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Abstract
We prove that the class of all the rings Z/𝑚Z for all 𝑚 > 1 is decidable. This gives a positive solution to a problem
of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our
proof, we reduce the problem to the decidability of the ring of adeles AQ of Q.

1. Introduction

In his classical 1968 paper on the first-order theory of finite fields, Ax asked if the first-order theory of
the class of all the rings Z/𝑚Z, for all 𝑚 > 1, is decidable [1, Problem 5, p. 270]. In that paper, Ax
proved that the existential theory of this class is decidable. He proved this via his result that the theory of
the class of all the rings Z/𝑝𝑛Z (p and n varying) is decidable. This used Chebotarev’s density theorem.

In this paper, we give a positive solution to Ax’s problem using our work on the model theory of
adeles in [6]. We use our coding of the Boolean algebra of subsets of the index set {Primes} ∪ {∞} in
terms of idempotents in AQ together with definability in the language of rings of the set of idempotents
in AQ with finite support to reduce Ax’s problem to the decidability of AQ proved first by Weispfenning
[8] and later us [6].

2. Definability in adele rings

In this section, we state some results and concepts from [6],[5] on adele rings that we shall use. We
only need the case 𝐾 = Q and state the required results in this case. We denote the language of rings by
L𝑟𝑖𝑛𝑔𝑠 = {+,−, ·, 0, 1}. Q𝑝 denotes the field of p-adic numbers, 𝑣𝑝 (𝑥) the p-adic valuation on Q𝑝 and
Z𝑝 := {𝑥 ∈ Q𝑝 : 𝑣𝑝 (𝑥) ≥ 0} the valuation ring.

2.1. Adeles

AQ denotes the ring of adeles of Q and is defined as the restricted direct product of all the completions
of Q over the index set 𝑉Q = {∞, 2, 3, . . .}, the set of all primes p together with ∞. It is the subring of
the direct product of the real field R and all the p-adic fields Q𝑝 for all primes p consisting of all the
elements f such that 𝑓 (𝑝) is in Z𝑝 for all but finitely many p.
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See Cassels and Frohlich [3], and especially Cassels’ article [2], for properties of adele rings.
We shall construe adeles as functions on 𝑉Q taking values in the stalks Q𝑝 , where 𝑝 ∈ 𝑉Q.
To ∞ corresponds the real field R and to finite p correspond Q𝑝 . One sets Q∞ = R.

2.2. Uniform definition of valuation

Each of the stalks Q𝑝 , where 𝑝 ≤ ∞, is a locally compact field of characteristic 0, with a canonical
choice of metric, and thus a canonical choice of unit ball (which is a subring in the case of 𝑝 < ∞).

The following theorem shows that the unit ball Z𝑝 is uniformly L𝑟𝑖𝑛𝑔𝑠-definable without parameters
in Q𝑝 for all 𝑝 < ∞. Note that the unit ball in R is also L𝑟𝑖𝑛𝑔𝑠-definable.

Theorem 2.1 [4, Theorem 2]. There is an L𝑟𝑖𝑛𝑔𝑠-formula Φ𝑣𝑎𝑙 (𝑥) without parameters that uniformly
defines the valuation ring of all Henselian valued fields with finite or pseudo-finite residue field.

2.3. The Boolean algebra

We denote the language of Boolean algebras by {∧,∨,¬, 0, 1}. The set BQ = {𝑒 ∈ AQ : 𝑎2 = 𝑎} of
idempotents in AQ forms a Boolean algebra with Boolean operations

𝑒 ∧ 𝑓 = 𝑒 𝑓 ,

𝑒 ∨ 𝑓 = 1 − (1 − 𝑒) (1 − 𝑓 ) = 𝑒 + 𝑓 − 𝑒 𝑓 ,

¬𝑒 = 1 − 𝑒.

