

Separating H-sets by Open Sets

Jack Porter and Mohan Tikoo

Abstract. In an H-closed, Urysohn space, disjoint H-sets can be separated by disjoint open sets. This is not true for an arbitrary H-closed space even if one of the H-sets is a point. In this paper, we provide a systematic study of those spaces in which disjoint H-sets can be separated by disjoint open sets.

1 Introduction

Let X be a Hausdorff topological space and denote the topology by $\tau(X)$; $\operatorname{cl}_X(A)$ (respectively, $int_X(A)$) will denote the closure (respectively, the interior) of A in X. The family $\{ \inf_X \operatorname{cl}_X(U) : U \in \tau(X) \}$ is an open base for a coarser Hausdorff topology. The space with the topology generated by the open base is denoted by X_s (note that $\tau(X_5) \subset \tau(X)$). The space X_5 is called the *semiregularization* of X, and X is called semiregular if and only if $X = X_s$. Two nonempty disjoint subsets A and B can be separated by disjoint open sets in X if and only if they can be separated in X_s . A subset A of X is called an H-set [11] (respectively, an N-set) in X if, given any open cover \mathcal{U} of A in X, there exists a finite subfamily $\{U_i: i=1,2,3,\ldots,n\}\subseteq\mathcal{U}$ such that $A \subseteq \bigcup_{i=1}^n \operatorname{cl}_X(U_i)$ (respectively, $A \subseteq \bigcup_{i=1}^n \operatorname{int}_X \operatorname{cl}_X(U_i)$.) Obviously, every N-set is an H-set, and N-sets and H-sets in a Hausdorff space are closed. Further, if A is an N-set in X, then A is compact in X_s . Now in a Hausdorff space, any two nonempty disjoint compact sets can be separated by disjoint open sets. Hence, any two nonempty disjoint N-sets can be separated by disjoint open sets in a Hausdorff space. If X is also regular, then N-sets and H-sets are all compact. Hence, in a T_3 (i.e., regular and Hausdorff) space, any two nonempty disjoint H-sets can be separated by disjoint open sets. A space X is called *Urysohn* if given any two distinct points x, y in X, there exist open sets U and V in X such that $x \in U$, $y \in V$, and $\operatorname{cl}_X(U) \cap \operatorname{cl}_X(V) = \emptyset$. A space X is called H-closed [1] if X is closed in every Hausdorff space in which *X* is embedded. A space *X* is called *completely*, *i.e.*, *functionally*, Hausdorff if for any two distinct points x and y in X, there exists a continuous map $f: X \to [0, 1]$ such that f(x) = 0 and f(y) = 1. H-sets in Hausdorff spaces are interesting but not completely understood. Here are some basic properties of H-sets.

Proposition 1.1 (i) An H-set in a Hausdorff space is a closed set.

- (ii) If X is a subspace of Y and A is an H-set in X, then A is an H-set in Y.
- (iii) A set A in a space X is an H-set in X if and only if A is an H-set in X_s .
- (iv) An H-closed subspace in a Hausdorff space is also an H-set.
- (v) A space X is H-closed and Urysohn if and only if X_s is compact and Hausdorff.

Received by the editors May 8, 2007. Published electronically April 6, 2010. AMS subject classification: **54C08**, 54D10, 54D15. Keywords: H-set, H-closed, θ -continuous.

- (vi) A subset A of a Urysohn H-closed space X is an H-set if and only if A is compact in X.
- (vii) Two disjoint H-sets in a Urysohn, H-closed space can be separated by open sets.
- (viii) Let A be an H-set in a space X and $U \in \tau(X)$ such that $A \subseteq U \subseteq X$. Then A is an H-set in U.

Proof The results (i)–(vi) are contained in [9, 12] and (vii) is an immediate consequence of (vi). To show (viii), let \mathcal{U} be $\tau(U)$ -open cover of A. Now, \mathcal{U} is a $\tau(X)$ -open cover of A. There is a finite subfamily \mathcal{S} such that $A \subseteq \operatorname{cl}_X(\cup \mathcal{S})$. Thus, $A \subseteq U \cap \operatorname{cl}_X(\cup \mathcal{S}) = \operatorname{cl}_U(\cup \mathcal{S})$.

