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ORTHOGONALITY IN NORMED SPACES

J.R. PARTINGTON

Some properties which different definitions or orthogonality in

a normed space can possess are considered. It is shown that
orthogonality can be defined on any separable space with many

of the properties possessed by the usual orthogonality in an
inner-product space, but that the possession of a further property

forces the space to be isomorphic to a Euclidean space.

The orthogonality of two vectors in a Euclidean normed space can be
characterized in numerous different ways. Several of these definitions of
orthogonality have been applied in general normed spaces, giving, in
general, distinct notions of orthogonality each with various convenient
properties. However, no obviously "best possible" notion of orthogonality
has been produced so far: it is our intention here to investigate what
properties orthogonality relations may have in a general normed space which

is not necessarily Euclidean. All our normed spaces will be over the reals.

The most commonly used definition of orthogonality is Birkhoff-James
orthogonality: if x and y are elements of a normed space X , we say
that x Ly (BJ) if and only if lx + ayl 2 Izl for all scalars A (see
Diestel [2].)

A more recent definition is due to Diminnie [3]}: x L y (D) if and
only if

flxy flyyy | —
sup{lg(x) g :fr g, X%, Ifl, Igh <1} = Nzl fyl
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Two older notions given by James [5] are Isosceles Orthogonality:
£ Ly (I) if and only if Hlx + yl = lx - yl , and Pythagorean Orthogonality:
€ Ly (P) if and only if lzd+ byl? = iz - 412

We shall be interested in the following properties that a definition
of orthogonality may possess in a normed linear space, properties that are

always possessed by the usual notion of orthogonality in a Euclidean space.

(1) (Nondegeneracy) : If xLa , then =0 ;

(2) (Symmetry): If Ly, then y L & ;

(3) (Homogeneity): If Ly then ax 1 byla,beR) ;

(4) ((Right-)Additivity): If x i1ty and x 1L 3 then x L (y+z) ;

(51 (Resolvability): If  , y € X then there exists a € R such

that z 1 (ax+y) ;
(6) (Continuity): 1f z, > ,Y, >y ,ad & Ly forall n,
then x L y ;

It has been observed [3] that if an orthogonality relation L is
nondegenerate, homogeneous and additive, then if & # O the number a in
(5) is unique when it exists. If an orthogonality is homogeneous and
additive, then the set of vectors y such that x L y forms a linear
subspace. Moreover, for an orthogonality satisfying (1), (3), (4) and (5),

given 2z € X of norm 1 we may define linear functional f% € X* , by

fx(y)=a,where y=ar+2z and x L 2

Thus Ker(f%) = {z:xL2} and f&(x) =1 . One may naturally extend
the definition to define f}x = Af; for general scalars )\ , when
lxl = 1, since fo = -f& already.

LEMMA 1. If L <s an orthogonality relation satisfying (L), (3),
(4), (5) and (6), and Nzl =1, then fp 18 continuous and the map taking
x to fx i8 norm-weak* continuous on the unit sphere of X .

Proof. 1If f; is discontinuous, then there exist vectors (yn) of

norm 1 with y, = Anx +ax, where the An are scalars tending to infinity

in modulus and x L z, for each #n . But that implies that
x L xn/xn =Y,/\, -%>-x . Hence x L -z , a contradiction since
x # 0 .
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Suppose now that z, > x and f; y) = a, . where & and each x,
n

have norm 1. Then x, 1 (y—anxn) for each n . 1If (an) (or a

subsequence) tend to infinity in modulus, then we have xn 1 y/an -z,

and hence, letting 7 + ® and using (6), that x L - £ , a contradiction.
If a, accumulates at a , we have z,ly-ax, , so that z 1y - ax

and f&(y) = ; thus, since (an) can only accumulate at one point

the result follows and a > a = j;(y) .

Although BJ-orthogonality and D-orthogonality satisfy several of the
conditions above, one cannot expect all to be satisfied in general, as the

following result (given by Diminnie [3]) shows.

PROPOSITION 2. Let X be a space of dimension at least 3. Then the
following conditions are equivalent.
(1) X 1s an imner-product space;
(ii) BJ-orthogonality is symmetric;
(iii) BJ-orthogonality is equivalent to p-orthogonality;

(iv)  D-orthogonality is additive.

Despite the above result, it is often still possible to give a

definition of orthogonality satisfying all the above conditions.

THEOREM 3. In any Barach space X with a countable total sequence
(f,) € X* it is possible to define an orthogonality relation

satisfying (1), ..., (6) above.
Proof. We may assume, without loss of generality, that each fh has
norm 1. The orthogonality is defined by saying that x 1 y if and only if

I f,@f, @ m =0 .

Conditions (1) to (6) are easily verified for this relation.

