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Cesàro Operators on the Hardy Spaces of
the Half-Plane
Athanasios G. Arvanitidis and Aristomenis G. Siskakis

Abstract. In this article we study the Cesàro operator

C( f )(z) =
1

z

∫ z

0
f (ζ) dζ,

and its companion operator T on Hardy spaces of the upper half plane. We identify C and T as resol-
vents for appropriate semigroups of composition operators and we find the norm and the spectrum in
each case. The relation of C and T with the corresponding Cesàro operators on Lebesgue spaces Lp(R)
of the boundary line is also discussed.

1 Introduction

Let U = {z ∈ C : Im(z) > 0} denote the upper half of the complex plane. For
0 < p <∞, the Hardy space H p(U) is the space of analytic functions f : U → C for
which

‖ f ‖H p(U) = sup
y>0

(∫ ∞
−∞
| f (x + i y)|p dx

) 1
p
<∞.

For p = ∞ we denote by H∞(U) the space of all bounded analytic functions on U
with the supremum norm.

The spaces H p(U), 1 ≤ p ≤ ∞, are Banach spaces and for p = 2, H2(U) is a
Hilbert space. For the rest of the paper we use the notation ‖ f ‖p for ‖ f ‖H p(U).

Let 1 ≤ p <∞ and suppose f ∈ H p(U). Then f satisfies the growth condition

(1.1) | f (z)|p ≤
C‖ f ‖p

p

Im(z)
, z ∈ U,

where C is a constant. Furthermore, the limit limy→0 f (x + i y) exists for almost every
x in R, and we may define the boundary function on R, denoted by f ∗, as

f ∗(x) = lim
y→0

f (x + i y).

This function is p-integrable and

‖ f ‖p
p =

∫ ∞
−∞
| f ∗(x)|p dx.
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Thus H p(U) can be viewed as a subspace of Lp(R). For more details on Hardy spaces
H p(U) see [2, 4, 5].

For f ∈ Lp(R) the well-known Cesàro transformation is defined by

C( f )(x) =
1

x

∫ x

0
f (u) du

for x ∈ R, with an appropriate convention if x = 0. This defines a bounded operator
on Lp(R) for p > 1 ([1]). In particular if f ∗ ∈ Lp(R) is the boundary function of
f ∈ H p(U), the question arises whether the transformed function C( f ∗) is also the
boundary function of an f ∈ H p(U).

In this article we consider the half-plane version of the Cesàro operator, which is
formally defined by

C( f )(z) =
1

z

∫ z

0
f (ζ)dζ, f ∈ H p(U).

It turns out that this formula defines an analytic function on U for each f ∈ H p(U)
and the resulting operator is bounded on H p(U), p > 1. In addition the companion
operator

T( f )(z) =

∫ ∞
z

f (ζ)

ζ
dζ, f ∈ H p(U)

is also shown to be bounded on H p(U) for p ≥ 1. In fact it will be seen later that
these two operators are adjoints of each other. We find the norm and the spectrum
of C,T and we show that for the boundary functions we have C( f )∗ = C( f ∗). The
whole discussion is based on the observation that C and T can be obtained as resol-
vent operators for appropriate strongly continuous semigroups of simple composi-
tion operators on H p(U). Cesàro operators of the unit disc were studied in [7].

2 Related Semigroups, Strong Continuity

For each t ∈ R consider the following analytic self maps of U:

φt (z) = e−t z, z ∈ U,

and for 1 ≤ p <∞, the corresponding weighted composition operators on H p(U):

Tt ( f )(z) = e−
t
p f (φt (z)), f ∈ H p(U).

For f ∈ H p(U) we have

‖Tt ( f )‖p
p = e−t sup

y>0

(∫ +∞

−∞
| f (e−t x + ie−t y)|p dx

)
= sup

v>0

(∫ +∞

−∞
| f (u + iv)|p du

)
= ‖ f ‖p

p.
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Thus each Tt is an isometry on H p(U). Furthermore, it is easy to see that the family
{Tt} satisfies Tt Ts = Tt+s for each t, s ∈ R and T0 = I the identity operator, so
{Tt} is a group of isometries. We will use this group or the positive and negative
semigroups {Tt , t ≥ 0} and {T−t , t ≥ 0} in our study of the operators C and T.