Remark In general, the converse of Proposition 1.1(ii) is false. The usual example is to use an H-set that is discrete in a space. For example, the discrete subspace $\kappa\omega \setminus \omega$ is an H-set in $\kappa\omega$ as noted in [9] (this follows from the fact that $(\kappa\omega)_s = \beta\omega$ and thus $\kappa\omega \setminus \omega$ is an H-set by Proposition 1.1(iii)). However, as noted in Proposition 1.1(v), the converse is true when the intermediate set is open.

Theorem 1.2 Suppose A is an H-set in a Hausdorff space X and let $x \in X \setminus A$. Then there exists open sets V and W in X such that $A \subseteq \operatorname{cl}_X V$, $x \in W$, and $W \cap \operatorname{cl}_X V = \emptyset$.

Proof For each $a \in A$, there exist open sets O_a and O_x such that $a \in O_a$, $x \in O_x$, and $O_a \cap O_x = \emptyset$. The family $\mathcal{U} = \{O_a : a \in A\}$ is an open cover of the H-set A in X. Hence, there exists a finite subset $B \subseteq A$ such that $A \subseteq \operatorname{cl}_X \bigcup \{O_a : a \in B\} = \bigcup \{\operatorname{cl}_X O_a : a \in B\}$. Take $V = \bigcup \{O_a : a \in B\}$ and $W = \bigcap \{W_a : a \in B\}$ to complete the proof.

Theorem 1.2 emphasizes the differences between separating a point from a compact set and separating a point from an H-set.

Corollary 1.3 Suppose A and B are two disjoint, nonempty H-sets in X. Then there exist open sets U and V in X such that $A \subseteq \operatorname{cl}_X U$, $B \cap U = \emptyset$, $B \subseteq \operatorname{cl}_X V$, and $A \cap V = \emptyset$.

- **Theorem 1.4** (i) Suppose $X = \bigoplus \{X_i : 1 \le i \le n\}$ is a topological sum of spaces $\{X_i : 1 \le i \le n\}$ and A_i is an H-set in X_i for each i. Then the subspace $\bigcup \{A_i : 1 \le i \le n\}$ is an H-set in X.
- (ii) The product of two H-sets is an H-set.

Proof The proof of (i) is straightforward. To prove (ii), let A be an H-set in X and B an H-set in Y. We want to show that $A \times B$ is an H-set in $X \times Y$. Let \mathcal{C} be an open cover of $A \times B$ using open sets in $X \times Y$. We can assume that $\mathcal{C} = \{U_{ab} \times V_{ab} : (a,b) \in A \times B\}$ where U_{ab} is an open set in X containing A and A is an open set in A containing A. Fix $A \in A$ and there is a finite subset $A \subseteq B$ such that $A \subseteq C$ by that $A \subseteq C$ by the $A \subseteq C$ by the A

Then

$$U_a \times B \subseteq U_a \times \operatorname{cl}_Y(\bigcup \{V_{ab} : b \in F_a\}) \subseteq \operatorname{cl}_X U_a \times \operatorname{cl}_Y(\bigcup \{V_{ab} : b \in F_a\})$$
$$= \operatorname{cl}_{X \times Y}(U_a \times (\bigcup \{V_{ab} : b \in F_a\}) = \operatorname{cl}_{X \times Y}(\bigcup \{U_a \times V_{ab} : b \in F_a\}).$$

