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Abstract

We consider a code to be a subset of the vertex set of a Hamming graph. We examine elusive pairs,
code-group pairs where the code is not determined by knowledge of its set of neighbours. We construct a
new infinite family of elusive pairs, where the group in question acts transitively on the set of neighbours
of the code. In these examples, the alphabet size always divides the length of the code. We show that
there is no elusive pair for the smallest set of parameters that does not satisfy this condition. We also pose
several questions regarding elusive pairs.
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1. Introduction and motivation

Given a group that fixes setwise the set of neighbours of a certain code, the question
of whether the group necessarily fixes the code setwise was considered by the second
and third authors in [8]. In particular, they considered codes in a Hamming graph
Γ = H(m, q), in which each vertex, and in particular each codeword, is an m-tuple with
entries from a set Q of size q. In this context, a codeword α with a single symbol
changed, that is, a single error introduced, corresponds to a vertex ν in Γ adjacent to α.
We refer to ν as a neighbour of α, and for a code C, the set of neighbours of C, denoted
by Γ1(C), consists of all vertices of Γ which are not in C, but are adjacent to at least
one element of C.

The group fixing Γ1(C) setwise is a subgroup, G, of the automorphism group,
Aut(Γ), of Γ. Whether G fixes C setwise depends on certain parameters of the code.
One such parameter is the minimum distance, δ, defined to be the smallest distance in
Γ between distinct codewords in C. In particular, by [8, Theorem 1], if C is a code in
H(m, q) with δ ≥ 3 such that G does not fix C setwise, then one of the following holds:

(1) δ = 4, q = 2 and m is even;
(2) δ = 3, and m(q − 1) is even.
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The paper [8] exhibits an infinite family of codes and groups with the parameters
of (1), but no examples for case (2) are given. The aim of this paper is to provide
infinitely many examples for case (2). All of our examples have m a multiple of q
and we pose several questions about the parameters and properties of such codes. We
make the following definition.

D 1.1. Let C be a code in Γ = H(m, q) with minimum distance δ, and let
X ≤ Aut(Γ) such that X fixes Γ1(C) setwise, but does not fix C setwise. Then we
call (C, X) an elusive pair, with parameters (m, q, δ).

The paper [8] contains no comment on elusive pairs with the parameters of (2).
However, the discussion following [6, Problem 11.1] asks if there exist elusive pairs
with δ = 3 and m(q − 1) even. We prove the following theorem.

T 1.2. Let q ≥ 3 and m be divisible by q. Then there exists a code C with
minimum distance δ = 3, and a group X such that (C, X) is an elusive pair with
parameters (m, q, 3), and X is transitive on Γ1(C).

We prove further in Section 3.4 that there are no elusive pairs with parameters
(4, 3, 3). Since we require m ≥ 3 in order to have δ = 3, and (3, 4, 3) does not satisfy
m(q − 1) even, this is the smallest set of parameters satisfying condition (2), where q
does not divide m. The following question, however, remains unanswered.

Q 1.3. Do there exist elusive pairs with parameters (m, q, 3) such that m is not
a multiple of q? More generally we ask for a determination of the possible parameters
of elusive pairs.

1.1. Commentary and further questions. An assumption frequently made in
coding theory is that during transmission of an encoded message, the probability of
an error occurring is independent of the symbol sent and its position in the message.
In [7, 8], the second and third authors introduce neighbour transitivity as a group
theoretic analogue of this assumption. A code C is defined to be neighbour transitive,
or X-neighbour transitive if we wish to specify the group, if there exists a subgroup
X ≤ Aut(Γ) that fixes setwise and acts transitively on both C and Γ1(C).

For the infinite family of examples from [8, Section 5], it is shown, in that paper,
that there exists a group X such that X is transitive on the set of neighbours of the code.
Moreover, it is contained in a larger code which shares the same neighbour set, and is,
in fact, X-neighbour transitive. The construction we give in Section 3.1 produces an
X-neighbour transitive code, C′, with minimum distance δ′ = 2, such that C′ contains
a code, C, with δ = 3 and Γ1(C) = Γ1(C′). It follows that X acts transitively on Γ1(C),
but does not fix C setwise, and thus (C, X) is an elusive pair.