Proposition 2.1 For 1 ≤ p < ∞, the group {Tt} is strongly continuous on H p(U).
The infinitesimal generator Γ of {Tt} is given by Γ( f )(z) = −z f ′(z) − 1

p f (z), and its

domain is D(Γ) = { f ∈ H p(U) : z f ′(z) ∈ H p(U)}.
Proof For the strong continuity we need to show limt→0 ‖Tt ( f )− f ‖p = 0 for every
f ∈ H p(U). To do this, observe first that the set Ap(U) containing all functions
in H p(U) that are continuous up to the boundary (i.e., functions in H p(U) that are
continuous on U) is dense in H p(U). Thus for f ∈ H p(U) and arbitrary ε > 0 we
can find g ∈ Ap(U) such that ‖ f − g‖p < ε. Then

‖Tt ( f )− f ‖p ≤ ‖Tt ( f )− Tt (g)‖p + ‖Tt (g)− g‖p + ‖g − f ‖p

= 2‖ f − g‖p + ‖Tt (g)− g‖p

≤ 2ε + ‖Tt (g)− g‖p,

and thus it suffices to show that ‖Tt (g) − g‖p → 0 as t → 0 for g ∈ Ap(U). But
for such functions g it is clear that Tt (g)(x) → g(x) for all x ∈ R and furthermore,
trivially, ‖Tt (g)‖p → ‖g‖p because Tt are isometries. We can then apply [2, Lemma 1,
p. 21] to conclude ‖Tt (g) − g‖p → 0 and the assertion about strong continuity
follows.

By definition the domain D(Γ) of Γ consists of all f ∈ H p(U) for which the limit
limt→0(e−(t/p) f ◦ φt − f )/t exists in H p(U) and

Γ( f ) = lim
t→0

e−(t/p) f ◦ φt − f

t
, f ∈ D(Γ).

The growth estimate (1.1) shows that convergence in the norm of H p(U) implies in
particular pointwise convergence, therefore for each f ∈ D(Γ),

Γ( f )(z) = lim
t→0

e−
t
p f (e−t z)− f (z)

t
=

∂

∂t

(
e−

t
p f (e−t z)

) ∣∣∣
t=0

= −z f ′(z)− 1

p
f (z).

This shows that D(Γ) ⊆ { f ∈ H p(U) : z f ′(z) ∈ H p(U)}.
Conversely, let f ∈ H p(U) such that z f ′(z) ∈ H p(U). Then for z ∈ U, we can

write

Tt ( f )(z)− f (z) =

∫ t

0

∂

∂s

(
e−

s
p f (φs(z))

)
ds

=

∫ t

0
−e−

s
p φs(z) f ′(φs(z))− 1

p
e−

s
p f (φs(z)) ds

=

∫ t

0
Ts(F)(z) ds,
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where F(z) = −z f ′(z)− 1
p f (z) is a function in H p(U). Thus

lim
t→0

Tt ( f )− f

t
= lim

t→0

1

t

∫ t

0
Ts(F) ds.

From the general theory of strongly continuous (semi)groups, for F ∈ H p(U) the
latter limit exists in H p(U) and is equal to F. Thus

lim
t→0

Tt ( f )− f

t
= F.

This says that D(Γ) ⊇ { f ∈ H p(U) : z f ′(z) ∈ H p(U)}, completing the proof.

Remark 2.2 An immediate corollary of the previous proposition is that the two
semigroups {Tt , t ≥ 0} and {T−t , t ≥ 0} are strongly continuous on H p(U) and
their infinitesimal generators are Γ and−Γ, respectively.

Lemma 2.3 Let 0 < p <∞ and λ ∈ C. Then

(i) eλ(z) = zλ /∈ H p(U),
(ii) hλ(z) = (i + z)λ ∈ H p(U) if and only if Re(λ) < − 1

p .

Proof This can be proved by direct calculation of the norms. We give an alternative
argument involving the following well-known characterization of membership in the
Hardy space of the half-plane. For a function f analytic on U,

f ∈ H p(U) if and only if ψ ′(z)1/p f (ψ(z)) ∈ H p(D),

where ψ(z) = i 1+z
1−z , a conformal map from the unit disc D = {|z| < 1} onto U, and

H p(D) is the usual Hardy space of the disc. We find

ψ ′(z)1/phλ(ψ(z)) =
c1

(1− z)
2
p +λ

,(2.1)

ψ ′(z)1/peλ(ψ(z)) = c2
(1 + z)λ

(1− z)
2
p +λ

,(2.2)

where c1, c2 are nonzero constants.
Next recall that if ν is a complex number, (1− z)ν ∈ H p(D) if and only if Re(ν) >

−1/p (this follows for example from [2, p. 13, Ex. 1]). Applying this to (2.1) we
obtain hλ ∈ H p(U) if and only if Re(− 2

p − λ) > −1/p and this gives the desired
conclusion.

