isolate themarginal effect of the explanations by
failing to compare the performance of the ML model þ explanations to just the ML model. Therefore,
while the combined systemwith predictions and explanations outperformed the domain expert, it was not
possible to isolate whether the effects were due to the ML model prediction alone or due to the combined
system. Jesus et al. (2021) studied the impact of presenting ML explanations from three local post hoc
explainable ML methods to fraud analysts for assisting fraud detection in credit card transactions. While
they organize the experiment to isolate the incremental impact of explanations by running appropriate
experiment arms, they make several simplifying assumptions in their experimental design. For instance,
they resample the data in their experiment to reflect a 50% rate, whereas, in the real-world context, fraud is
a significantly rarer event. Furthermore, they measure the effectiveness of decisions using confusion
matrix-based metrics, assuming that all transactions are of the same value, an assumption that is not valid
in a real-world business setting. Therefore, while Jesus et al. (2021) have taken steps in the right direction,
we argue that their experimental setup still does not reflect the deployment context adequately.
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Despite the existence of user studies conducted with real data and real users, the significant limitations
of these studies to date mean they fail to provide conclusive evidence that existing explanation methods
are effective in assisting humans to make improved decisions in this use case.

4.2.4. How to intervene
As the intervention determinations are often individualized, local explanation methods are poten-
tially applicable for generating the reasons behind the risk score. As with the above use case, users
may needmore contextual information to supplement the local explanations such as: how the instance
fits into the training data distribution, and intervention history for similar—w.r.t. data and w.r.t.
explanation—individuals. To the best of our knowledge, there is a lack of evidence in the existing
body of work on the efficacy of using these local explanation methods for informing intervention
selection.

4.2.5. Recourse
Feature attribution-based local explanations are potentially applicable for deriving reasons behind the
decision, and counterfactual explanations can be useful in explaining how to improve the outcomes.
The focus of algorithmic recourse work has been on using counterfactual explanations. As simple
counterfactual explanations do not guarantee explanations with actionable changes, there has been a
range of approaches proposed for deriving counterfactual explanations that are diverse, sparse,
plausible, and actionable (Ustun et al., 2019; Karimi et al., 2020, 2021b; Mothilal et al., 2020; Poyiadzi
et al., 2020; Upadhyay et al., 2021). Karimi and colleagues provide a survey of methods for algorithmic
recourse including in Karimi et al. (2021a). Evaluating methodologies effectively has been a challenge
for algorithmic recourse methods and Karimi and colleagues call for better benchmarks (Karimi et al.,
2021a). Therefore, existing method evaluation largely relies on theoretical guarantees and demonstra-
tions using popular experimental datasets such as adult-income, German credit lending, and COMPAS.
While those datasets have some connection to the real world, they are not reflective of datasets that most
real-world organizations in policy settings have, especially in terms of richness, complexity, and
spatiotemporal patterns. Studies that empirically validate the efficacy of these methods are still lacking.
Since there are no user studies for any class of models, we rate post hoc local methods with one star.

5. Gaps and Proposed Research Directions

In this section, we use themapping betweenmethods and use cases to identify gaps in existing explainable
ML research compared to the needs of real-world public policy problems and propose a research agenda to
fill those gaps. We believe that bridging these research gaps is critical for applyingML to social problems
and if we are to safely deploy ML systems that lead to effective policy decisions and have a positive and
lasting impact on society.

5.1. Gap 1: Capabilities of existing methods not adequately evaluated in real-world contexts

The most pronounced gap between explainable ML research and the policy use cases is the lack of
evidence ofmethod efficacy established through rigorous application-grounded evaluation studies (in our
review, we failed to find any study that met the criteria to achieve a three-star rating in Table 3). The most
common approach to evaluating explainable ML has been to assess the quality of the explanation (the
artifact produced by the method) through functional-grounded evaluations. Almost all user studies take a
human-grounded approach where nonexpert users (e.g., users from AMT or users in research settings)
perform simplified/proxy tasks such as “forward simulation.”