BQ carries a partial order defined by 𝑒 ≤ 𝑓 if and only if 𝑒 = 𝑒 𝑓 (product in the ring).
An idempotent e is called minimal if it is nonzero and minimal with respect to this order. Let atom(𝑥)

be an L𝑟𝑖𝑛𝑔𝑠-formula expressing that x is a minimal idempotent (i.e., an atom).
There is a bijective correspondence between subsets of 𝑉Q and idempotents e in AQ given by

𝑋 ↦−→ 𝑒𝑋 , where for 𝑋 ⊆ 𝑉Q,

𝑒𝑋 (𝑝) =

{
1 if 𝑝 ∈ 𝑋,

0 if 𝑝 ∉ 𝑋.

Conversely, if 𝑒 ∈ AQ is idempotent, let 𝑋 = {𝑝 ∈ 𝑉Q : 𝑒(𝑝) = 1}. Then 𝑒 = 𝑒𝑋 .

2.4. Idempotents with finite support

The support of an adele 𝑎 ∈ AQ is defined by

supp(𝑎) := {𝑝 ∈ 𝑉Q : 𝑎(𝑝) ≠ 0}.

We denote by F𝑖𝑛Q the set of all idempotents e in AQ with finite support, that is, supp(𝑒) is a finite set.
A basic result in the model theory of adeles [6] is the following.

Theorem 2.2 [6]. F𝑖𝑛Q is an L𝑟𝑖𝑛𝑔𝑠-definable subset of AQ.

2.5. Boolean values

If 𝑒 ∈ AQ is a minimal idempotent, then the ring AQ/(1 − 𝑒)AQ is naturally isomorphic to 𝑒AQ by the
map

𝑎 + (1 − 𝑒)AQ ↦→ 𝑒𝑎,
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and if e corresponds to the prime 𝑝 ∈ {Primes} ∪ {∞}, then

𝑒AQ � Q𝑝

via the map

𝑒𝑎 ↦→ 𝑎(𝑝).

For an Lrings-formula Φ(𝑥1, . . . , 𝑥𝑛) and 𝑎1, . . . , 𝑎𝑛 ∈ AQ, the (ring-theoretic) Boolean value
[[Φ(𝑎1, . . . , 𝑎𝑛)]] is defined to be the supremum of all the minimal idempotents e in BQ such that

𝑒AQ |= Φ(𝑒𝑎1, . . . , 𝑒𝑎𝑛).

This supremum exists since BQ is a complete Boolean algebra.
For any given L𝑟𝑖𝑛𝑔𝑠-formula Φ(𝑥1, . . . , 𝑥𝑛), there is another L𝑟𝑖𝑛𝑔𝑠-formula Φ∗(𝑦, 𝑥1, . . . , 𝑥𝑛), that

can be effectively constructed from Φ(𝑥1, . . . , 𝑥𝑛), such that for any 𝑎1, . . . , 𝑎𝑛 ∈ AQ we have

(∗) 𝑒AQ |= Φ(𝑒𝑎1, . . . , 𝑒𝑎𝑛) ⇔ AQ |= Φ∗(𝑒, 𝑎1, . . . , 𝑎𝑛).

This follows by induction on the complexity of Φ(𝑥1, . . . , 𝑥𝑛) from the quantifier-free case which is
straightforward.

The function from A𝑛
Q

into BQ defined by

(𝑎1, . . . , 𝑎𝑛) → [[Φ(𝑎1, . . . , 𝑎𝑛)]]

is Lrings-definable for any Φ(𝑥1, . . . , 𝑥𝑛).
Indeed, the set

𝑍 = {(𝑥1, . . . , 𝑥𝑛, 𝑧) ∈ A
𝑛+1
Q

: 𝑧 = sup(𝑊𝑥1 ,...,𝑥𝑛 )},

where

𝑊𝑥1 ,...,𝑥𝑛 = {𝑤 ∈ BQ : AQ |= atom(𝑤) and 𝑤AQ |= Φ(𝑤𝑥1, . . . , 𝑤𝑥𝑛)}

is definable since by (∗),𝑊𝑥1 ,...,𝑥𝑛 equals

{𝑤 ∈ BQ : AQ |= atom(𝑤) and AQ |= Φ∗(𝑤, 𝑥1, . . . , 𝑥𝑛)}

and thus Z is defined by the formula

𝑧 = sup{𝑤 : atom(𝑤) ∧Φ∗(𝑤, 𝑥1, . . . , 𝑥𝑛)}

(which is expressible as an L𝑟𝑖𝑛𝑔𝑠-formula since the ordering on BQ is L𝑟𝑖𝑛𝑔𝑠-definable).
Let ΨR denote a sentence that holds in R but does not hold in any Q𝑝 for 𝑝 < ∞, for example

∀𝑥∃𝑦(𝑥 = 𝑦2 ∨ −𝑥 = 𝑦2).

