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Kinetic simulations of relativistic gases and plasmas are critical for understanding diverse
astrophysical and terrestrial systems, but the accurate construction of the relativistic
Maxwellian, the Maxwell-Jiittner distribution, on a discrete simulation grid is challeng-
ing. Difficulties arise from the finite velocity bounds of the domain, which may not
capture the entire distribution function, as well as errors introduced by projecting the
function onto a discrete grid. Here, we present a novel scheme for iteratively correct-
ing the moments of the projected distribution applicable to all grid-based discretizations
of the relativistic kinetic equation. In addition, we describe how to compute the needed
nonlinear quantities, such as Lorentz boost factors, in a discontinuous Galerkin scheme
through a combination of numerical quadrature and weak operations. The resulting
method accurately captures the distribution function and ensures that the moments match
the desired values to machine precision.
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1. Introduction

The Maxwell-Jiittner distribution, originally described by Jiittner (1911), is the rel-
ativistic equivalent to the classical Maxwellian distribution. It is the local maximum
entropy configuration of a relativistic system of particles and plays the same role
in relativistic thermodynamics that the Maxwellian does in non-relativistic thermo-
dynamics. These distributions are central to kinetic modeling, in which the particle
distribution function evolves using the Boltzmann, or Vlasov, equation. In these
calculations, while the distribution function can be far from local thermodynamic
equilibrium, the Maxwell-Jiittner distribution is used for projecting initial condi-
tions, computing approximate collision operators, and for computing differences
from local thermodynamic equilibrium for studying and deriving reduced models.

The use of the Maxwell-Jiittner distribution in the particle-in-cell (PIC) framework
is well understood and has been detailed, including addressing issues related to
particle loading, by Zenitani (2015). A growing application of this research is the sim-
ulation of high-energy, extreme plasmas, such as relativistic magnetic reconnection
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(Sironi & Spitkovsky 2014; Guo et al. 2014), pulsar magnetospheres (Kuzichev
et al. 2019; Philippov & Kramer 2022) and compact objects in curved spacetime
(Parfrey, Philippov & Cerutti 2019; Crinquand et al. 2020; Galishnikova et al.
2023). The recent development of ultra-high intensity laser sources has further moti-
vated new tools for modeling laser—plasma interactions and fundamental instabilities
(Derouillat et al. 2018; Grassi et al. 2017).

Complementary to PIC, kinetic continuum methods are particularly well suited
to handle cases where finely detailed resolution in phase space is required to cap-
ture turbulence, heat transport and nonlinearly saturated states — see Nevins et al.
(2005) and Juno et al. (2020). Traditionally, the trade-off for the increased accu-
racy of continuum methods has been higher computation cost. However, recent
developments in improved algorithms such as discontinuous Galerkin (DG) and
increases in parallel computing power, particularly with GPUs, have made contin-
uum simulations feasible. Kinetic continuum methods are now seeing newfound
broad applicability, for example in codes modeling astrophysical problems such as
Vlasiator (Palmroth et al. 2018), Hybrid Vlasov-Maxwell (Valentini et al.
2007), SpectralPlasmaSolver (Vencels ef al. 2016) and Gkeyl1l (Juno et al.
2018). However, to extend these models to relativistic kinetic systems, we need
a Maxwell-Jiittner projection algorithm compatible with high-order schemes and
maintains the underlying conservation laws.

The primary challenge in maintaining conservation laws during the projection of
the Maxwell-Jiittner distribution onto the finite phase-space grid arises from the
finite momentum-space extents. These inevitably truncate the distribution function
at some finite momentum, thus resulting in a loss of the distribution beyond the
maximum momentum represented by the grid. Secondly, the projection onto the
grid may alter the moments of the distribution. Without proper moment matching,
not only will initial conditions not match the desired macroscopic quantities such as
density and temperature, but operators (like reduced collision operators based on
the Krook model) will have incorrect moments used to compute them. Finally, the
choice of the DG method introduces further complications in determining how to
accurately compute nonlinear quantities in the DG basis functions so that we can
obtain the desired high-order accuracy from the choice of numerical method.

Here, we develop a novel algorithm that preserves the moments of the distribution
and ensures the accuracy of the discretely projected distribution function. While the
procedure we discuss is in the context of DG methods, only §§ 3.1 and 3.2 are DG-
specific. The resulting algorithm can be utilized in any continuum kinetic scheme.

The paper is organized as follows. Section 2 describes the Maxwell-Jiittner distri-
bution, the moments of arbitrary relativistic distributions, and how to recover the
Maxwell-Jiittner moments from these quantities. Specifically, we show how to arrive
at the fluid-stationary frame quantities needed to project the Maxwell-Jiittner from
a laboratory frame simulation. Section 3 covers the details of the calculations used
for DG quantities necessary to project the function and how to initialize the distri-
bution with the proper moments using an iterative scheme. Section 4 demonstrates
the accuracy of the projection routine, as well as explores an application of it in the
relativistic Bhatnagar-Gross-Krook (BGK) operator. Lastly, we offer concluding
remarks in § 5.

2. Relativistic moments and the Maxwell-Jiittner distribution

The derivation of the Maxwell-Jiittner (MJ) in arbitrary dimensional form is
presented in Chacon-Acosta, Dagdug & Morales-Tecotl (2010). The result, presented
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in the fluid-stationary frame denoted with primed quantities, is written in the
normalized form for a d-dimensional momentum space as

LMJ / n —)’(P’)
f (P ) 2(27-[)((d—l)/2) (mo)dg((d_l)/z)K((d+1)/2)(1/9) exp ( (2] ) ( )

We adopt natural units c =k =1, and define 6 =T /my, y(p')=+/1+ p'- p'/m}
and K,(1/6) as the modified Bessel function of the second kind evaluated at 1/6.
The distribution is described in terms of the fluid-stationary frame quantities, specif-
ically the number density, n, and temperature, 7. The momentum measured in this,
the fluid-stationary frame, is p’. Finally, the particle rest mass, m,, is left unspecified
for simulations with multiple species.