In the case of eλ, the right-hand side of (2.2) belongs to H p(D) if and only if both

terms (1 + z)λ and (1 − z)−
2
p−λ belong to H p(D), because each of the two terms is

analytic and nonzero at the point where the other term has a singularity. Thus for eλ
to belong to H p(U), both conditions Re(λ) > −1/p and Re(− 2

p − λ) > −1/p must
be satisfied, which is impossible.
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For an operator A denote by σπ(A) the set of eigenvalues of A, by σ(A) the spec-
trum of A, and by ρ(A) the resolvent set of A on H p(U).

Proposition 2.4 Let 1 ≤ p <∞ and consider {Tt} acting on H p(U). Then

(i) σπ(Γ) is empty;
(ii) σ(Γ) = iR.

In particular Γ is an unbounded operator.

Proof (i) Let γ be an eigenvalue of Γ and let f be a corresponding eigenvector. The
eigenvalue equation Γ( f ) = γ f is equivalent to the differential equation

z f ′(z) +
(
γ +

1

p

)
f (z) = 0.

The nonzero analytic solutions of this equation on U have the form f (z) = cz−(γ+ 1
p )

with c 6= 0, which by Lemma 2.3 are not in H p(U). It follows that σπ(Γ) = ∅.
(ii) Because each Tt is an invertible isometry its spectrum satisfies σ(Tt ) ⊆ ∂D.

The spectral mapping theorem for strongly continuous groups [6, Theorem 2.3] says
that etσ(Γ) ⊆ σ(Tt ). Thus if w ∈ σ(Γ), then etw ∈ ∂D, so that σ(Γ) ⊆ iR. We will
show that in fact σ(Γ) = iR.

Let µ ∈ iR and assume that µ ∈ ρ(Γ). Let λ = µ + 1
p and consider the function

fλ(z) = iλ(i + z)−λ−1.

Since Re(−λ− 1) = −1− 1/p < −1/p, this function is in H p(U). Since µ ∈ ρ(Γ),
the operator Rµ = (µ − Γ)−1 : H p(U) → H p(U) is bounded. The image function
g = Rµ( fλ) satisfies the equation (µ− Γ)(g) = fλ, or equivalently,(

µ +
1

p

)
g(z) + zg ′(z) = fλ(z), z ∈ U.

Thus g solves the differential equation λg(z) + zg ′(z) = iλ(i + z)−λ−1, z ∈ U. It is
easy to check that the general solution of this equation in U is

G(z) = cz−λ + (i + z)−λ, c a constant.

Using the notation of Lemma 2.3 we find

(ψ ′(z))1/pG(ψ(z)) =
c1 + cc2(1 + z)−λ

(1− z)
2
p−λ

,

where c1, c2 are nonzero constants. This last expression represents an analytic func-
tion on the unit disc, which, however, by an argument similar to that in the proof of
Lemma 2.3, is not in the Hardy space H p(D) of the unit disc for any value of c, be-
cause Re(λ) = 1/p. Thus G(z) is not in H p(U) for any c, and this is a contradiction.
It follows that σ(Γ) = iR, and this completes the proof.
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3 The Cesàro Operators

It follows from the above that when 1 < p < ∞, the point λp = 1 − 1/p is in
the resolvent set of the generator Γ. The resolvent operator R(λp,Γ) is therefore
bounded. Let f ∈ H p(U) and let g = R(λp,Γ)( f ). It follows that (λp−Γ)(g) = f or
equivalently (1−1/p)g(z)+zg ′(z)+(1/p)g(z) = f (z). Thus g satisfies the differential
equation g(z) + zg ′(z) = f (z), z ∈ U. Fix a point w on the imaginary axis. Then

zg(z) =

∫ z

w
f (ζ) dζ + c, z ∈ U,

with c a constant. Now let z = i y → 0 along the imaginary axis. Since g ∈ H p(U)
with p > 1, the estimate (1.1) implies that zg(z)→ 0. Therefore,

c = −
∫ 0

w
f (ζ) dζ.

(The existence of this integral is also a consequence of (1.1).) It follows that the
integral of f on the segment [0, z] exists and we have

g(z) = R(λp,Γ)( f )(z) =
1

z

∫ z

0
f (ζ) dζ.