A growing body of work that empirically demonstrates the limitations of the functional-grounded and
human-grounded approaches has begun to appear recently. Hase and Bansal (2020) describe an experi-
ment where users were asked to perform the task of “forward simulation” and subjectively evaluate the
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quality of explanations (measuring a concept of “simulatability”). Although simulatability seems unlikely
to reflect real-world use of explanations, it is notable that the authors found essentially no relationship
between the human-grounded subjective assessments of explanation quality and how users performed on
this task. Similarly, Buçinca et al. (2020) compared three proposed measures of explainable ML:
subjective user assessments, user performance on a proxy task (predicting model scores based on
explanations, similar to the study by Hase and Bansal), and performance on a decision-making task
(assessing the nutritional content of different plates of food). Their results indicated that performance on
neither the subjective assessments nor the proxy task generalized to performance on the actual decision-
making task, highlighting the risks of relying too heavily on these simplified evaluations. We argue that
functional-grounded and human-grounded evaluations are not sufficient to establish the utility of
explainableMLmethods in domains such as public policy whereML systems learn from highly complex,
heterogeneous, and messy data spaces and assist consequential decisions. In this work, we are interested
in evaluating explainable ML methods on their ability to improve a societal outcome of interest.
Functional-grounded metrics such as fidelity do not guarantee the usefulness of explanations and
designing proxy tasks for human-grounded evaluations that capture the nuances and complexities of
public policy problems can be challenging.

5.1.1. Guidelines for adequate evaluation of explainable ML in policy contexts
Given the limitations of functional-grounded and human-grounded approaches, evaluation studies of ML
explanations in policy contexts should focus on application-grounded approaches. Doshi-Velez and Kim
(2017) define an application-grounded evaluation as a study where domain experts perform the intended
task.We further extend those requirements and argue that an adequate application-grounded evaluation of
an explainable MLmethod in a policy context cannot exist in the absence of four key elements: (a) A real
policy task and related metrics, (b) users who perform the task in the real world, (c) real-world data related
to the task that captures the complexities and nuances of the task, and (d) a robust inference strategy that
allows conclusions on the incremental impact of explanations. Unfortunately, the relatively small number
of application-grounded explainable ML studies that incorporated some aspects of practical evaluation
have consistently lacked at least one (and in many cases multiple) of the elements necessary to offer
conclusive evidence of real-world efficacy.We elaborate on each of these elements and how existingwork
violates those requirements below:

Defining the task. The task here entails the decision a user would make, the goals of the decision-making
process, and the metrics that evaluate its success. It is imperative to pick tasks that align with a well-
defined policy/operational goal and metrics that directly measure the success of the task, going beyond
general-purpose metrics such as ROC-AUC, accuracy, and F1-score. For instance, consider the study
conducted by Jesus et al. (2021) in a credit-card fraud detection context. While the authors conduct the
study with professional fraud analysts performing fraud detection on real-world credit card transactions,
they make a simplifying assumption on selecting metrics and choose decision accuracy and other
confusion matrix-based metrics. In the context of e-commerce transactions, we argue that the goal is to
maximize revenue/profit, and the metric should factor in the transaction value and the relative costs of the
two types of errors. Choosing accuracy as the metric ignores both these nuances and thus violates the first
requirement of a study. In Poursabzi-Sangdeh et al. (2021), the authors used real-world data and a large
cohort of real users. However, they choose to use the task of real estate valuation, and how it relates to a
decision and an outcome of interest and the utility of explanations in achieving that goal was not
established.

Recruiting users. Although their time is often scarce, the domain expert users who act on model outputs
must be involved in the evaluation process to ensure it reflects the actual deployment scenario. As the
interaction between model predictions, explanations, and users’ domain expertise will dictate the
performance of the system, substituting inexperienced users (for instance, from AMT) provides little
insight into how well explanations will perform in practice and the results generated (Lou et al., 2013;
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Lundberg and Lee, 2017; Lundberg et al., 2018a; Hu et al., 2019) may not correlate with results in actual
deployment with real users. We argue that even if a study implements explainable ML methods on real-
world problems and data that capture the nuances and complexities of the domain, the absence of
evaluation with domain experts leads to uncertainty of method efficacy. For instance, Caruana et al.
(2015) and Zeng et al. (2017) describe evaluations of their inherently interpretable models on a real
problemwith a clear goal and real-world data. However, both studies failed to conduct studies with actual
users of the system to evaluate the incremental utility of explanations in terms of performance improve-
ment in the task.