The distribution function, (2.1), is invariant under Lorentz transformation. This
allows us to write the distribution function in the frame observed from the simu-
lation perspective, labeled the laboratory frame. Variables in the laboratory frame
will be represented with unprimed quantities. Transforming the distribution to the
laboratory frame requires Lorentz transforming unprimed to primed quantities. For
the MJ distribution, the only quantity that requires transformation is the y(p’) in
the exponential.

Defining the fluid-stationary frame as moving with velocity v, relative to the
laboratory frame, the laboratory frame equation for the MJ distribution becomes

n
2(2m) =02 (mg) 10D K (412 (1/6)

<—F(V(P) — U 'P/mo))
X exXp 5 .

Mp)y= " (p)=

(2.2)

Here, n, and T remain defined as fluid-stationary frame quantities for the density
and the temperature. In addition, we define the Lorentz boost factor I' =1//1 — v},
where v; = v, - v, henceforth called the gamma factor, between the fluid-stationary
and the laboratory frames. Note the laboratory frame is the same as the simulation
frame and these terms are often used interchangeably. In the transformation of y

Y =Ty —v,+p/my), (2.3)

we have suppressed the (p) dependence for notational convenience because it is
implied. This transform will be utilized again when computing fluid-stationary frame
moments, n and T, while the distribution function is in the laboratory frame.

To simplify these equations, we also define the dimensionless quantity, u =yv =
p/my, which replaces all instances of p. We will refer to u as the momentum, since
it is p divided by a constant rest mass m,. Additional normalization of the spatial
lengths, x, to a code unit scale so x is also dimensionless, and consequently the
distribution function f(u) is dimensionless as well.

The MJ distribution requires fluid-stationary moments, n, v, and T, to project the
function onto the grid. These moments can either be specified, such as those given
in initial conditions, or computed from an existing arbitrary distribution f(u). In the
latter case, we calculate the moments from within the laboratory frame where the
distribution function exists. The next section provides the equations for computing
the fluid-stationary moments.
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2.1. Moments

The MJ distribution requires the fluid-stationary moments n, v, and T to project
the distribution. For operators that depend on the equilibrium distribution, such as
the relativistic-BGK collision operator Bhatnagar for a collision frequency v, Gross
& Krook (1954)

O\ _ s ew
(8I)Coll_ v(f f ), (24)

the moments of f*/ must match those of the arbitrary distribution f for the operator
to remain conservative. Even when these moments are known, such as when pro-
jecting a MJ from given initial n, v, and T, moment calculations are still necessary
due to differences between the projected distribution and the desired distribution.
Therefore, we need to calculate the moments to correct for errors in the discrete
distribution. (Section 3.3 discusses initialization in more detail.) In this section, we
outline a procedure for calculating general moments and how to arrive at the specific
quantities needed to project the MJ distribution.

The most general form for computing the moments involves the calculation of the
flux four-vector and the stress-energy tensor. From these we provide a procedure
for both computing the needed MJ moments as well as other diagnostics such as
transport coefficients. Measured in the laboratory frame for an arbitrary distribution,
the flux four-vector and stress-energy tensor components are written, respectively, as

3
F* =f f(u)u"dy—u, (2.5)

d*u
=my f f(u)u“uVT. (26)

where the four vector u* is defined as u* = (y, u'). For a comprehensive source on
relativistic thermodynamics, see Vereshchagin & Aksenov (2017).

To compute the boost between the laboratory and fluid-stationary frames we
require the velocity v,. The velocity can be computed from the laboratory frame
flux four vector. Suggestively relabeling some quantities of the flux vector makes this
more transparent. First, the component F*=* is the density in the laboratory frame,
N = F°. Second, for clarity, the fluxes are relabeled Nv, = F i fori={1,2,3}). Itis
clear then that the velocity is given by v} = F'/F°.

The velocity, v, gives us all the information we need to transform the laboratory
frame quantities to the fluid-stationary frame. Computing I" = 1/4/1 — v}, where
v = v, - vy, the components of the Lorentz transform in Cartesian coordinates is
given by

r _Fva —F'Uby _F'th
2
—TIv, 1+ — l)v—b; (I — 1)v”xv”\’ (I — l)vavh
Up v, V7
A = . e
Cleru, ™ pa-n o
U b v?
02
_FUbZ (F— 1)szva (F— l)Uvaby 1 +(1"_ 1)£
L Ub vb Ub |
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We will call this specific Lorentz transform from the laboratory to the fluid-
stationary frame A. The fluid-stationary frame flux and stress-energy tensor are
computed by transforming the laboratory respective quantities

F/“:A“MF“, (2.8)
af . A« B v
T =A% AP T". (2.9)
The transformed four vector for the flux, F'*=(n,0, 0, 0), directly provides

the fluid-stationary frame density n. Equipped with T, F* and F™, we can
immediately compute the fluid-stationary frame density, velocity and temperature

n=F°=N/T, (2.10)

v, =F'/F°, (2.11)
1

P:nT:S(T/“ + T2 4+T%). (2.12)

Since we only require the diagonal spatial components, we can simplify the expres-
sion for the fluid-stationary frame pressure moment calculation to u=v =1, 2, 3,
which yields

d*u’
—.