Theorem 3.1 Let 1 < p <∞ and let C be the operator defined by

C( f )(z) =
1

z

∫ z

0
f (ζ) dζ, f ∈ H p(U).

Then C : H p(U)→ H p(U) is bounded. Furthermore,

‖C‖ =
p

p − 1
and σ(C) =

{
w ∈ C :

∣∣∣w − p

2(p − 1)

∣∣∣ =
p

2(p − 1)

}
.

Proof As found above, for 1 < p <∞,

C = R(λp,Γ), λp = 1− 1/p ∈ ρ(Γ).

The spectral mapping theorem [3, Lemma VII.9.2] gives

σ(C) =
{ 1

λp − z
: z ∈ σ(Γ)

}
∪ {0} =

{ 1

1− 1/p − ir
: r ∈ R

}
∪ {0}

=
{

w ∈ C :
∣∣∣w − p

2(p − 1)

∣∣∣ =
p

2(p − 1)

}
,

giving the spectrum of C on H p(U).
Since the spectral radius of C is equal to p/(p − 1), it follows that

‖C‖ ≥ p

p − 1
.
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On the other hand, we can apply the Hille–Yosida–Phillips theorem to the group {Tt}
of isometries [3, Corollary VIII.1.14] to obtain

‖C‖ = ‖R(λp,Γ)‖ ≤ 1

1− 1
p

=
p

p − 1
,

and the proof is complete.

Remark 3.2 It follows from Lemma 2.3 that h(z) = (i + z)−2 belongs to H1(U).
The transformed function −i(i + z)−1 = 1

z

∫ z
0 h(ζ) dζ is analytic on U but does not

belong to H1(U). Thus C does not take H1(U) to H1(U).

We now consider the negative part {Tt : t ≤ 0} of the group {Tt} and we rename
it {St}. That is, for f ∈ H p(U),

St ( f )(z) = e
t
p f (φ−t (z)) = e

t
p f (et z), t ≥ 0.

It is clear that {St} is strongly continuous on H p(U) and that its generator is ∆ = −Γ.
It follows from Proposition 2.4 that

σ(∆) = iR, σπ(∆) = ∅.

Let µp = 1
p ∈ ρ(∆), and consider the bounded resolvent operator R(µp,∆). Let

f ∈ H p(U) and let g = R(µp,∆)( f ). Then µpg −∆(g) = f or equivalently

zg ′(z) = − f (z), z ∈ U.

Fix a point a ∈ U, then we have

g(z) = −
∫ z

a

f (ζ)

ζ
dζ + c

with c a constant. Now let z →∞within a half-plane Im(z) ≥ δ > 0. Then g(z)→ 0
[2, Corollary 1, p. 191]; thus the following limit exists and gives the value of c:

c = lim
w→∞

Im(w)≥δ

∫ w

a

f (ζ)

ζ
dζ.

We therefore find

g(z) =

∫ a

z

f (ζ)

ζ
dζ + lim

w→∞
Im(w)≥δ

∫ w

a

f (ζ)

ζ
dζ = lim

w→∞
Im(w)≥δ

∫ w

z

f (ζ)

ζ
dζ.

We now show that the above limit exists unrestrictedly when w → ∞ within the
half-plane U. Indeed for δ > 0 we have,∫ w

z

f (ζ)

ζ
dζ =

∫ w+iδ

z

f (ζ)

ζ
dζ +

∫ w

w+iδ

f (ζ)

ζ
dζ = Jw + Iw.
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With the change of variable ζ = w + isδ, 0 ≤ s ≤ 1, we have

|Iw| =
∣∣∣−iδ

∫ 1

0

f (w + isδ)

w + isδ
ds
∣∣∣ ≤ δ ∫ 1

0

| f (w + isδ)|
|w + isδ|

ds

≤ δ

|w|

∫ 1

0
| f (w + isδ)| ds

=
1

|w|

∫ y+δ

y
| f (x + iu)| du,

where w = x + i y and u = y + sδ. For p = 1 the Fejér–Riesz inequality for the
half-plane [2, Exercise 6, p. 198] implies through the last inequality

|Iw| ≤
1

|w|

∫ ∞
0
| f (x + iu)| du ≤ 1

2|w|
‖ f ‖1 → 0, as w→∞;

while for p > 1, the growth estimate (1.1) gives

|Iw| ≤ C p

( 1

|w|

∫ y+δ

y
u−

1
p du

)
‖ f ‖p

≤ C ′p
(y + δ)1/q

|w|
‖ f ‖p (1/q = −1/p + 1)

≤ C ′p
(|w| + δ)1/q

|w|
‖ f ‖p → 0 as w→∞.