For each elusive pair (C, X) in Sections 3.1 and 3.2, and for those constructed in
[8, Section 5], we observe that if x ∈ X does not fix C setwise, then there is only one
possibility for the image, Cx. Thus, under X, C has two images, the original code C
and Cx.
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Q 1.4. Does there exist an elusive pair (C, X) such that C has more than two
images under X? More generally, if r = |{Cx | x ∈ X}|, what values of r are possible?

We also note that, in all examples mentioned thus far, not only is X transitive on
Γ1(C), but C is XC-neighbour transitive, where XC is the subgroup of X fixing C
setwise. However this is not true in general. In Section 3.3 we construct a family of
elusive pairs (C, X), where XC is not transitive on C and X is not transitive on Γ1(C).
In fact, for all of these examples (C, X) there is no larger group X′ such that (C, X′) is
an elusive pair (see Proposition 3.10).

Another interesting feature of the elusive pairs (C, X) in Sections 3.1 and 3.2, and
also those in [8], is that if x ∈ X does not fix C setwise, then Cx and C are disjoint.
The family of examples in Section 3.3 do not have this property. However they are not
XC-neighbour transitive.

Q 1.5. If (C, X) is an elusive pair and C is XC-neighbour transitive, is it true
that, for each x ∈ X, either Cx = C or C and Cx are disjoint?

2. Notation

2.1. Hamming graphs. Let C be a code of ordered m-tuples over an alphabet, Q, of
size q. The Hamming graph, Γ = H(m, q), has vertex set consisting of all m-tuples with
entries from Q, with an edge existing between m-tuples which differ in exactly one
position. The Hamming distance, d(α, β), between two vertices, α, β ∈ Γ, is defined
as the number of entries in which the two vertices differ. For a code C, the minimum
distance, δ, is defined as δ = min{d(α, β) | α, β ∈C, α , β}. For a vertex α ∈ Γ, we
denote the set of vertices which are at distance r from α by Γr(α) = {β ∈ Γ | d(α, β) = r}.
We call Γ1(α) the set of neighbours of α.

For a vertex α ∈ Γ, define d(α,C) = min{d(α, β) | β ∈C}. This allows us to define
the covering radius, ρ = max{d(α,C) | α ∈ Γ}, and for any r ≤ ρwe define Γr(C) = {α ∈
Γ | d(α,C) = r}. We refer to Γ1(C) as the set of neighbours of C. Note that if δ ≥ 2,
Γ1(C) =

⋃
α∈C Γ1(α).

The automorphism group of the Hamming graph, Aut(Γ), is the semi-direct product
N o L, where N � S m

q and L � S m, see [4, Theorem 9.2.1]. Let g = (g1, . . . , gm) ∈ N,
σ ∈ L and α = (α1, . . . , αm) ∈ Γ. Then g and σ act on α as follows:

αg = (αg1

1 , . . . , α
gm
m ) and ασ = (α1σ−1 , . . . , αmσ−1 ).

The automorphism group of a code C ⊆ Γ is defined to be the setwise stabiliser of
C in Aut(Γ), and denoted by Aut(C).

2.2. Permutation codes. Let Q = {1, . . . , q} and S q be the symmetric group of Q.
For any permutation g ∈ S q, we associate with it the vertex α(g) = (1g, . . . , qg) in
H(q, q). Furthermore, for T ⊆ S q, we define the permutation code C(T ) to be C(T ) =

{α(g) | g ∈ T }.
Permutation codes were first studied in the 1970s, in particular by Blake et al.