14

P=nT = % f £ (uyu” (2.13)

We can replace the fluid-stationary quantity, u#’?, in the integrand with labora-
tory frame quantities, u? =y”? —1=TI%*(y —v,-u)*> —1 from (2.3). In addition,
the Lorentz transformation between the primed and unprimed volumes are

ydx =y'd*x/, (2.14)
y'&u=ydu, (2.15)
d*x dPu=d*x . (2.16)

The last line, (2.16), is a statement that the phase-space volume element is invariant.
These results, pointed out by Zenitani (2015), are arrived at by considering proper
or canonical intervals of time, length and momentum. For example, in the case of
time, dt = dt/y = dt’'/y’, where 7 is the proper/canonical time interval. Therefore,
transforming the volume element with (2.14), and using f(u) = f'(u’), we have
an expression for the fluid-stationary pressure computed with the laboratory frame
quantities

3
P:nT:?/f(u)(Fz(y—vh-u)z— 1)d7“. (2.17)

Dividing out the fluid-stationary frame number density, n, leaves us with the temper-
ature, T, of the distribution in the fluid-stationary frame. For general d-dimensional
momentum space, the 1/3 coefficient appearing in (2.12), (2.13) and (2.17) becomes
1/d. In these cases, the integrals and summation are only taken over d-dimensional
momentum space.
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In summary, the necessary equations to calculate the moments begin with (2.5) and

(2.11) to isolate v,. Then use v, to compute I" =1/,/1 — v; and then to compute
n via (2.10). Finally, T is computed using (2.17). This provides all the moments
of an arbitrary distribution needed to construct a MJ distribution with equivalent
moments.

3. Representation of the MJ distribution
3.1. Division and multiplication in DG, computing I"

The core principle of DG schemes lies in representing the evolving quantities as
expansions in a chosen basis. For the MJ distribution, we discretize the momentum
space into cells and then project the distribution onto a basis expansion within each
cell. For further reading on DG schemes, see Cockburn & Shu (1998) and Juno
et al. (2018).

The representation of the MJ distribution on a grid requires, at a minimum, dis-
cretization in momentum space. In this case the distribution exists at a single point
in space and the moment calculations are only functions of time. However, when
coupled to advective equations such as Boltzmann or Vlasov equations, we must
discretize space as well. With spatial discretization, the moments are now functions
of time and discretized in the configuration space. The spatial discretization makes
seemingly simple operations, such as the multiplication and division of two DG
represented quantities, non-trivial. The result is nonlinear quantities which can not
always be computed exactly, discussed later.

The DG schemes have two equivalent representations of the local solution. One
is a modal representation, in which functions are expanded in terms of a finite basis
set within each cell, ¢;. The second is a nodal representation, in which functions
are expanded in terms of a series of points within a cell and multiplied by the asso-
ciated interpolating polynomials. This choice has tradeoffs, but in this section and
the next we choose to consistently use a polynomial order p modal representation
for the DG scheme. This is because in previous studies we have found that we can
utilize modal representations and corresponding weak operations to minimize alias-
ing errors, which can greatly impact robustness in kinetic calculations by exciting
spurious oscillations. See Juno et al. (2018), Hakim & Juno (2020) and Hakim ef al.
(2020). We note that it may be favorable to use nodal representations and tolerate
the aliasing errors for these computations because, even if they are more inaccurate,
the procedure may be more robust to realizability issues.

Choosing the polynomial order of the scheme involves a tradeoff. The benefits of
higher polynomial orders are increased accuracy, reduced number of required cells,
as well as lower numerical diffusion. However, higher polynomial order expansions
increase the computational cost and required memory due to the larger number
of degrees of freedom in the basis expansion. In higher-dimensional simulations,
where the phase space can be 4-6-dimensional, the number of basis functions grows
rapidly. For instance, if a problem has d dimensions and p + 1 basis functions per
dimension, then the total number of basis functions given by the tensor product is
(p + 1)¢. In the simulations presented in a later section using the Gkey11 code, we
have found from empirical testing that p =2 is the optimal polynomial order for
solving the kinetic equation.

The linear algebra calculations, which arise from weak equality of DG-represented
values, can be solved exactly. Take, for example, the calculation of isolating v,
from (Nwv,). Here, the braces, (---), denotes a combined quantity resulting from
the moment computation. The expansion of the moments N, (Nv;,) in terms of an
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orthonormal set of basis functions in the configuration space, ¢;(x), where x is
defined for an interval within a cell x; € [—1, 1] that has an associated volume, /. In
each cell, DG quantities are represented as the sum of coefficients times the modal
basis

N = Z ¢i(x)cy i

v, = Z ¢i (x)cvh,i (31)

(Nvy) =" ¢i(xX)en,.i-

The basis functions ¢;(x) lie in a finite-dimensional function space of order p.
One such example is the serendipity basis, presented by Arnold & Awanou (2011),
which generalizes the Legendre basis to multiple dimensions while removing interior
degrees of freedom to reduce the total number of functions required to represent the
solution within each cell. While we use the serendipity basis to represent the solutions
in the simulations presented in later sections, the algorithm does not depend on the
choice of basis. The only requirement is that an inner product structure exists to
isolate coefficients, for example, in computing the coefficients of v, from (Nv,)
and N.