Thus in all cases Iw → 0 and we have

lim
w→∞

∫ w

z

f (ζ)

ζ
dζ = lim

w→∞
Jw + lim

w→∞
Iw = g(z),

i.e., the unrestricted limit exists. For this reason we can write

g(z) =

∫ ∞
z

f (ζ)

ζ
dζ.

Theorem 3.3 Let 1 ≤ p <∞ and let T be the operator defined by

T( f )(z) =

∫ ∞
z

f (ζ)

ζ
dζ, f ∈ H p(U).

Then T : H p(U)→ H p(U) is bounded. Furthermore,

‖T‖ = p, and σ(T) =
{

w ∈ C :
∣∣∣w − p

2

∣∣∣ =
p

2

}
.

https://doi.org/10.4153/CMB-2011-153-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-153-7
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Proof We have found above that

T = R(µp,∆), µp = 1/p ∈ ρ(∆).

Using the spectral mapping theorem as in the proof of Theorem 3.1, we find the
spectrum of T on H p(U) to be

σ(T) =
{

w ∈ C :
∣∣∣w − p

2

∣∣∣ =
p

2

}
,

from which we read that the spectral radius is equal to p, therefore ‖T‖ ≥ p. An
application of the Hille–Yosida–Phillips theorem as in the proof of Theorem 3.1 gives
‖T‖ = ‖R(µp,∆)‖ ≤ 1

1/p = p, and this completes the proof.

Suppose now 1 < p <∞ and let q be the conjugate index, 1/p + 1/q = 1. Recall
the duality (H p(U))∗ = Hq(U) which is realized through the pairing

〈 f , g〉 =

∫ ∞
−∞

f ∗(x)g∗(x) dx.

For the semigroups Tt ( f )(z) = e−t/p f (e−t z) and St (g)(z) = et/qg(et z) acting on
H p(U) and Hq(U), respectively, we find

〈Tt ( f ), g〉 =

∫ ∞
−∞

e−
t
p f ∗(e−t x)g∗(x) dx =

∫ ∞
−∞

f ∗(x)e
t
q g∗(et x) dx = 〈 f , St (g)〉.

Thus {Tt} and {St} are adjoints of each other. From the general theory of opera-
tor semigroups, this relation of being adjoint on reflexive spaces is inherited by the
infinitesimal generators and subsequently by the resolvent operators [6, Corollar-
ies 10.2, 10.6]. It follows that C and T are adjoints of each other on the reflexive
Hardy spaces of the half-plane.

4 Boundary Correspondence

We now examine the boundary correspondence between C and its real line version C,
as well as between T and the corresponding real line operator T defined on Lp(R) by

T( f )(x) =


∫ ∞

x

f (u)

u
du, x > 0,

−
∫ x

−∞

f (u)

u
du, x < 0,

while T( f )(0) can be chosen arbitrarily. It is well known (and easy to prove) that T is
bounded on Lp(R) for p ≥ 1.
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Theorem 4.1 Consider the operators C, T on the Hardy spaces H p(U) and the opera-
tors C, T on the spaces Lp(R). Then the following hold:

(i) For 1 < p <∞ and f ∈ H p(U), C( f )∗ = C( f ∗).
(ii) For 1 ≤ p <∞ and f ∈ H p(U), T( f )∗ = T( f ∗).

Proof (i) For f ∈ H p(U) and δ > 0, consider the function

fδ(z) = f (z + iδ), Im(z) > −δ.

It is clear that fδ ∈ H p(U) and f ∗δ (x) = fδ(x), and we have

‖C( f )∗ − C( f ∗)‖Lp(R) ≤ ‖C( f )∗ − C( fδ)
∗‖Lp(R) + ‖C( fδ)

∗ − C( f ∗δ )‖Lp(R)

+ ‖C( f ∗δ )− C( f ∗)‖Lp(R)

≤ (‖C‖ + ‖C‖)‖ fδ − f ‖H p(U) + ‖C( fδ)
∗ − C( f ∗δ )‖Lp(R).