Note that $\{U_a : a \in A\}$ is an open cover of A and there is a finite subset $G \subseteq A$ such that $A \subseteq \operatorname{cl}_X(\bigcup \{U_a : a \in G\})$. Let $F = \bigcup \{F_a : a \in G\}$. Now

$$A \times B \subseteq \operatorname{cl}_X(\bigcup \{U_a : a \in G\}) \times B$$

$$\subseteq \operatorname{cl}_{X \times Y}(\bigcup \{U_a : a \in G\}) \times B)$$

$$= \operatorname{cl}_{X \times Y}(\bigcup \{U_a \times B : a \in G\})$$

$$\subseteq \operatorname{cl}_{X \times Y}(\bigcup \{\operatorname{cl}_{X \times Y}(\bigcup \{U_a \times V_{ab} : b \in F_a\}) : a \in G\})$$

$$= \operatorname{cl}_{X \times Y}(\operatorname{cl}_{X \times Y}(\bigcup \{\bigcup \{U_a \times V_{ab} : b \in F_a\} : a \in G\}))$$

$$\subseteq \operatorname{cl}_{X \times Y}(\bigcup \{\bigcup \{U_{ab} \times V_{ab} : b \in F_a\} : a \in G\})$$

$$\subseteq \operatorname{cl}_{X \times Y}(\bigcup \{U_{ab} \times V_{ab} : (a, b) \in G \times F\}).$$

This shows that $A \times B$ is an H-set in $X \times Y$.

Corollary 1.5 The finite product of H-sets is an H-set.

Remark We do not know whether the infinite product of H-sets is also an H-set. Vermeer [12, (4.6)] has conjectured that if A is an H-set in X, there is a compact Hausdorff space Y and a θ -continuous function $f: Y \to X$ such that f[Y] = A. If this conjecture is correct, then the infinite product of H-sets is an H-set.

Example 1.6 ([7]) Let $X = \mathbb{R} \cup \{p,q\}$ where \mathbb{R} is the space of reals with the usual topology and p,q are elements not in \mathbb{R} . A set U is defined to be open if $U \cap \mathbb{R}$ is open in \mathbb{R} and $p \in U$ (respectively, $q \in U$) implies that for some $m \in \mathbb{N}$, $\bigcup \{(2n, 2n+1) \cup (-2n-1, -2n) : n \ge m\} \subseteq U$ (respectively, $\bigcup \{(2n-1, 2n) \cup (-2n, -2n+1) : n \ge m\} \subseteq U$). The space X is an H-closed space but the H-sets $\{q\}$ and $\{p\} \cup \mathbb{N}$ in X cannot be separated by open sets in X. Also, the intersection of two H-sets $\{p\} \cup \mathbb{N}$ and $\{q\} \cup \mathbb{N}$ is \mathbb{N} , which is not an H-set in X.

Example 1.7 ([10]) Let

$$X = \left\{ \left(\frac{1}{n}, \frac{1}{m} \right) : n \in \mathbb{N}, |m| \in \mathbb{N} \right\} \cup \left\{ \left(\frac{1}{n}, 0 \right) : n \in \mathbb{N} \right\} \cup \left\{ (0, 1), (0, -1) \right\}.$$

Let \mathcal{V} be an ultrafilter on \mathbb{N} . Topologize X as follows: a set $U \subseteq X$ is open in X if and only if $U \cap (X \setminus \{(0,1),(0,-1)\})$ is open in the topology induced by the usual topology of the plane \mathbb{R}^2 and if $(0,1) \in U$ (respectively, $(0,-1) \in U$), then there is a set $K \in \mathcal{V}$ such that $\{(\frac{1}{n},\frac{1}{m}): n \in K, m \in \mathbb{N}\} \subseteq U$ (respectively, $\{(\frac{1}{n},-\frac{1}{m}): n \in K, m \in \mathbb{N}\} \subseteq U$). Then X is a non-Urysohn (hence, non regular), non-H-closed Hausdorff space such that every H-set in X is compact, whence any two disjoint nonempty H-sets in X can be separated by disjoint open sets in X.

Theorem 1.8 In a completely Hausdorff space X, disjoint H-sets can be separated by a real-valued continuous function.