If X 1is separable, a result of Ovsepian and Pelczynski [9] (see also
Lindenstrauss and Tzafriri [§]) states that X has a bounded fundamental
and total biorthogonal sequence (xn, fh) . In this case the orthogonality
given by the above formula has the additional property that the (xn) are
mutually orthogonal. It is not clear whether one can define an orthogonality

relation with the above properties in a general Banach space. However, as
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Diminnie has observed, the existence of a continuous Euclidean norm “-ﬂe
on X 1is another sufficient condition.

Given that each f; is bounded and the map taking & to f& is norm-
weak* continuous when an orthogonality relation satisfies (1), ..., (6), one

might hope that there would be a uniform bound on the norm of f; as

ranges over the unit sphere. Thus 1 might satisfy
(7) (Boundedness) : There is a constant C > 0 such that if 2 L 2

then lax+zl > lxl whenever |al 2C .

-If 1 satisfies (1), ..., (6) then boundedness is equivalent to the
following condition.

(7'): There is a constant C > 0 such that “f;“ < C whenever lzl =1 .,

Both (BJ)-orthogonality and D-orthogonality satisfy (7), although
neither satisfies all of the earlier conditions, in general. Unfortunately,
the addition of (7) to conditions (1) to (6). restricts the underlying normed

space dramatically.

THEOREM 4. If X <& a Banach space and 1 an orthogonality relation

satisfying (1), ..., (7), then X is isomorphic to an inner-product space.

Proof. wWe shall adapt the proof of Theorem 2 of James [6], which
states that if BJ-orthogonality is left additive and dim X 2 3 , then X

is an inner-product space.

et Y be a finite-dimensional subspace of X with a normalized

basis %y,...,& ~and let M =TXer f n ... nKer f . Any element of Y
n %y x,

is orthogonal to the whole of M and given x ¢ X we may write

x =P(x) + 3 with P(x) e Y and z ¢ M . Condition (7) implies that
Ic(P(x)+xz)ll 2 IP(x)l and hence [P(x)] < Clxl . Therefore every finite-
dimensional subspace of X is uniformly complemented in X . It now
follows from results of Lindenstrauss and Tzafriri [7] that X is

isomorphic to an inner-product space.

Another natural condition to impose turns out to be even stronger and
implies that X is automatically an inner-product space.
(8) (Strong symmetry): 1f lxl =yl =1 and y-ax L x , for a scalar q,
then - ay Ly .
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conditions (1) to (5) together with (8) imply that f&(y) = fé(x) for
all x and y .
THEOREM 5. For an orthogonality relation 1L satisfying (1) to (5) the
following conditions are equivalent.
(i) 1 is strongly symmetric;
(ii) the map taking x to f, is linear;
(iii) X <s isometriecally an inner-product space.
Proof. (i) = (ii): since (i) implies that f&(y) = jy(x) and the map

taking x to fy(x) is linear, the result follows.

(ii) = (iii): Let x and y be any two nonzerc vectors. Then

20 .2
frx+sy (rx) = v lxl® + r'sf'y (x)
and
2 2
fm+sy(sy) = rsf ) + s"lIyl
2 2 2 2 2
Therefore lrz+syl” = r“lzl“ + g°lyl” + rs (fx(y)+fy(x)) . Hence the

intersection of the unit sphere of x with any two-dimensional subspace is
an ellipse, which implies that X 1is isometrically an inner-product space
(see, for example, Day [11]).
(iii) = (i): immediate.
The equivalence of conditions (i) and (iii) is also contained in
Lemma 1.4 of Freese, Diminnie and Andalafte [4], phrased theré in terms of

a function vl(x,y) , which equals -fx(y) when ol =10yl =1 .|
To conclude, we shall characterize all possible orthogonality
relations on le satisfying (1) to (6) (and hence automatically (7)).

THEOREM 6. Let L be an orthogonality relation on R° satisfying
conditions (1) to (7). Then there exists a number t , 0 <t <7, and a
monotonic funetion f:[0, t]1 > [t, w] such that two nonzero vectors
x = r{cos 8, sin 8) and y = s(cos ¢, sin ¢) (r,seR, 0 < B, ¢ < ©) are
orthogonal if and only if either

(i) 0s0<t and f(8) =¢ , or

(i1) 0<¢ <t and f(4) =6 .

Moreover every such function gives a well-defined orthogonality.
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Proof. 1ILet us write e, = (cos o, sin a) . Clearly the orthogonality

relation is determined by which ea are orthogonal, For each 0 < x <7

there is an s ¢ [0, 7) such that e, e, . et t e [0, 1) be such

1 et . Then the function sg(x) (mod ) is continuous on [0, 7)

and sg(x) # & for all x . Hence, since g(x) 0 or 7w as x +t and

that eo

g(x) 1is also one-one on [0, m) , we have that s(x) is monotonically
increasing on [0, ¢) , mapping it to [#, w) , and then maps [¢, w]
monotonically onto [0,f] , since &(s(x)) = & . The definition of f is
now apparent, and the result follows. Conversely, given f , it is clear

how to define 1 satisfying (1), ..., (7).
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