With expressions (3.1), we can rewrite Nv, = (Nv,) in terms of their expansions.
Where the left-hand side is two separate quantities N times v, and the right-hand
side is a single quantity (Nv,). Integrating both sides of this equation gives a relation
for the coefficients

Z </ ¢i¢j¢kdx> CN,iCyyj = Z (/ ¢i¢kdx) CNuy.i- (3.2)
ij 1 i 1

Evaluating the integrals in parenthesis, the right-hand side simplifies to the
Kronecker delta, §;;, for an orthonormal basis. The left-hand side integral is a bit
more involved, but can be calculated analytically before the simulation begins. The
weak equality, (3.2) then can be written as

ZMijch-,icvh,j = CNupy k> (33)

iJj

where M, = || ; Pi¢pjddx is a three-dimensional array contracted over the ith index
with ¢y ;. We can relabel the result as a two-dimensional matrix: A =", M;jcy,;.
Now this is a clear linear algebra problem. We then find the inversion of A to
isolate the coefficients c,, ; which solves the linear system and isolates v,

Uy = Z Cu,.jPj = Z (A7l enui) ;- (3.4)
J

Jj-k

Hypothetically, if we desired to calculate cy,, x given the other two coefficients, cy ;,
c,,,; we could have simply stopped at (3.3).

We now have the tools to solve multiplication and division. Subtraction and
addition are trivial operations. However, calculating nonlinear functions, such as

I' =1/,/1 — v}, presents a challenge. We must instead project I" onto the basis and
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calculate the result with numeric quadrature using the following equation:

/ ¢,~ (¥)dx ~ Wy (Xi) . 3.5)
\/1 va md)m (X)) \/1 cub m¢m (xk))

where wy is the weight of the quadrature at a point x;,. Hence I' =), ¢ (x).

The approximations in computing the coefficients c¢; arise from projecting the
nonlinear result back onto the finite polynomial basis, even when the result contains
higher-order terms. Operations, such as multiplication, square roots and exponents
of quantities represented on the grid will likewise result in polynomial orders greater
than the basis. Projecting the result of these operations back onto the basis gives
us a weakly equal projection, where the result and its projection are not pointwise
equal, but have matching basis coefficients.

Finally, in implementing this algorithm, we take particular care in the moment
computation to ensure the DG scheme is robust and values remain physical. For
example, after computing the moment for v, and using this quantity to compute
gamma. We must ensure that |v,| < 1 (the speed of light). Further requirements arise
particularly from using the velocity moment when converting v, to v; on the spatial
grid. In extreme spatial gradient cases, while the velocity is well described, high-order
contributions such as v? to the cell mean can push the mean to be superluminal.
Ultimately, to avoid this problem, we retake a lower-order calculation if we find that
a modal computation result violates physical bounds on the quantity. A procedure
for robustly computing the moments to avoid these issues in the DG representation
is presented in the next § 3.2.

3.2. Robust algorithm for computing DG moments

Numerically, strong gradients in the drift velocity may be super-luminal even if the
cell average is less than the speed of light. Constraining the drift velocity to be well
behaved is even harder when trying to compute the DG expanded velocity squared
term, |v,|?, in the Lorentz boost factor and the fluid-stationary frame density. To
solve this issue, we applied the following algorithm to the relativistic solver to utilize
the spatial component of the bulk four velocity in the moment calculation. The
spatial component of the bulk four velocity is guaranteed to be well behaved as it
does not have to be bounded from above, and computing the needed Lorentz boost
factor from this quantity is also guaranteed to be positive definite and greater than
one. Thus, we obtain an overall robust scheme for computing moments that will not
return unphysical gamma factors. To achieve this refactor the steps are now:

(i) Compute v, with (2.11) using weak division, (3.4).
(i) If (1 —|v,]?) > 0 at all p + 1 Gauss-Legendre quadrature points, then

(a) Proceed with taking the square root at the Gauss-Legendre quadrature
points.

(b) Project the result onto the modal basis to construct (1/I") = /1 — |v,|%.
For nodal to modal transformations see Hesthaven & Warburton (2007).

(iii) If (1 — |v,|?) < 0 at any quadrature point, then

(a) Evaluate v, at polynomial order-1 Gauss-Lobatto points. (The
Gauss-Lobatto points differ from Gauss-Legendre points in that the
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Gauss-Lobatto points include the cell vertices. Using them ensures phys-
ical values at the boundaries and at all points interior points within the
cell by using p = 1 representation.)

(b) Compute (1 — |v,|?) at all the vertices of the cell.

(¢) If (1 —|v,)*) <0 at any Gauss——Lobatto point, floor the value to 1.0 x
107!, which corresponds to a Lorentz boost factor of 1.0 x 108, This is
a reasonable upper limit for most astrophysical applications.

(d) Reconstruct the modal representation of (1 — |v,|?) from these Gauss—
Lobatto points using the nodal to modal transformations.

(e) Compute the square root at the peicewise linear Gauss-Legendre quadra-
ture points and project onto the modal basis. This returns a polynomial
order-1 expansion of (1/I")=,/1—|v,|>. Note: by using polynomial
order 1 and evaluating at the vertices, this projection is guaranteed to
be positive everywhere in the interior of the cell.

(iv) Compute the fluid-stationary frame density, n, using weak multiplication: n =
N/I.

(v) Compute the relativistic bulk four velocity with weak division: u, = (Nv,)/n.

(vi) Compute with weak multiplication of u, with itself to obtain: |u,|*.

(vii) Compute I, =+/1+ |u,|> at Gauss-Legendre quadrature points utilizing the
relativistic bulk four velocity and project the result onto the modal basis. The
square root is safely evaluated as 1 + |u,|? is strictly positive.

(viii)) Compute the pressure moment in terms of I, and u,

. 2 _
P:nT:?/f(u) <Fu2y_21"uub-u+(ubl:/#> Fu. (3.6)

3.3. Maxwell-Jiittner initialization routine

Initialization of the MJ distribution begins with the spatially DG-represented quan-
tities n, v,, T and I computed via the routine in §3.2. These quantities are then
used to calculate the MJ distribution, (2.2), at the quadrature points. We can then
transform the nodal representation onto the modal phase basis, ¢ (x, u).