Proof The first step is to show that a point $a \in X$ and an H-set B such that $a \notin B$ can be separated by a real-valued continuous function. For each point $b \in B$, there is a real-valued continuous function f_b such that $f_b(b) = 0$ and $f_b(a) = 1$. Define $g_b = \max\{f_b, \frac{1}{4}\} - \frac{1}{4}$. Note that $g_b^{\leftarrow}(0) = f_b^{\leftarrow}[(-\infty, \frac{1}{4}]]$ is a neighborhood of b. Let $z(g_b) = g_b^{\leftarrow}(0)$. Then the neighborhood cover $\{z(g_b) : b \in B\}$ of B has a finite subfamily $\{z(g_b) : b \in A\}$ for some finite $A \subseteq B$ such that $B \subseteq \bigcup \operatorname{cl}_X(\{z(g_b) : b \in A\})$. Let $g = \min\{g_b : b \in A\}$. Now $z(g_b) \subseteq z(g)$ for all $b \in A$ and $g(a) = \frac{3}{4}$. Thus, $B \subseteq \bigcup \operatorname{cl}_X(\{z(g_b) : b \in A\}) \subseteq \operatorname{cl}_X(z(g)) = z(g)$. Thus, a and b are separated by b. The final step of separating two disjoint H-sets b and b or real-valued continuous function is similar to the first step.

By Proposition 1.1(vii), two disjoint nonempty H-sets of a Urysohn H-closed space can be separated by open sets in X. Actually, more is true, using Theorem 1.8. As X_s is compact Hausdorff, both X_s and X are completely Hausdorff. By Theorem 1.8, disjoint H-sets in X can be separated by a real-valued continuous function.

A function $f\colon X\to Y$ between two spaces X and Y is θ -continuous [4] at $x\in X$ if for each open neighborhood V of f(x) in Y there is an open neighborhood U of x in X such that $f[\operatorname{cl}_X]\subseteq\operatorname{cl}_Y V$. If f is θ -continuous at each x, then f is said to be θ -continuous on X. A θ -homeomorphism is a bijection $f\colon X\to Y$ such that both f and its inverse f^{\leftarrow} are θ -continuous. A function $f\colon X\to Y$ is called *irreducible* if f is onto and for each proper subset A of X, $f[A]\neq Y$. A function $f\colon X\to Y$ is called *compact* if for each $y\in Y$, $f^{\leftarrow}(y)=\{x\in X:f(x)=y\}$ is compact in X; f is called a *perfect* map if f is both closed and compact. For any Hausdorff space X there exists an extremally disconnected zero-dimensional space f is f and a perfect, irreducible f-continuous surjection f is f.

Remark By Theorem 1.8, for a Hausdorff space *X*, disjoint H-sets in EX can be separated by a real-valued continuous function.

2 Separation Properties

In this section, we examine closely those spaces in which disjoint H-sets can be separated by disjoint open sets or disjoint open sets whose closures are also disjoint. We will use the following symbols to classify spaces with separation properties for H-sets.

A space X has property λ_1 (respectively, $c\lambda_1$) if, whenever B is any nonempty H-set in X and $x \in X \setminus B$, there are open sets U and V in X such that $x \in U, B \subseteq V$, and $U \cap V = \emptyset$ (respectively, $cl_X U \cap cl_X V = \emptyset$).

A space X has property λ_2 (respectively, $c\lambda_2$) if, whenever A and B are disjoint, nonempty H-sets in X, there are open sets U and V in X such that $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$ (respectively, $\operatorname{cl}_X U \cap \operatorname{cl}_X V = \emptyset$).

Recall [8] that a space X is S(3) (respectively S(4)) if for every pair of distinct points p,q, there are open sets $\{U_0,U_1,V_0,V_1\}$ such that $p \in U_0 \subseteq \operatorname{cl} U_0 \subseteq U_1$, $q \in V_0 \subseteq \operatorname{cl} V_0 \subseteq V_1$, and $U_1 \cap V_1 = \emptyset$ (respectively, $\operatorname{cl} U_1 \cap \operatorname{cl} V_1 = \emptyset$). Also, recall that S(2) is the same as Urysohn and S(1) is the same as Hausdorff.

Theorem 2.1 (i) An S(4) space X has property $c\lambda_2$. (ii) An S(3) space X has property $c\lambda_1$.