Data.To capture the nuances and characteristics of applyingML to a policy area in practice, the use of data
from the problem domain is essential. This is particularly important with evaluating explainable ML
methods, as simplified or synthetic datasets might provide an overly optimistic evaluation of their ability
to extract meaningful information. Unfortunately, most of the work in this area fails to meet these criteria,
focusing only on benchmark ML problems and datasets (e.g., image classification on MNIST data,
newsgroups data; Bach et al., 2015; Ribeiro et al., 2016, 2018; Shrikumar et al., 2017). While benchmark
problems play a crucial role in explainable ML method development and refinement, these problems are
far removed from deployment contexts encountered in public policy settings and thus fail to provide
convincing evidence of method effectiveness in informing the decisions of domain experts. It is important
to note that even in studies that do use data from the problem domain, seemingly trivial simplifying
assumptions can violate this requirement. For instance, in Jesus et al. (2021), the authors adjust the class
distribution to artificially create a 50–50 distribution to remove the “class imbalance” problem, whereas
the actual fraud rate is around 15%. This simplification can impact the expected prior beliefs of fraud
analysts and the findings of the study.

Defining the inference strategy. In addition to setting up problems, data, and users consistent with the
deployment context, one aspect where existing studies have faltered is the design of the inference strategy
of the experiment. It is essential to design the inference strategy to support conclusions on the incremental
impact of the explanations in the context. A robust inference strategy entails evaluating the appropriate
hypotheses, appropriate control/treatment groups, sufficient sample sizes to preserve statistical power,
and analytical methodologies that capture the uncertainties in data. Consider the study conducted by
Lundberg et al. (2018b), where the authors evaluate an explainable ML system on its ability to support
anesthesiologists detect hypoxemia during surgeries. The authors implemented the method on the actual
task, recruited domain expert users, and used historical data captured during surgeries. Unfortunately, the
study fails to evaluate the incremental impact of the explainable ML method as it does not evaluate the
appropriate hypotheses. The authors compare the performance between users making decisions only
using data and users making decisions with the help of data, ML prediction, and explanation. The study
concludes that users perform better when they have access to ML predictions and explanations compared
to only having access to the data. However, the authors fail to compare the performance of users with
access to data and ML prediction (no explanations) to the user performance with all three pieces of
information. We argue that this is an essential component of an experimental design aimed at evaluating
the incremental impact of explainable ML, and this oversight prevents us from attributing that perform-
ance increment to the explanations.

As we can see, even the relatively few application-grounded explainable ML studies that have
incorporated some aspects of practical evaluation have consistently lacked at least one (and in some
cases multiple) of the elements necessary to offer conclusive evidence of real-world efficacy (see
Table 4). This gap is particularly acute in the context of public policy problems, given the charac-
teristics (see Section 2) that set them apart from ML problems we encounter in research settings.
Therefore, we argue that for implementing explainable ML systems in policy settings, there should be
concerted efforts from ML and policy practitioners to conduct well-designed application-grounded
evaluation studies.
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5.1.2. An example evaluation study design that satisfies the desiderata
To make the desiderata more concrete, this section provides an overview of an experimental design for
evaluating an explainableMLmethod in a policy context that implements the four necessary elements we
presented. While this example describes a setting that uses a post hoc explainable ML method, the same
setup could be used to evaluate an inherently explainable model. The policy problem presented here is
similar to the one discussed by Bauman et al. (2018).

The policy problem.TheMental Health Center (MHC) of amid-sized suburban county is establishing a
program to conduct proactive mental health outreach to individuals at risk of criminal justice involvement
due to unmet behavioral health needs. The MHC has the resources to perform outreach and assist about
100 individuals each calendar month. The broad policy goal is to minimize repeated criminal justice
involvement among county residents, and the specific goal of the human–ML collaborative systemwould
be to maximize the efficient use of county resources.4

MLmodel. In order to prioritize individuals for outreach, aML-based predictivemodel is used. Among
the county residents who were released from jail in the last 2 years, the model predicts the risk of each
individual being booked into jail within the next 12 months and maps them into an ordinal scale.