However, directly evaluating the MJ distribution, (2.2), onto the momentum grid
has two complications. First, only a limited range of temperatures can be reliably
computable because of the exponential behavior of both the distribution’s numerator
and the modified Bessel function in the denominator. In particular, the modified
Bessel function has significant finite-precision errors at low temperatures. Second, in
terms of dimension, d, the modified Bessel function takes the form K>, which is
(potentially) of fractional order. These are notoriously difficult to compute accurately
to the desired finite precision.

To avoid the issues of calculating the modified Bessel functions altogether, we
replace them with their asymptotic expansions. To leading order, the expansions of
K\, K3,,, and K, are all identical, K, (x) ~ /7 /2x exp(—x), where v = (1, 3/2, 2).
They each retain the same leading-order asymptotic behavior as x — 0, K, (x) — 00
and as x — 0o, K,(x) — 0. This means that the projected distribution function is
offset in magnitude (the density) only. This unnormalized distribution, expanding
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K, in the MJ distribution, (2.2), is written as

) = & exo (L (L& =v-p/mo)
= 2(27r)(@=1/2) ()40 (@=1/2) /—ne/z p 9 p ]
(3.7)

We retain the normalization term in practice because it improves convergence of
higher moments. However, it may also be absorbed into the density normaliza-
tion constant: ™ (u) =nexp(---), which is useful when the normalization is too
cumbersome to compute or unknown.

The density moment of (3.7) can be corrected by multiplying the ratio computed
via weak division of the correct density moment over the asymptotic density moment
to give the properly normalized distribution. Correcting with this density ratio allows
us to avoid finite-precision errors associated with the modified Bessel functions
and simultaneously corrects any errors in the density introduced by the discrete
projection.

There are two common cases we consider for this density correction. The first case
arises during initial conditions, when we know the input fluid-stationary frame den-
sity and thus can simply use that desired density moment to correct the distribution
function and avoid errors in both the modified Bessel functions and projections. The
second case is for operators such as the BGK collision operator, where the density
is a time-dependent quantity. In this case, we compute the moments described in
(2.10) and (2.11) to obtain the fluid-stationary frame density of the evolving distri-
bution function, and then use that density in the correction routine to ensure that
the projected MJ distribution has the exact density of the evolving distribution.

In discrete, finite grids, the higher moments of the MJ projection, v, and 7, may
also deviate significantly from the desired values. To reduce the error between the
discretely projected distribution’s moments, we employ an iterative method. Starting
with the desired moments, n, v, and 7, we create a discrete projection f. The
moments of this discrete distribution 7, v, and 7~", will not necessarily match ng, v,
and T,. We then use Picard iteration to minimize the difference between these sets
of moments. For an iteration k, and a vector of the moments M = {n, v, T} we
wish to converge, we have an iterations scheme

ddeZMo —Mk
de-H =dM; +ddM,
My =My+dM,,,. (3.8)

Once we have the k + 1 moments, M, we re-project the distribution function and
repeat until the moments converge to a desired error.

It is important to note that the velocity bounds need to be sufficient for this
iteration scheme to converge. For most adequately resolved cases, this algorithm
converges to machine precision in between 3 and 20 steps. Significant tail loss of
the distribution function on the finite grid slows down the algorithm considerably,
as well as having temperatures near the minimum supported temperature for the
grid. Taking more than 20 Picard iterations to converge usually means that the
distribution function is not realizable for the given moments on the grid.

An alternative algorithm, presented in § 3.3 of Dzanic, Witherden & Martinelli
(2023), employs a Newton method which, in some cases, would reduce the number
of required iterations. This algorithm is extended to the relativistic MJ by replacing
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the distribution function, using the moments outlined in § 2.1, and recomputing the
partials needed by the Jacobian. However, we found that, for modal DG schemes,
the Newton method is prohibitively expensive.

For the non-relativistic BGK operator, Dzanic, Witherden and Martinelli Dzanic
et al. (2023) report the Newton correction typically takes 1-2 iterations to reach
machine precision. Such an approach could also apply to the MJ distribution.
However, for specifically the modal DG represented quantities, the Jacobian
required by this method would be prohibitively expensive to compute, and each
cell would need to invert the Jacobian of the size number of basis, times the number
of moments, squared. The trade off is that the corrective method provided here will
take additional iterations but is simpler to implement and can automatically han-
dle arbitrary equilibrium functions, such as the MJ, Maxwellian and equilibrium in
curved spaces.

4. Tests

This section explores the accuracy of projecting the MJ distribution function and
tests the combination of the projection routine and the moment routine. We address
the accuracy of projecting a MJ distribution, examining grid requirements for cap-
turing the distribution within a certain tolerance of error. We demonstrate how the
correction routine alters the discrete distribution to match the moments. We also
provide analytic estimates for maximum and minimum temperatures representable
by the finite momentum grid. Finally, we integrate these concepts into a conservative
relativistic BGK operator. All tests in this section were run with the Gkey11 code
using polynomial order p = 2 serendipity basis. The scripts are publicly available at:
https://github.com/ammarhakim/gkyl-paper-inp.

4.1. Convergence test

Initially, we project the distribution with only density correction, leaving the higher
moments of the projected distribution uncorrected. We then scan the momentum-
space resolution holding the momentum bounds fixed. We expect, as the distribution
becomes better resolved by a finer grid, that the velocity and temperature moments
should converge to their exact values. Figure 1 illustrates this by plotting the absolute
difference in the expected moments and the moments of the projected distribution.
As the number of momentum-space cells increases, the error approaches machine
precision for the moments v, and 7. Hence, with sufficient resolution, we recover
the exact velocity and temperature moments, verifying the moments are calculated
correctly. As well, the density is normalized properly, as the error remains near
machine precision throughout the scan.