[3], but have recently gained attention due to a potential application in powerline
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communication, where information is transmitted as a string of frequencies through
existing electrical infrastructure. This approach presents extra problems to consider.
For instance, one needs the power output to remain as constant as possible, as well as
there being extra noise considerations to take into account. Permutation codes have
been suggested as a solution to both of these problems, see [5, 11]. For an overview of
the subject see [9]. Bailey gives a decoding algorithm for permutation codes generated
by groups in [1].

In [2], Blake shows how to find the minimum distance of any permutation code
constructed from a sharply k-transitive group. A group G acting on a set Ω is sharply k-
transitive if for any two ordered k-tuples of distinct points, there is a unique element of
G mapping the first to the second. So the identity element is the unique element fixing
k points, and thus, for g1, g2 ∈G with g1 , g2, we have d(α(g1), α(g2)) ≥ q − k + 1. So
δ ≥ q − k + 1. For example, S q is sharply (q − 1)-transitive, and if we let g = (12) ∈ S q

then d(α(1), α(g)) = 2, thus C(S q) has minimum distance 2. Also Aq is sharply (q − 2)-
transitive, and letting g = (123) ∈ Aq we have d(α(1), α(g)) = 3, so C(Aq) has minimum
distance 3. In the same paper, Blake also briefly outlines a decoding algorithm for
C(Aq).

Let i, j ∈ Q, i , j and g ∈ S q, and define ν(α(g), i, j) to be the vertex in H(q, q) with
kth entry given by

ν(α(g), i, j)|k =

{
kg if k , i,
jg if k = i.

If i , j, then ν(α(g), i, j) differs from α(g) at the ith entry only, and thus ν(α(g), i, j) ∈
Γ1(α(g)). Each of the q(q − 1) neighbours of α(g) is of this form; there are q choices
for i and, given i, there are q − 1 choices for jg , ig, and hence of j.

For y ∈ S q, we denote xy = (y, . . . , y) ∈ N, and define Diagq(S q) = {xy | y ∈ S q} ≤ N.
Also, for z ∈ S q let σ(z) be the permutation in the top group L, induced by z. Let
g, y, z ∈ S q, i , j, xy = (y, . . . , y) ∈ Diagq(S q) and σ(z) ∈ L. Then, by [6, Lemmas 5.1.1
and 5.1.1.3],

α(g)xyσ(z) = α(z−1gy) and ν(α(g), i, j)xyσ(z) = ν(α(z−1gy), iz, jz). (2.1)

3. Elusive pairs

In this section we construct the examples that contribute to the proof of
Theorem 1.2, as well as showing that there is no elusive pair for the smallest set of
parameters where q does not divide m.

3.1. Example 1. We show that (C(Aq), Diagq(S q) o L) is an elusive pair, with
parameters (q, q, 3). We begin by showing that the larger code, C(S q), with minimum
distance two, has the same neighbour set as C(Aq).

L 3.1. For distinct i, j ∈ {1, . . . , q} and g ∈ Aq, let g′ = (i j)g. Then g′ ∈ S q \ Aq

and ν(α(g), i, j) = ν(α(g′), j, i). Thus Γ1(C(Aq)) = Γ1(C(S q \ Aq)) = Γ1(C(S q)).
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P. Clearly g′ ∈ S q \ Aq. We have

ν(α(g), i, j)|k =

{
kg if k , i,
jg if k = i

=


kg′ if k , i, j,
ig
′

if k = i,
ig
′

if k = j

=

{
kg′ if k , j,
ig
′

if k = j

= ν(α(g′), j, i)|k.

Thus ν(α(g), i, j) = ν(α(g′), j, i), and the rest follows since C(S q) has minimum
distance δ = 2. �

Lemma 3.2 is a consequence of [6, Lemma 5.1.1.5], but we give a short proof here
for completeness.

L 3.2. The code C(S q) is (Diagq(S q) o L)-neighbour transitive.