Users: Mental health clinicians of the Mobile Crisis Response Team (MCRT) will act on the
predictions of theMLmodel by conducting outreach and offering appropriate services to these individuals
based on their needs.

Task andmetrics.Given an individual that is deemed to be at risk of future criminal justice involvement
(by the ML model), the MCRT clinician is tasked with verifying the risk and selecting them for mental
health outreach. In different experimental conditions, the clinicians would have different information
pieces at their disposal to make this decision. Since the goal is maximizing efficiency, the objective is to
correctly identify peoplewho are actually at risk. Therefore, themetricwe should be optimizing for should
capture how accurate theMCRTclinicians are at identifying the individuals for outreach, that is, given that
an individual is selected for outreach, maximizing the probability that they are actually at risk of being
booked into jail the following year, which can be captured by maximizing the positive predictive value
(PPV)/precision.

Data: The ML model learns from historical data from the county jail, emergency medical data, and
behavioral health service involvement data at the individual level and makes predictions about future
criminal justice involvement. The study uses historical data to train and evaluate the model as well as to
evaluate the task performance of the MCRT clinicians.

Explainable ML method. The related use case for the task is Use Case No. 03 (deciding whether to
intervene) and we use a feature attribution-based post hoc model agnostic explanation method for the
evaluation (e.g., SHAP and LIME).

Table 4. Analyzing the existing handful of application-grounded evaluation studies with respect to the
proposed desiderata

Study

Real task

Real data Real users InferenceDecision Metrics

Jesus et al. (2021) ✓ � � ✓ ✓

Lundberg et al. (2018b) ✓ ✓ ✓ ✓ �
Poursabzi-Sangdeh et al. (2021) � � ✓ ✓ ✓

Caruana et al. (2015) ✓ ✓ ✓ � �
Zeng et al. (2017) ✓ ✓ ✓ � �
Note. Please note that we include studies that at least satisfies one requirement.

4 It is worth noting that in a typical project, the efficiency goals are often coupledwith an equity goal, but for simplicity, we narrow
the scope of this example down to focus on efficient resource allocation.
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Inference strategy. In this trial, we are interested in learning whether the explainable ML method is
effective in helpingMCRTclinicians correctly pick individuals formental health outreach.At aminimum,
the trial should evaluate the following hypotheses:

1. MCRT clinicians select individuals for outreach at a higher precision when presented with ML
predictions than when they only have access to data.

2. MCRT clinicians select individuals for outreach at a higher precision when they have access to
explanations of ML predictions than when they have access only to ML predictions.

In order to evaluate these hypotheses, we need to create three experimental groups/arms where the
clinicians have access to different levels of information:

1. Clinicians have access only to the data of the individuals (Group 1).
2. Clinicians have access to the data, and the predicted risk score, for example, a calibrated probability

(Group 2).
3. Clinicians have access to the data, predicted risk score, and explanations generated by the post hoc

method for the prediction (Group 3).

In the ideal case, we would need a large enough user base where the unit of randomization could be the
clinicians, and we could randomly assign clinicians to the three groups. However, in policy applications,
having access to a domain expert user base of significant size to enable sufficient statistical power is rare.
In that case, we could design the trial in stages like Jesus et al. (2021) did and randomize at the level of data
instances (an individual at a specific point in time). While this limits the hypotheses we can evaluate (e.g.,
how clinicians with different levels of experience use and interact with ML explanations), we can still
measure the efficacy of an explanation method in the use case. With this setup, we can compare Group
2 against Group 1 to evaluate the first hypothesis and similarly compare Group 3 against Group 2 for the
second.

5.1.3. Importance of evaluating the performance–explainability trade-off (if any) for inherently
interpretable models
In addition to evaluating the effectiveness of ML explanations in helping domain experts in public policy
settings, it is important to assess the viability of inherently interpretable models in terms of predictive
performance. As inherently interpretable models rely on carefully curated input features, exploring the
trade-off between performance and scalability in practice is crucial to ascertain their broad applicability.
To that end, the models should be implemented on several real policy problems, evaluating: (a) the trade-
off between feature preparation efforts and performance and (b) their ability to generalize to future data
under strong temporal dependencies.