We emphasize the reason for machine-matched density is that the density must
always be corrected via the rescaling to avoid finite-precision errors in the compu-
tation of the modified Bessel functions. We ensure this after each call to create a
MJ distribution, the density of the distribution is rescaled to return n. Therefore, the
density will always agree to the desired value within machine precision.

From figure 1, we see that convergence to machine precision without the correc-
tion routine of the beam velocity and temperature takes around 10 000 momentum
cells with moderate temperature and beam velocity of 1.0 and 0.5, respectively.
Convergence indicates we have sufficiently wide momentum bounds to resolve the
distribution function for the specified grid size and moments. However, 10 000 grid
points is impractical for an actual simulation, especially with higher-dimensional
momentum spaces, hence the need for a moment-correction routine. With the
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FIGURE 1. Absolute error between the projected MJ distribution’s moments and the desired
moments, without the correction routine for higher moments. The moment values here are
n=1.0, v, =0.5and T = 1.0 and the momentum bounds extend from u,,,,, = £160. At coarser
resolutions, the initial non-monotonicity of the velocity error convergence is caused by small
differences in the projection of the distribution onto the discrete grid.

correction routine applied to all moments, the same distribution can be represented
with only 32 cells, as shown in figure 4. This reduction and computational savings
is one of the central contributions of this paper, making machine precision accurate
simulations possible with reasonable domains and with multiple momentum-space
dimensions.

The requirement for having a large momentum domain of u,,,, = 160 in figure 1
arises from the difference in the MJ distribution’s asymptotic behavior for large
values of momentum, u. Compared with the Maxwellian distribution, this differ-
ence becomes apparent. For a one-dimensional Maxwellian distribution, f ~
exp(—mov*/T). In contrast, the one-dimensional MJ goes as ™ ~ exp(—myq|u|/T)
when my|u|/T > 1. Hence, the Maxwellian approaches zero much faster than the
MJ on their respective grids. This detail leads to some subtle issues if not minded. To
illustrate, the bounds of u,,,, = 10 may seem reasonable. However, we are trun-
cating more distribution function than is visually apparent. For example, the lost
density fraction for the bounds u,,,, = £10is (N/N) ~ 0.003685.

The effect of the missing distribution tails is also apparent when considering the
reduced bounds of u,,,, &= 10. In the calculation of the velocity moment, the missing
tail changes the expected v, = 0.5 by (8v,/v,) ~ 0.007342. This in turn affects the
normalization n/(N/I") where I' = 1/,/1 — v} depends on the precision of the veloc-
ity calculation. Truncating the tails of the distribution function, especially when the
distribution is shifted to having a non-zero bulk velocity, means the velocity moment
will always be underestimated. This results in a smaller value for I" and consequently
the normalization will produce too small of a density correction. For time-dependent
problems, such as the relativistic BGK operator, these errors accumulate. In the
BGK test case, without correction of the drift velocity and temperature, the total
momentum and energy of the system will decay exponentially.

If the tails represent a small amount of the distribution function, and the bulk of
the distribution is within the grid, then the small errors introduced by the finite grid
can be corrected by the iterative scheme from §3.3. Fixing the decay issue is our
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FIGURE 2. The MIJ plotted with the error between the corrected MJ distribution f. and the
uncorrected distribution f;;.. Since the corrected, uncorrected and theoretic distributions are
indistinguishable on the plot, only the corrected distribution is plotted here.

primary motivation for the iterative algorithm to project the MJ. However, it is also
useful for accurately creating initial conditions with the proper moments. This does
have an effect on the distribution function that is visualized in figure 2 where we plot
a MJ distribution from u,,,, = £10 as well as the difference between the corrected
and uncorrected distribution functions.

Without the fully resolved right tail of the distribution function, the iterative
scheme creates a MJ with a higher beam-velocity magnitude and temperature to
compensate for the losses in the tail. With a higher effective temperature, the peak
density is now less pronounced in the corrected distribution and is seen by the
negative dip around u =0 in f, — f,,.. Therefore, even if the projected moments
are identical to the desired moments, for insufficiently wide grids, the distribution
function is not precisely identical. Under-resolved situations are not explored here
because the resulting differences between the exact and projected distribution come
down to a failure to represent the function locally with the basis.

4.2. Representation limits of moments of the MJ distribution

The discrete grid sets limits on the MJ distribution moments which can be rep-
resented. Because the momentum grid only has finite minimum resolution and
minimum and maximum momentum bounds, this sets limits on the resolvable
momentum and temperature moments of the projected distribution. An immedi-
ate restriction is that the momentum moments cannot be beyond the bounds of
the domain. The temperature resolution range is more subtle because it affects the
width of the distribution. To quantify the resolvable temperatures, figure 3 explores
the minimum and maximum temperature allowed in non-relativistic and relativistic
limits.