P. By (2.1), C(S q) is fixed setwise by X = Diagq(S q) o L. Let g1, g2 ∈ S q, and
let y = g−1

1 g2. Then α(g1)xy = α(g1g−1
1 g2) = α(g2), by (2.1), and it follows that X is

transitive on C(S q). Now let i1 , j1, i2 , j2. Since S q acts 2-transitively on Q, there
exists z ∈ S q such that iz1 = i2 and jz1 = j2. Let y = g−1

1 zg2. Then, again using (2.1),
ν(α(g1), i1, j1)xyσ(z) = ν(α(z−1g1g−1

1 zg2), iz1, jz1) = ν(α(g2), i2, j2). Therefore, X acts
transitively on Γ1(C(S q)) and so C(S q) is X-neighbour transitive. �

L 3.3. Let x = xyσ(z) ∈ Diagq(S q) o L. Then C(Aq)x = C(z−1yAq). In particular,
C(Aq)x = C(Aq) if and only if z−1y ∈ Aq.

P. By (2.1), α(g)x = α(z−1gy) = α(z−1yy−1gy) for all g ∈ Aq. As Aq is a normal
subgroup of S q, the assertion follows. �

C 3.4. The pair (C(Aq), Diagq(S q) o L) is an elusive pair with parameters
(q, q, 3).

P. By Lemma 3.2, X = Diagq(S q) o L is transitive on Γ1(C(S q)) and so, by
Lemma 3.1, X is transitive on Γ1(C(Aq)). By Lemma 3.3, C(Aq) is not fixed by X.
Thus (C(Aq), X) is an elusive pair. �

For C(Aq), m = q, so m(q − 1) is even, and also δ = 3, as mentioned in Section 2.2.
So C(Aq) indeed satisfies (2). By Lemma 3.3, each element of Diagq(S q) o L either
fixes both C(Aq) and C(S q \ Aq) setwise, or swaps them. Note furthermore that
C(Aq) ∪C(S q \ Aq) = C(S q).

3.2. Example 2. The product construction of a code C in H(m, q) is defined in [6,
Section 4.7] as follows:

Prod(C, l) = {(α1, . . . , αl) | αi ∈C, ∀i},
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which is a code in H(lm, q). We use this construction for the next family of examples.
First we set up the required notation.

Previously we used a subscript to refer simply to the kth entry of a vertex; however,
there is now some ambiguity. We may wish to refer to the kth entry of a vertex in
H(lm, q), or the kth entry, αk, of the l-tuple (α1, . . . , αl) ∈ H(lm, q), which is itself a
vertex in H(m, q). In this section we always mean the kth entry in (α1, . . . , αl), so that
‘kth entries’ are vertices of H(m, q).

Let C ⊆ H(m, q). By [6, Lemma 4.7.1], C and Prod(C, l) have the same minimum
distance, δ say. If δ ≥ 2 then, given α = (α1, . . . , αl) ∈ Prod(C, l), replacing a single αi

with ν ∈ Γ1(αi) yields a neighbour of α, which we denote by µ(α, ν, i), where

µ(α, ν, i)|k =

{
αk if k , i,
ν if k = i.

There are m(q − 1) choices for ν, and l choices for i, and so all the lm(q − 1) neighbours
of α have this form. Given an action of X on Γ = H(m, q), we can define an action of
X o S l on the cartesian product of l copies of Γ. Let α = (α1, . . . , αl), with each αi ∈ Γ,
(x1, . . . , xl) ∈ Xl, σ ∈ S l. Then

α(x1,...,xl) = (αx1
1 , . . . , α

xl
l ) and ασ = (α1σ−1 , . . . , αlσ−1 ), (3.1)

and these elements act on the neighbours of Prod(C, l) as follows:

µ(α, ν, i)(x1,...,xl)|k =

{
αxk

k if k , i,
νxi if k = i

= µ(α(x1,...,xl), νxi , i)|k.

Suppose kσ = n. Then

µ(α, ν, i)σ|n = µ(α, ν, i)|k =

{
αk if k , i,
ν if k = i

=

{
αnσ−1 if nσ

−1
, i,

ν if nσ
−1

= i

=

{
αnσ−1 if n , iσ,
ν if n = iσ

= µ(ασ, ν, iσ)|n,

which gives

µ(α, ν, i)(x1,...,xl) = µ(α(x1,...,xl), νxi , i) and µ(α, ν, i)σ = µ(ασ, ν, iσ).