- (iii) A Urysohn space X has property λ_1 .
- (iv) A space X with property $c\lambda_1$ is Urysohn and has property λ_2 .
- (v) A space X with property λ_1 is Hausdorff, and a compact set disjoint from an H-set can be separated by disjoint open sets.
- (vi) An H-closed space X is Urysohn if and only if X is λ_1

Proof The proofs of (iv) and (v) are clear. The proofs of (i)–(iii) are similar. We provide the proof for (ii). Let A be an H-set in an S(3) space X and $p \notin A$. For each $a \in A$, there are open sets U_a^0, U_a^1 and V_a^0, V_a^1 such that $a \in U_a^0 \subseteq \operatorname{cl} U_a^0 \subseteq U_a^1$, $p \in V_a^0 \subseteq \operatorname{cl} V_a^0 \subseteq V_a^1$, and $U_a^1 \cap V_a^1 = \varnothing$. There is a finite subset $F \subseteq A$ such that $A \subseteq \bigcup \{\operatorname{cl} U_a^0 : a \in F\}$. Let $V_0 = \bigcap \{V_a^0 : a \in F\}$ and $V_1 = \bigcap \{V_a^1 : a \in F\}$. Note that $A \subseteq \bigcup \{U_a^1 : a \in F\}$, $P \in V_0 \subseteq \operatorname{cl} V_0 \subseteq V_1$ and $V_1 \cap (\bigcup \{U_a^1 : a \in F\}) = \varnothing$. Thus, $\operatorname{cl} V_0 \cap \operatorname{cl}(\bigcup \{U_a^1 : a \in F\}) = \varnothing$. This shows that X is $c\lambda_1$. To prove (vi), one direction follows from (iii). To show the other direction, recall [9] that in an H-closed space, the closure of an open set is H-closed and by Proposition 1.1(iv), an H-closed subspace is an H-set. Thus, it follows that for an H-closed space X with property λ_1 , the semiregularization X_s is regular, and hence compact. So X is Urysohn.

Corollary 2.2 (i) A space that is T_3 or completely Hausdorff has property $c\lambda_2$.

(ii) A semiregular, H-closed space with property λ_1 is compact.

We now have this implication diagram:

Remark Recall [9] that for an open set U in a space X, $\operatorname{cl}_X U = \operatorname{cl}_{X_s}(\operatorname{int}_X \operatorname{cl}_X U)$. Now $\operatorname{int}_X \operatorname{cl}_X U \in \tau(X_s)$. Thus, X has property λ_1 (respectively, $\lambda_2, c\lambda_1, c\lambda_2$) if and only if X_s has property λ_1 (respectively, $\lambda_2, c\lambda_1, c\lambda_2$).

Example 2.3 (A space with property λ_1 but not λ_2 .) Consider the Tychonoff plank $T = (\omega_1 + 1) \times (\omega + 1) \setminus \{(\omega_1, \omega)\}$ The space T is a zero-dimensional dense subspace of the compact Hausdorff product space $(\omega_1 + 1) \times (\omega + 1)$. A slight modification of the technique listed in [9, 2R] shows that

- (i) If *U* is an open set in *T*, *C* is a cofinal subset of ω and $\{\omega_1\} \times C \subseteq U$, there is some $\alpha \in \omega_1$ such that $[\alpha, \omega_1) \times C \subseteq U$ and $[\alpha, \omega_1) \times \{\omega\} \subseteq \operatorname{cl}_T U$.
- (ii) If *U* is an open set in *T* and $[\alpha, \omega_1) \times \{\omega\} \subseteq U$ for some $\alpha \in \omega_1$, then $\{\omega_1\} \times [n, \omega) \subseteq \operatorname{cl}_T U$ for some $n \in \omega$.

Now let $Z = T \times \omega$. For $\alpha \in \omega_1$ identify (α, ω, n) and $(\alpha, \omega, n+1)$ if n is odd. For $m \in \omega$ identify (ω_1, m, n) and $(\omega_1, m, n+1)$ if n is even. Call the resulting space Y. For $n \geq 2$, let Y_n be the image of $T \times \{0, 1, \ldots, n\}$, and let $T_i = T \times \{i\}, i = 0, 1, 2, \ldots$. Let $S_2 = \{a, b\} \cup Y_2$, where $\{a, b\} \cap Y_2 = \varnothing$. A set $U \subseteq S_2$ is open in S_2 if $U \cap Y_2$ is open in Y_2 and $Y_2 \in U$ (respectively, $Y_2 \in U$) implies for some $Y_2 \in U$, $Y_2 \in U$ (respectively, $Y_2 \in U$) implies for some $Y_2 \in U$, $Y_2 \in U$.