We call a minimal idempotent e real if 𝑒AQ |= ΨR.
We denote by 𝑒R the supremum of all the real minimal idempotents (note that there is only one real

minimal idempotent in BQ). 𝑒R is supported only on the set {∞}.
We put 𝑒 𝑓 𝑖𝑛 := 1 − 𝑒R. This idempotent is supported on the set of all primes except infinity.
We define [[Φ(𝑎1, · · · , 𝑎𝑛)]]

𝑟𝑒𝑎𝑙 to be the supremum of all the minimal idempotents e such that

𝑒AQ |= ΨR ∧Φ(𝑒𝑎1, · · · , 𝑒𝑎𝑛).
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Let Ψ 𝑓 𝑖𝑛 denote an L𝑟𝑖𝑛𝑔𝑠-sentence that holds in Q𝑝 for all 𝑝 < ∞ and does not hold in R. For
example, we can take Ψ 𝑓 𝑖𝑛 to be the negation of the ΨR given above, namely

∃𝑥∀𝑦(𝑥 ≠ 𝑦2 ∧ −𝑥 ≠ 𝑦2)

which is true in any p-adic field Q𝑝 by taking x to be p.
We define [[Φ(𝑎1, · · · , 𝑎𝑛)]]

𝑓 𝑖𝑛 to be the supremum of all the minimal idempotents e such that

𝑒AQ |= Ψ 𝑓 𝑖𝑛 ∧Φ(𝑒𝑎1, · · · , 𝑒𝑎𝑛).

An argument similar to that above on the definability of the Boolean value [[Φ(𝑥1, . . . , 𝑥𝑛)]] shows
that the functions given by

(𝑎1, . . . , 𝑎𝑛) ↦→ [[Φ(𝑎1, . . . , 𝑎𝑛)]]
𝑟𝑒𝑎𝑙

(𝑎1, . . . , 𝑎𝑛) ↦→ [[Φ(𝑎1, . . . , 𝑎𝑛)]]
𝑓 𝑖𝑛

from A𝑛
Q

into BQ are Lrings-definable for any Φ(𝑥1, . . . , 𝑥𝑛).
We remark that the definability of F𝑖𝑛Q in Theorem 2.2 together with the definability of the Boolean

values [[Φ(𝑥1, . . . , 𝑥𝑛)]] imply the definability of the sets of the form

{(𝑥1, . . . , 𝑥𝑛) ∈ A
𝑛
Q

: [[Φ(𝑥1, . . . , 𝑥𝑛)]] ∈ F𝑖𝑛Q}

which occur as ‘basic’ sets in the quantifier elimination theorem for adele rings in [6].

3. Ax’s problem

Theorem 3.1. The class of all Z/𝑚Z is uniformly interpretable in AQ.
Proof. Our proof consists of two parts.

Part 1. By uniform definability of the Z𝑝 in Q𝑝 for 𝑝 < ∞ using the formula Φval(𝑥), the set of
elements of AQ whose Q𝑝-component lies in Z𝑝 for each 𝑝 < ∞ is definable since it equals

{𝑎 ∈ AQ : [[Φval(𝑎)]]
𝑓 𝑖𝑛 = 𝑒 𝑓 𝑖𝑛}.

(and is isomorphic to R × Ẑ).
Consider a positive integer m. Suppose m factors as a nontrivial product of coprime prime powers 𝑞𝑟 𝑗𝑗 .
Consider the element g which takes value 1 at all minimal idempotents (including that corresponding

to the infinite place ∞) except those corresponding to the 𝑞 𝑗 , and takes value 𝑞𝑟 𝑗𝑗 at 𝑞 𝑗 . Then 𝑔 − 1 is an
element of finite support (and the stated conditions on g can be expressed by L𝑟𝑖𝑛𝑔𝑠-formulas).