If C has minimum distance δ ≥ 3 in H(m, q), then each neighbour of Prod(C, `) has
a unique representation of the form µ(α, ν, i). This, however, is not the case when
δ ≤ 2. Let C be a code with δ = 2 and α, β ∈C such that d(α, β) = 2, and consider
ν ∈ Γ1(α) ∩ Γ1(β). Then, for α = (α, . . . , α) and β = (β, α, . . . , α) in Prod(C, l), it
follows that µ(α, ν, 1) = µ(β, ν, 1). Gillespie [6, Lemma 4.7.3] proved the next result
for codes with δ ≥ 3; however it is in fact true for arbitrary minimum distance.
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L 3.5. Let C be an X-neighbour transitive code in H(m, q). Then Prod(C, l) is
X o S l-neighbour transitive in H(lm, q).

P. It follows from (3.1) that Xl is transitive on Prod(C, l) since X is transitive
on C. To map the neighbour µ(α, ν, i) to the neighbour µ(β, ν′, j), we first apply
σ = (i j) ∈ S l, so µ(α, ν, i)σ = µ(ασ, ν, j). As C and Γ1(C) are both X-orbits in H(m, q),
there exists xk ∈ X such that αxk

k = βk for k , i, j, there exists xi ∈ X such that αxi
j = βi,

and there exists x j ∈ X such that νx j = ν′. By letting x = (x1, . . . , xl) ∈ Xl, it follows
that µ(α, ν, i)σx = µ(β, ν′, j). �

The next result follows directly from Lemmas 3.2 and 3.5.

C 3.6. The code Prod(C(S q), l) is (Diagq(S q) o L) o S l-neighbour transitive.

D 3.7. Let C(q, l) be the subset of Prod(C(S q), l) where (α(g1), . . . , α(gl)) ∈
C(q, l) if and only if |{i | gi ∈ Aq}| is even.

In the remainder of this section we show that (C(q, l), (Diagq(S q) o L) o S l) is an
elusive pair.

L 3.8. We have Γ1(Prod(C(S q), l)) = Γ1(C(q, l)), with C(q, l) as in Definition 3.7.

P. Set P = Prod(C(S q), l) and C = C(q, l). Let α = (α(g1), . . . , α(gl)) ∈ P, ν =

ν(α(gk), i, j) for some i , j ≤ q, and µ = µ(α, ν, k) ∈ Γ1(P). Suppose α < C, and let
g′n = gn for n , k and g′k = (i j)gk. Since gk and g′k have different parities, it follows
that α′ = (α(g′1), . . . , α(g′l)) ∈ C. Consider ν′ = ν(α(g′k), j, i) and µ′ = µ(α′, ν′, k). By
Lemma 3.1, ν(α(g), i, j) = ν(α(g′), j, i) ∈ H(q, q). Thus, µ = µ′ ∈ Γ1(C), so Γ1(P) ⊆
Γ1(C). The fact that Γ1(C) ⊆ Γ1(P) holds because C ⊆ P and P has minimum
distance 2. �

L 3.9. The pair (C(q, l), (Diagq(S q) o L) o S l) is an elusive pair, with parameters
(lq, q, 3).

P. By Corollary 3.6, X = (Diagq(S q) o L) o S l is transitive on Γ1(Prod(C(S q), l)),
and this set is equal to Γ1(C(q, l)), by Lemma 3.8. We now show that C(q, l)
is not fixed by X. Consider α = (α(1), . . . , α(1)) ∈C(q, l) and the element x =

(xy, 1, . . . , 1) in the base group of (Diagq(S q) o L) o S l, where y = (12) ∈ S q. Then
αx = (α((12)), α(1), . . . , α(1)) <C(q, l). Thus (C(q, l), X) is an elusive pair.