The prospect of inherently interpretable ML models that are intelligible without sacrificing predictive
performance certainly holds considerable appeal. However, their current implementations are limited to a
handful of practical contexts. To understand potential trade-offs in practice, we must rigorously test these
models against more opaque models across problem domains. Even if there are performance limitations,
there may be critical applications where the intelligibility of the model cannot be compromised and some
applications where there could be built-in guardrails to protect against unintended harm. Understanding
the limitations of methods through experimentation will help practitioners make more informed imple-
mentation decisions and support the complete spectrum of use cases.

5.2. Gap 2: Existing methods are not explicitly designed for specific use cases

As discussed above, existing methods are developed with loosely defined or generic explainability goals
(e.g., transparency) and without well-defined context-specific use cases. As a result, methods are
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developed without understanding the specific requirements of a given domain, use case, or user base,
resulting in a lack of adoption and suboptimal outcomes.

While several existing methods may be applicable for each use case, their effectiveness in real-world
applications is not yet well-established, meaning this potential applicability may fail to result in practical
impact. As more methods are rigorously evaluated in practical, applied settings as suggested above, gaps
in their ability to meet the needs of these use cases may become evident. For instance, model-agnostic
methods such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) are capable of
extracting input feature importance scores for individual predictions from otherwise opaque models.
However, it is unclear whether they can address needs such as generating explanations that are well-
contextualized and truly interpretable by less technical users without sacrificing fidelity (e.g., to help a
domain expert identify unreliable model predictions or an affected individual seek recourse).

6. Conclusion

Despite the development of a wide array of explainable ML methods, their efficacy in improving real-
world decision-making systems is yet to be sufficiently explored. In this article, we sought to characterize
and understand this gap in the present literature in hopes that this effort can help structure future
evaluations of these methods to better address their practical utility. First, we identified the primary set
of use cases for ML model explanations in the ML-aided public policy decision-making pipeline:
(a) model debugging, (b) regulator trust and model adoption, (c) deciding whether to intervene,
(d) deciding how to intervene, and (e) recourse. For each use case, we defined the goals of an ML
explanation and the intended end user. Then, we summarized the existing approaches in explainable ML
and identified the degree to which this work addresses the needs of the identified use cases. We observed
that, while the existing approaches are potentially applicable to the use cases, their utility has not been
thoroughly validated for any of the use cases through well-designed empirical user studies.

Two main gaps were evident in the design and evaluation of existing work: (a) methods are not
sufficiently evaluated in real-world contexts and (b) they are not designed and developed with target use
cases and well-defined explainability goals in mind. In response to these gaps, we proposed several
research directions to systematically evaluate the existing methods with problems with real policy goals,
real-world data, and domain experts.

A key aim of this article is to connect the ML research community that develops explainable ML
methods to the problems and needs of the public policy and social good domains. As computer scientists
who develop and apply ML algorithms to social/policy problems in collaboration with government
agencies and nonprofits, we are ideally and uniquely positioned to understand both the existing body of
work in explainable ML and the explainability needs of the domains such as public health, education,
criminal justice, and economic development. Two main factors motivated us to compile this discussion:
(a) despite the existence of a large body of methodological work in explainable ML, we failed to identify
methods that we could directly apply to the problems we were tackling in the real world and (b) the
frequent conversations initiated by our colleagues in the ML research community on how their methods
could be better suited and developed for real-world ML problems.

We strongly believe that explainableMLmethods will prove to be a critical component ofML systems
that are designed for policy and societal problems, where high-stakes decisions with significant impacts
on people’s lives create a moral imperative for these systems to perform well across all five use cases we
discuss. As such, there is considerable potential for explainable ML to have a broad positive impact on
society through these applications, but it will only have this impact if we design and develop these
methods for explicitly defined use cases and evaluate them in a way that demonstrates their effectiveness
on those use cases. Therefore, the goal of this article was not to develop new algorithms, nor was it to
conduct a thorough survey of explainable ML work (since there are already several excellent articles on
that topic). Rather, our goal was to take the necessary first steps to bridge the gap betweenmethodological
work and real-world needs.We hope that this discussionwill help theML research community collaborate
with the Policy and HCI communities to ensure that existing and newly proposed explainable ML
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methods are well-suited to meet the needs of the end-users to give them the confidence to implement and
deploy them in systems that can benefit society.
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