The quotient (R×Ẑ)/(𝑔) is naturally isomorphic to the product over the finitely many j of the quotients
Z𝑞 𝑗/𝑞

𝑟 𝑗
𝑗 Z𝑞 𝑗 , and this is isomorphic to the product of the finitely many Z/𝑞𝑟 𝑗𝑗 Z, which is obviously

isomorphic to Z/𝑚Z. Note that the set of all g satisfying the conditions above is L𝑟𝑖𝑛𝑔𝑠-definable inAQ.

Part 2. Suppose 𝑔−1 is an element of finite support. In addition, suppose that g takes values in Z𝑝 for
all 𝑝 < ∞ and at some prime 𝑝 < ∞, g takes as value a p-adic nonunit. These conditions can be stated as

𝑔 − 1 ∈ F𝑖𝑛Q

and

[[Φval(𝑔)]]
𝑓 𝑖𝑛 = 𝑒 𝑓 𝑖𝑛 ∧ [[Φval(𝑔) ∧ ¬Φval(𝑔

−1)]] 𝑓 𝑖𝑛 ≠ 0,

where 0 denotes the zero element of the Boolean algebra BQ and 1 denotes the top element of the
Boolean algebra BQ (namely, the adele with 1 at every coordinate). These conditions can be expressed
by L𝑟𝑖𝑛𝑔𝑠-formulas (using Theorem 2.2).
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Then g takes value 1 at all but finitely many elements of 𝑉Q. Assume that g takes value 1 at the
infinite prime, and note that this is a definable condition on g since the set

{ℎ ∈ AQ : ℎ(∞) = 1}

is L𝑟𝑖𝑛𝑔𝑠-definable in AQ (since ℎ(∞) = 1 is equivalent to 𝑒Rℎ = 𝑒R).
Now, consider (R × Ẑ)/(𝑔). It is clear that this quotient is a product over finitely many primes 𝑞 𝑗 of

quotients of Z𝑞 𝑗 by the ideal generated by an element of Z𝑞 𝑗 . When that element is a unit the quotient is
the trivial ring and can be discarded. For at least one prime, the element is not a unit and then generates
the same ideal as some power of the prime 𝑞 𝑗 . Then as in Part 1, (R × Ẑ)/(𝑔) is isomorphic to Z/𝑚Z
for some 𝑚 > 1.

The assumptions imposed on g are all L𝑟𝑖𝑛𝑔𝑠-definable in AQ because of the L𝑟𝑖𝑛𝑔𝑠-definability of
F𝑖𝑛Q and of the Boolean values in AQ, and the uniform L𝑟𝑖𝑛𝑔𝑠-definability of Z𝑝 in Q𝑝 (Theorems 2.1
and 2.2).

This argument gives the intended interpretation of the class of all Z/𝑚Z (for all 𝑚 > 1) in AQ. �

Corollary 3.1. The class of all Z/𝑚Z (𝑚 > 1) is decidable.

Proof. Let 𝔛 denote the set of all g inAQ such that 𝑔−1 has finite support, g takes value 1 at the infinite
prime, g takes values in Z𝑝 for all 𝑝 < ∞, and g takes as value a p-adic nonunit at some 𝑝 < ∞. By
Part 2 of the proof of Theorem 3.1, 𝔛 is an L𝑟𝑖𝑛𝑔𝑠-definable subset of AQ.

By Parts 1 and 2 of the proof of Theorem 3.1, any ring from the class {Z/𝑚Z : 𝑚 > 1} is isomorphic
to a ring from the class

{(R × Ẑ)/(𝑔) : 𝑔 ∈ 𝔛},

and conversely any (R × Ẑ)/(𝑔), where 𝑔 ∈ 𝔛, is isomorphic to Z/𝑚Z for some 𝑚 > 1.
Thus, deciding whether an L𝑟𝑖𝑛𝑔𝑠-sentence Ψ holds in Z/𝑚Z for all m is equivalent to deciding

whether Ψ holds in (R × Ẑ)/(𝑔) for all 𝑔 ∈ 𝔛. Since R × Ẑ and 𝔛 are definable in AQ, this decision
procedure can be carried out because of the decidability of AQ.