Figure 3(a) scans the case where the bulk of the distribution is non-relativistic for
a one-dimensional momentum space. Contours of the number of iterations required
to correct the moments in Au vs temperature 7/m, demonstrate that the conver-
gence of temperature is not guaranteed for T < T, non—rer.. Overlaid on the plot,
the red line is an estimate of the minimum temperature in the non-relativistic case,
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FIGURE 3. Example limitations on the MJ temperature supported by the finite momentum grids.
The contours show the number of iterations required for the scheme to converge the moments to
an absolute error of ¢ < 10712 at varied temperatures and grid parameters. White regions indi-
cate the correction routine took greater than 20 iterations to converge or was unable to converge.
Red lines overlay the temperature-limit estimates from this section. Panels (@), (¢) and (e) show
the non-relativistic limit, while panels (), (d) and (f) consider relativistic distributions. The
rows are ordered by increasing dimensionality of momentum space, from one, two and three
dimensions. As a note for panel (e). The upper left corner, colored white, is simulations that
were not run due to the large memory requirements. All panels were run with n =1 and v, =0.
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which we compute by assuming the distribution is a tent function in a single cell,
Sfien(u) =0.5 — |u|/Au, and integrating over the momentum bounds, +Au/2.
Substituting this distribution into (2.12) and taking the non-relativistic limit provides
an estimate of the minimum temperature the grid can support. The result is

Tmin non-re A 2
, 1 _ u , (4.1)
my 24

where Au is the grid spacing in momentum space. Depending on the polynomial
order of the solution, the shape of the minimum temperature distribution can vary
the constant prefactor. Scanning from warmer to cooler temperatures, the number
of iterations required to converge the scheme increases. Eventually, the algorithm
hits the maximum number of iterations, and occasionally fails to converge below
Tinnon—rer./Mo. The grid spacing and number of iterations effectively set the
minimum grid temperature for the MJ. The trend of minimum temperature holds
across one-, two- and three-dimensional momentum spaces.

For warm distributions, the maximum temperature projectable by a MJ on a
discrete grid is when the solution is completely flat. The flat distribution sets a
maximum temperature supported by the grid of

Tmax . Mmax\/ 1 + M’%mx - aSinh(umax) (4 2)

my 2umax

which arises from computing the temperature of a flat distribution between finite
bounds of (2.13) where we have assumed the distribution has no net flow. We also
define the inverse hyperbolic trig function as asinh(x) =In(x + +/x% + 1).

In the relativistic limit, figure 3 (b), we can simultaneously show the maximum MJ
temperature 7}, r;./Mo and the minimum temperature, 7, ye1./Mo. Scanning i, .
and T /m,, a clear region appears where the temperature is able to converge. Like in
the non-relativistic case, the maximum temperature projectable by a MJ on this grid
is when the solution is completely flat. A flat distribution, when u,,,, > 1 (highly
relativistic) has a maximum temperature 7T,y rer./ Mo ~ Unmar /2. However, discretely
projecting a flat distribution requires the iterative scheme to drive the input 7/m,
to infinity. This takes infinitely many iterations, and since we do not want material
at the momentum bounds in any case, we settle for a maximum of 20 iterations
which allows a T,,,./mo ~ U, /4.5 in this limit. Thus, setting an effective maximum
temperature.

Likewise, for figure 3(b), a minimum temperature can be roughly estimated in the
relativistic limit. Assuming a tent function in a single cell, f.,.,(u) =0.5 — |u|/Au
and integrating between the momentum bounds, £Au /2 gives us a rough minimum
temperature estimate by plugging this distribution into the (2.12)

Toinra. _ (Au? 4+ 16)v/4+ Au? — 12asinh((Au)/2) Au — 32

4.3
myo 6Au? (4.3)

We plot this estimate of Ty, ,.;./mq as a red line in figure 3 ().

These limits in both the relativistic and non-relativistic limits hold regardless of
dimensionality. Figures 3 (¢) and 3(d) show the minimum temperature trend in the
non-relativistic limit. While in the relativistic limit, in two-dimensional panel (d) and
three-dimensional panel (f), the maximum resolvable temperature follows the same
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trend, but requires additional iterations to converge to the same level of accuracy in
projected moments. Meanwhile, the minimum temperature remains unaffected.

A final note for panel (¢) when the maximum temperature cannot be resolved.
The maximum temperature limits for the non-relativistic cases in panels (a), (c)
and (e) are due to the fixed width of the momentum bounds at approximately
10 thermal velocities. These extents become insufficient to resolve the distribution
as it approaches T /my= 1. Particularity as the dimensionality increased, the rel-
ativistic temperatures (7 /my~ 1) at higher dimensionality of the grid, the more
material of the distribution is left off and the more iterations are required for the
iteration scheme to converge. So, the upper temperature limit which appears on
this plot is linked to increasing dimensionality, requiring more iterations to con-
verge. This is similar to the upper temperature-limit slope weakening with increased
dimensionality.

In the white regions of the contours in figure 3, where the correction routine was
unsuccessful, the error between the desired moments and the projected moments
begins to rapidly diverge. These areas represent the boundaries of moments resolv-
able by the grid. Implementing the correction algorithm within the Gkeyl1 code,
we have added checks for convergence between the desired and projected moments
at all spatial points and consider the correction routine complete only if all points
achieve the desired level of accuracy. If the routine fails, we default to the density-
only correction so simulations may continue and have outputs which indicate the
failure.

Additional maximum and minimum temperature limits can also be considered.
Such as when the distribution shifts too close to the bounds due to strong flows.
Generally, good practice is to have checks that allow the simulation to continue but
warn the user that the projection routine is failing. This indicates the grid cannot
represent the moments with an equivalent MJ distribution.

The correction routine developed in this paper could be complemented with addi-
tional techniques such as adaptive mesh refinement (for a relevant kinetic example,
see Kotipalo ef al. (2024)), non-uniform momentum-space grids, transforming the
kinetic equation into the fluid-stationary frame (see Achterberg & Norman 2018;
Schween & Reville 2024), or combinations of these techniques. Adapative mesh
refinement can allow the simulation to flexibly extend its own grid bounds and
refine cells if the moments approach the resolvable limits. This would expand the
range of the resolvable momentum and temperature moments dynamically, ensur-
ing they successfully converge. Similarly, non-uniform meshes could be employed
to coarsely resolve the distribution tail, reducing the truncation error. Lastly, trans-
forming the kinetic equation to evolve in the fluid-stationary frame would eliminate
issues with non-symmetric distributions from boosts and eases the grid requirements
for challenging configurations such as ultra-relativistic flows. In all of these cases,
the correction routine and techniques presented in this paper are still required to
maintain conservation laws and enable reasonably compact domains.