It remains to show that C(q, l) has minimum distance 3. Let α = (α(g1), . . . , α(gl))
and β = (α(g′1), . . . , α(g′l)) ∈C(q, l), with α , β. If there exists i , j such that gi , g′i
and g j , g′j, then d(α, β) ≥ 2δC(S q) = 4. So suppose there exists i such that gk = g′k for
all k , i. Then gi and g′i have the same parity, and so are either both from C(Aq) or both
from C(S q \ Aq). Hence d(α, β) ≥ δC(Aq) = 3. For equality set gi = 1 and g′i = (123). �

This completes the proof of Theorem 1.2, as (C(q, l), (Diagq(S q) o L) o S l)
has parameters (lq, q, 3). Note that each element of (Diagq(S q) o L) o S l

either fixes C(q, l) setwise, or sends it to the code C′(q, l) ⊆ Prod(C(S q), l),
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where α = (α(g1), . . . , α(gl)) ∈C′(q, l) if and only if |{i | gi ∈ Aq}| is odd. Observe also
that C(q, l) ∪C′(q, l) = Prod(C(S q), l).

3.3. Example 3. For a ∈ Q we define β(a) = (a, . . . , a) ∈ H(m, q). We define the
repetition code in H(m, q) as

Rep(m, q) = {β(a) | a ∈ Q}.

By [7, Theorem 3.2], Rep(m, q) is Diagm(S q) o L-neighbour transitive with minimum
distance m. We now construct our final example, which does not share some of the
properties of previous examples.

P 3.10. Let C = C(Aq) ∪ Rep(q, q), X = Diagq(S q) o L and q ≥ 5. Then
(C, X) is an elusive pair, X is not transitive on Γ1(C) and X is the setwise stabiliser in
Aut(Γ) of Γ1(C).

P. Let R = Rep(q, q). Note that δC(Aq) = 3 and δR = q. If α ∈C(Aq) and β ∈ R then
d(α, β) = q − 1 ≥ 4, so Γ1(C) = Γ1(C(Aq)) ∪ Γ1(R). By Lemma 3.1 and Corollary 3.4,
X is transitive on Γ1(C(Aq)) and, as mentioned above, X is also transitive on Γ1(R).
In particular, X fixes Γ1(C) setwise. It follows from Lemma 3.3 that any element of
X either fixes C setwise, or sends it to C′ = C(S q \ Aq) ∪ R. Thus (C, X) is an elusive
pair with parameters (q, q, 3). There are, however, two X-orbits in Γ1(C), so X is not
transitive on Γ1(C).

Let G = Aut(Γ)Γ1(C), the setwise stabiliser in Aut(Γ) of Γ1(C). We now show
that X = G. By [8], since δR ≥ 5, Aut(Γ)Γ1(R) = Aut(R) and, by [7, Theorem 3.2],
Aut(R) = X. Suppose there exists x ∈G \ X. Then because Γ1(C(Aq)) and Γ1(R) are
both X-orbits, it follows that G acts transitively on Γ1(C). Therefore, the number,
|Γ1(µ) ∩ Γ1(C)|, of neighbours of the code adjacent to µ ∈ Γ1(C) is independent of the
choice of µ.

Now we inspect the neighbours of µ = (1, 1, 3, 4, . . .) ∈ Γ1(C). Changing the first
entry to 2 gives us a vertex in Γ2(C), but the other q − 2 choices give us a vertex
in Γ1(C). Changing the second entry to 2 gives us the codeword α(1), however the
other q − 2 choices give vertices in Γ1(C). For 3 ≤ i ≤ q, replacing the ith entry with 2
gives us a vertex in Γ1(C), while the other q − 2 choices give vertices in Γ2(C). Thus
|Γ1(µ) ∩ Γ1(C)| = 3(q − 2). Now let ν = (2, 1, 1, 1, . . .) ∈ Γ1(C). The adjacent vertex
with 1 in the first entry is in C, but the q − 2 other vertices that differ in the first entry
are in Γ1(C). Changing any other entry gives a vertex which is always in Γ2(C), since
q ≥ 5. Thus |Γ1(ν) ∩ Γ1(C)| = q − 2 , |Γ1(µ) ∩ Γ1(C)|, which is a contradiction. �

The first section of the proof of Proposition 3.10 also shows that the image of C
under any x ∈ X that does not fix C is C′ = C(S q \ Aq) ∪ Rep(q, q), and we note that
C ∩C′ = Rep(q, q) , ∅.