We can make ‖ fδ− f ‖H p(U) as small as we wish by choosing δ close enough to 0. Thus
in order to prove that C( f )∗(x) = C( f ∗)(x) a.e. on R, it suffices to show C( fδ)∗(x) =
C( f ∗δ )(x), i.e.,

C( fδ)
∗(x) =

1

x

∫ x

0
f ∗δ (u) du

for almost all x. Now for z = x + i y ∈ U, since fδ(z) is analytic on {Im(z) > −δ}, its
integral on the segment [0, z] can be obtained by integrating over the path [0, x] ∪
[x, z], so we have

C( fδ)(z) =
1

z

∫ z

0
fδ(ζ) dζ =

1

z

∫
[0, x]

fδ(ζ) dζ +
1

z

∫
[x, z]

fδ(ζ) dζ.

If x 6= 0, then clearly the limit of the first integral as y → 0 is

lim
y→0

1

z

∫
[0, x]

fδ(ζ) dζ =
1

x

∫ x

0
fδ(u) du.

The limit of the second integral vanishes. Indeed since f ∈ H p(U), f is bounded
over every half-plane {z : Im(z) ≥ δ} and we find

sup
ζ∈[x, z]

| fδ(ζ)| ≤ sup
Im(z)≥δ

| f (z)| = M <∞.

Therefore, ∣∣∣ 1

z

∫
[x, z]

fδ(ζ) dζ
∣∣∣ ≤ 1

|x|

(
sup

ζ∈[x, z]
| fδ(ζ)|

)
y ≤ M

|x|
y → 0

as y → 0. It follows that

C( fδ)
∗(x) = lim

y→0
C( fδ)(z) =

1

x

∫ x

0
fδ(u) du =

1

x

∫ x

0
f ∗δ (u) du
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and the proof of (i) is complete.
(ii) We argue as in part (i) and use the same notation. If f ∈ H p(U), 1 ≤ p <∞,

let fδ be defined as in part (i). Using the triangle inequality as in part (i) we see that
it suffices to show that for almost all x, T( fδ)∗(x) = T( f ∗δ )(x). Let z = x + i y ∈ U
with x > 0 (the case x < 0 is similar). Choose s > 0, and consider the path [z, x] ∪
[x, x + s] ∪ [x + s, z + s(1 + i)] as an alternative path of integration to obtain

T( fδ)(z) = lim
s→∞

∫ z+s(1+i)

z

fδ(ζ)

ζ
dζ

=

∫ x

z

fδ(ζ)

ζ
dζ + lim

s→∞

(∫ x+s

x

fδ(ζ)

ζ
dζ +

∫ z+s(1+i)

x+s

fδ(ζ)

ζ
dζ
)
.

For the first integral inside the limit it is clear that

lim
s→∞

∫ x+s

x

fδ(ζ)

ζ
dζ =

∫ +∞

x

fδ(u)

u
du.

Write I(s) =
∫ z+s(1+i)

x+s
fδ(ζ)
ζ dζ , the second integral inside the limit, then

|I(s)| =
∣∣∣∫ y+s

0

fδ(x + s + it)

x + s + it
i dt
∣∣∣ ≤ ∫ y+s

0

| fδ(x + s + it)|
|x + s + it|

dt

≤ 1

x + s

∫ y+s

0
| fδ(x + s + it)| dt.

If p = 1, then the Fejér–Riesz inequality for the upper half-plane gives∫ y+s

0
| fδ(x + s + it)| dt ≤

∫ ∞
0
| fδ(x + s + it)| dt ≤ 1

2
‖ fδ‖1 ≤

1

2
‖ f ‖1.

Thus I(s) ≤ 1
2(x+s)‖ f ‖1 → 0 as s→∞. If p > 1, then using (1.1) we obtain∫ y+s

0
| fδ(x + s + it)| dt ≤ C p‖ fδ‖p

∫ y+s

0

1

t1/p
dt

≤ C ′p‖ f ‖p(y + s)−
1
p +1,

which implies I(s) ≤ C ′p‖ f ‖p
(y+s)

− 1
p

+1

x+s → 0 as s→∞. We have shown

T( fδ)(z) =

∫ x

z

fδ(ζ)

ζ
dζ +

∫ +∞

x

fδ(u)

u
du

for each z = x + i y ∈ U. Taking the limit of the above as y → 0, we find

T( fδ)
∗(x) =

∫ +∞

x

fδ(u)

u
du = T( f ∗δ )(x)

and the proof is complete.
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As a consequence we have the following corollary.

Corollary 4.2 For 1 ≤ p < ∞ let Hp be the closed subspace of Lp(R) consisting of
all boundary functions f ∗ of f ∈ H p(U). Then C(Hp) ⊂ Hp for 1 < p < ∞, and
T(Hp) ⊂ Hp for 1 ≤ p <∞.
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