4.3. Relativistic BGK

To integrate into a single test the entire projection of the MJ distribution and
correction of the moments, we apply these algorithms within a single-species rela-
tivistic BGK collision operator. The BGK collision operator will evolve an arbitrary
distribution towards a MJ equivalent with matching moments, n, v, and 7.
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FIGURE 4. Reshaping of the distribution function from a water bag to MJ due by the relativistic
BGK operator. The plot includes three time slices: the initial state, one collision time into and
ten collision times into the simulation.

The numeric test begins with an initial relativistic shifted water-bag distribution in
one dimension

Flt=0.u)= f"5(u) = {0.5 O<u<?2, (4.4)

0 otherwise.

To robustly test the correction routine, the domain was chosen to span from u = +4
and have 32 cells in the momentum space. This represents a grid size used for typical
production runs. The representation of the distribution function is polynomial order
2 using the serendipity basis described by Arnold & Awanou (2011). The distribution
evolves in time via the BGK collision operator given by

(W) =—v(ft, w) — f*w). (4.5)
t coll

Choosing a constant collision frequency of v=1, we can exactly solve (4.5),
ft, u)= f*w) + exp(—vt)(f ") — f™(u)). The solution can be interpreted as
the difference between the initial water-bag distribution and the MJ distribution,
which vanishes the discrepancy with time exponentially until only the MJ distribu-
tion remains. Figure 4 shows the evolution of f(u) at three separate points that
match the exact solution of (4.5) over time.

Figure 4 qualitatively illustrates the expected reshaping of the distribution from
a water bag to a MJ distribution. However, the validation of the scheme comes in
the moments of the distribution function. Initially, the water-bag distribution has
moments: n =0.786, v, =0.786 and T =0.176, all with arbitrary units. After ten
collision times, the relative error in each of these quantities with respect to the
original quantities are e€(n) =1.03 x 107", e(v,) =3.51 x 107!* and €(T) =2.29 x
10713, This demonstrates that the moments are conserved throughout the entirety of
the BGK collision, maintaining the moments within machine precision of the initial
condition.
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5. Conclusion

We have developed and tested a moment-preserving algorithm for projecting the
MJ distribution onto a discrete momentum grid for application in kinetic continuum
simulations. This routine ensures local equivalence of density, velocity and internal
energy between the projected equilibrium and specified moments. This property of
the scheme is useful for accurately projecting initial conditions and guarantees con-
servation laws are maintained by relativistic BGK collisions. When combined with
other conservative discrete schemes for the special relativistic Vlasov-Maxwell sys-
tem, this scheme has the advantage of maintaining conservation laws when extended
to the full Vlasov—Maxwell-BGK system.

The distribution and moments are represented and discretized by a DG scheme.
The key challenge for DG schemes is computing nonlinear, bounded variables, such
as I' or v?> which otherwise can become numerically super-luminal. The scheme
we present here robustly handles this challenge by working with the four-velocity
moments, rather than velocity moments to construct the MJ. For added robustness,
we set a luminal bound of I" = 108, which is adequate for most applications.

Importantly, discrepancies in the moments from finite grid effects are addressed by
employing an iterative correction routine to achieve a set precision in the moments
of the projected distribution. We performed tests that elucidate how this modifies
the projected distribution. Because the correction routine only modifies the input
moments of density, velocity, and temperature to the MJ, the distribution trades
conservation of these lowest three moments for small errors in higher moments.
This trade-off is unavoidable as not performing a correction routine leads to artificial
decay of all moments due to the finite grid.

The correction routine further makes possible simulations with reasonable
domains and in multiple momentum-space dimensions by reducing the grid require-
ments per dimensions needed to maintain machine precision accurate moments.
For a distribution without corrected velocity and temperature moments, figure 1
illustrated convergence to machine precision-matched moments takes 10 000 cells
and domains of u,,,, = £160. While figure 4 demonstrated that with the correction
routine, a domain of only u,,,, = &4 and 32 cells could maintain machine precision
in the moments over many iteration of the projection routine.

We additionally demonstrate with these tests the limits of the realizable tempera-
ture on the finite grid and provide non-relativistic and relativistic estimations of the
lowest and highest temperatures supported on the discrete grid. Beyond these limits,
the grid cannot support the distribution and the iterative routine will be unable to
converge to a solution.

We conclude with a test using this routine to relax a water-bag distribution to
a Maxwell-Juttner distribution utilizing a relativistic BGK collision operator. After
ten collision time scales, the moments of the distribution have remained conserved
to about the level of machine precision, thus verifying that the conservation of the
lowest three moments holds over successive projections from discrete time stepping.

This work provides a practical algorithm for projecting MJ distributions in kinetic
continuum simulations of relativistic astrophysical and extreme laboratory settings.
This routine can also be leveraged to find closures and transport coefficients by com-
puting perturbations §f = f — f™ to specified accuracy. A combination of ongoing
and future work is to extend this algorithm for non-relativistic and relativistic curved
spaces. These extensions immediately work within DG schemes by recycling the
algorithm laid out here with the introduction of a spatial metric. Thus, this work
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has further application enabling collisions for non-Cartesian geometries, which is
particularly relevant to astrophysical plasmas around compact objects.
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