3.4. Nonexistence of elusive codes with parameters (4, 3, 3). Now we proceed to
show that it is not possible to have an elusive code of length four, with minimum
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distance three and an alphabet size three. First we introduce some results and notation
from [8].

We say that two codes, C and C′, in H(m, q), are equivalent if there exists y ∈ Aut(Γ)
such that Cy = C′. Note that this is a more general definition of equivalence than is
standard in coding theory, which often requires the number of nonzero entries to be
preserved [10, Sections 1.6 and 1.7]. Equivalence preserves minimum distance (see
[8, Lemma 4]). The next lemma is an extension of [8, Lemma 1].

L 3.11. If α and β are in H(m, q) with d(α, β) = 2, then there are precisely two
distinct vertices, µ and ν, in Γ1(α) ∩ Γ1(β), and d(µ, ν) = 2. Moreover, given α, µ and
ν there is only one possible choice for β.

P. By [8, Lemma 1], |Γ1(α) ∩ Γ1(β)| = 2. We know µ, ν ∈ Γ1(α) ∩ Γ1(β) each
differ from α in one entry, say µi , αi and ν j , α j. If i , j, then d(µ, ν) = 2. Suppose
i = j. Then βi is not equal to at least one of µi or νi, since µi , νi. We know d(β, µ) = 1,
and so if βi , µi then βl = µl = αl for l , i, a contradiction since d(α, β) = 2. A similar
argument rules out the case βi , νi, and we are left with d(µ, ν) = 2 and βi = µi, β j = ν j

and βl = αl for l , i, j. �

Let (C, X) be an elusive pair in H(m, q) with δ ≥ 3. Suppose α ∈C and x ∈ X such
that αx <C. A pre-codeword of α with respect to x is a vertex π such that d(α, π) = 2
and πx ∈C [8, Definition 3]. We denote the set of all pre-codewords of α with respect
to x by Pre(α, x).

L 3.12. Let (C, X) be an elusive pair in H(m, q) with δ ≥ 3, α ∈C, x ∈ X such that
αx <C, and π ∈ Pre(α, x). Then the following statements are true.

(i) {Γ1(α) ∩ Γ1(π′) | π′ ∈ Pre(α, x)} forms a partition of Γ1(α).
(ii) {Γ1(π) ∩ Γ1(β) | β ∈ Γ2(π) ∩C} forms a partition of Γ1(π).
(iii) Let µ, ν ∈ Γ1(α) ∩ Γ1(π) differ from α in entries i, j respectively, and π′ ∈

Pre(α, x) \ π. Then there exists ν′ ∈ Γ1(α) ∩ Γ1(π′) that differs from α in some
entry k , i, j.

P. For a proof of (i) see [8, Lemma 6(i)], and of (ii) see [8, Lemma 7(ii)].
For part (iii), d(α, π′) = 2, so α and π′ differ in exactly two entries i′ and j′. If

{i, j} = {i′, j′}, then d(π, π′) = 1 or 2, since π , π′. However d(π, π′) = d(πx, π′x) ≥ 3,
since πx, π′x ∈C and δ ≥ 3. So there must be some value k < {i, j} and then, by
Lemma 3.11, vertex ν′ ∈ Γ1(α) ∩ Γ1(π′) with ν′l = αl, for l , k, and ν′k = π′k. �

Note that, by [8, Lemma 1], each part in the above partitions has size 2, since the
distance between a codeword and pre-codeword is 2. The partitions themselves have
size m(q − 1)/2, by [8, Lemma 6(ii)] and [8, Lemma 7(iii)].