For a proof of the decidability of AQ, see [6, Section 7.1] or [8]. �

We would like to end with some remarks on the connection between our work and that of Ax [1]
and Feferman–Vaught [7] and the role (and need) for the model theory and definability in adele rings
from [6].

One might have thought that an easier solution to Ax’s problem could be given without adeles using
Ax’s decidability results for the Z/𝑝𝑛Z for p and n varying [1] combined with the Feferman–Vaught
technology for products [7]. But, as we describe below, this would require redoing variants of proofs that
are analogous to our proof of decidability of adeles in [6], going back into details of Feferman–Vaught
and making ad hoc adjustments and giving interpretations similar to those given in this paper but in a
not very meaningful context. There would be a subtle flaw if one would just try to combine the results
in [1] and [7] because of the following points.

Feferman–Vaught [7] work with products of families of L-structures (𝔄𝑖)𝑖∈𝐼 , for varying index sets I
and some fixed first-order language L. There is the associated Boolean algebra 𝑃𝑜𝑤𝑒𝑟𝑠𝑒𝑡 (𝐼) consisting
of subsets of I in an extension𝔖 of the language of Boolean algebras (e.g., with a predicate for the ideal
of finite subsets of I). One then equips the products

∏
𝑖∈𝐼 𝔄𝑖 with relations defined using𝔖 and Boolean

values of L-formulas in the Boolean algebra 𝑃𝑜𝑤𝑒𝑟𝑠𝑒𝑡 (𝐼), thus obtaining the generalized product
P (𝔄,𝔖). A general procedure attaches to definitions in the generalized products P (𝔄,𝔖) definitions
in the Boolean structure 𝔖, by the intermediary of the Boolean values of L-formulas.

The relevant Feferman–Vaught theorem for decidability of a class consisting of products from a
decidable class of structures is the following.

Theorem 3.2 [7, Theorem 5.6]. Let K be a class of L-structures. Let PK,S be the class of all structures
P (𝔄,𝔖) which are generalized products of an indexed family 𝔄 = (𝔄𝔦)𝑖∈𝐼 , where𝔖 is an expansion of
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𝑃𝑜𝑤𝑒𝑟𝑠𝑒𝑡 (𝐼) and belongs to a fixed class S of Boolean expansions of the sets 𝑃𝑜𝑤𝑒𝑟𝑠𝑒𝑡 (𝐼) where I is
a nonempty set, and for each 𝑖 ∈ 𝐼, 𝔄𝔦 ∈ K. Suppose the theory of K is decidable and the theory of S is
decidable. Then the theory of PK,S is decidable.

For Ax’s problem, what does one take for the class K and the enriched Boolean structure? It is no
good simply to take K as the set of all Z/𝑝𝑛Z for p and n varying and the Boolean structure to be atomic
Boolean algebras with a predicate for the ideal of finite sets. Among the products one would get are
rings which are products of factors which are not simply a Z/𝑝𝑛Z but can be nontrivial powers of such
rings, and so one does interpret more than the Z/𝑚Z. We do get a decidability result, but for a class
bigger than the class of all Z/𝑚Z, for𝑚 > 1. A similar problem arises if we try to work with generalized
products of the Q𝑝 or Z𝑝 instead of the Z/𝑝𝑛Z.

There are devices for doing better in the ring formalism, by considering axioms excluding that
distinct minimal idempotents have distinct finite characteristics for the residue fields of the stalks at
these idempotents. But this is an infinite set of axioms, and the naive decidability does not immediately
combine with it to give the decidability one wants.

In this paper, we get a short and intelligible solution to Ax’s problem via decidability and definability
inAQ, but we have to work quite hard to get such a solution without using adeles and definability results
from [6]. We remark that [6] uses Feferman–Vaught [7] and Ax [1].

We believe that the interpretations given in the proofs of Theorem 3.1 and Corollary 3.1 between AQ
and the finite rings Z/𝑚Z should be of an independent interest.
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