L 3.13. There is no elusive pair with parameters (4, 3, 3).

P. Let (C, X) be an elusive pair with parameters (4, 3, 3). By replacing C with
an equivalent code if necessary, we can assume that 0 = 0000 ∈C and that there
exists x ∈ X such that 0x <C. First we determine, up to equivalence, four members
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of Pre(0, x). By [8] it follows that |Pre(0, x)| = 4 and that Γ1(π) ⊆ Γ1(C) for each
π ∈ Pre(0, x). By Lemma 3.12(i), P0 = {Γ1(0) ∩ Γ1(π) | π ∈ Pre(0, x)} forms a partition
of Γ1(0), and by Lemma 3.11, each part of this partition consists of two vertices.

Consider {1000, ν1} ∈ P0. By Lemma 3.11, ν1 , 2000. Thus, by replacing C with an
equivalent code if necessary, we can assume that ν1 = 0100 and, again by Lemma 3.11,
π1 = 1100 ∈ Pre(0, x). Next, consider {2000, ν2} ∈ P0. By Lemma 3.12(iii), ν2 , 0200,
and so again, using the symmetries of the Hamming graph, we can assume that
ν2 = 0020. Therefore, π2 = 2020 ∈ Pre(0, x). Next, consider {0200, ν3} ∈ P0. If
ν3 = 0010, this implies that {0001, 0002} ∈ P0, contradicting Lemma 3.11. Thus, as
before, we can assume that ν3 = 0002 and π3 = 0202 ∈ Pre(0, x). Consequently we
deduce that π4 = 0011 ∈ Pre(0, x).

Next we determine three additional elements of C. By Lemma 3.12(ii), P1 =

{Γ1(π1) ∩ Γ1(α) | α ∈ Γ2(π1) ∩C} forms a partition of

Γ1(π1) =

{
0100 1000 1110 1101
2100 1200 1120 1102

}
,

and by Lemma 3.11, each part has size 2. We know that {1000, 0100} ∈ P1 as
0 ∈ Γ2(π1) ∩C. Furthermore, by Lemma 3.11, {1110, 1120} and {1101, 1102} are not
elements of P1. This implies that at least one of 1110 or 1120 forms an element
of P1 with either 1101 or 1102. Thus at least one of 1111, 1121, 1122 or 1112
is a codeword in Γ1(π1) ∩C. Consider 1020 ∈ Γ1(π2), which must be adjacent to
a codeword with three nonzero entries, as δ = 3 and 0 ∈C. Such a codeword has
the form 1a2b, and is at distance at least 2 from 1121 and 1122, so these vertices
are not codewords. By considering 0102 ∈ Γ1(π3), a similar argument shows that
1112 is not a codeword either. Thus 1111 ∈C and {1110, 1101} ∈ P1. Consider the
part {2100, ν} ∈ P1. By Lemma 3.12(iii), ν , 1200, and if ν = 1120 then 2120 ∈C,
contradicting the fact that 2120 ∈ Γ1(π2). Thus ν = 1102, which leaves {1200, 1120} ∈
P1. Hence Γ2(π1) ∩C = {0000, 1111, 1220, 2101}. Finally, consider the partition
P2 = {Γ1(π2) ∩ Γ1(α) | α ∈ Γ2(π2) ∩C} of

Γ1(π2) =

{
0020 2120 2000 2021
1020 2220 2010 2022

}
.

As 0, 1220 ∈ Γ2(π2) ∩C it follows that {0020, 2000}, {1020, 2220} ∈ P2. Consider
the part {2021, µ} ∈ P2. By Lemma 3.11, µ , 2022. Thus µ = 2120 or 2010 and so
α = 2121 or 2011 ∈C respectively. However, in both cases d(α, 1111) = 2, which is a
contradiction. Thus no such elusive pair exists. �
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