The subspace Y_2 of S_2 is a zero-dimensional and locally compact space. To show that S_2 is Urysohn, we need to show only that the points a and b can be S_2 -separated. Consider the open neighborhoods $U=\{a\}\cup(\omega_1\times\omega\times\{0\})$ of a and $V=\{b\}\cup(\omega_1\times\omega\times\{2\})$ of b. Note that $\operatorname{cl}_{S_2}U=\{a\}\cup T_0$, $\operatorname{cl}_{S_2}V=\{b\}\cup T_2$, and $\operatorname{cl}_{S_2}U\cap\operatorname{cl}_{S_2}V=\varnothing$. So S_2 is λ_1 by Theorem 2.1(iii). The sets $A=\{a\}\cup(\{\omega_1\}\times\omega\times\{0\})$ and $B=\{b\}\cup(\omega_1\times\{\omega\}\times\{2\})$ are disjoint H-sets. By (i), for any open set W of S_2 that contains A, $\operatorname{cl}_{S_2}W$ contains $[\alpha,\omega_1)\times\{\omega\}\times\{2\}$ for some $\alpha\in\omega_1$. So $(\alpha,\omega,2)\in\operatorname{cl}_{S_2}W\cap B$. Thus, A and B cannot be separated by disjoint open sets and S_2 is not S_2 . Since S_2 is not S_2 , it cannot be S_2 .

Example 2.4 (A space with property $c\lambda_1$ but not $c\lambda_2$) We will use the notation of Example 2.3. Let $S_3 = \{a, b\} \cup Y_3$, where $\{a, b\} \cap Y_3 = \emptyset$. A set $U \subseteq S_3$ is open in S_3 if $U \cap Y_3$ is open in Y_3 and $a \in U$ (respectively, $b \in U$) implies for some $\alpha \in \omega_1, ((\alpha, \omega_1) \times \omega \times \{0\}) \subseteq U$ (respectively, $((\alpha, \omega_1) \times \omega \times \{3\}) \subseteq U$).

The subspace Y_3 is a zero-dimensional and locally compact space. To show that space S_3 is S(3), we need to show only that the points a and b can be S(3)-separated. Consider the open neighborhoods $U_0 = \{a\} \cup (\omega_1 \times \omega \times \{0\})$ and $U_1 = \{a\} \cup T_0 \cup (\omega_1 \times \omega \times \{1\})$ of a and $V_0 = \{b\} \cup (\omega_1 \times \omega \times \{3\})$ and $V_1 = \{b\} \cup T_3 \cup (\omega_1 \times \omega \times \{2\})$ of b. Note that $U_1 \cap V_1 = \emptyset$, $\operatorname{cl}_{S_3} U_0 = \{a\} \cup T_0 \subseteq U_1$, and $\operatorname{cl}_{S_3} V_0 = \{b\} \cup T_3 \subseteq V_1$. This shows that the points a and b can be S(3)-separated.

So S_3 is $c\lambda_1$ by Theorem 2.1(ii). The subspaces $\{a\} \cup T_0$ and $\{b\} \cup T_3$ are H-closed and disjoint. The sets $A = \{a\} \cup (\{\omega_1\} \times \omega \times \{0\}) \text{ and } B = \{b\} \cup (\{\omega_1\} \times \omega \times \{3\})$ are H-sets and disjoint. By Example 2.3(i) for any open set U of S_3 that contains A, $\operatorname{cl}_{S_3} U$ contains $[\alpha, \omega_1) \times \{\omega\} \times \{2\}$ for some $\alpha \in \omega_1$. By Example 2.3(ii) for any open set V of S_3 that contains B, $\operatorname{cl}_{S_3} V$ contains $[\beta, \omega_1) \times \{\omega\} \times \{2\}$ for some $\beta \in \omega_1$. So $(\max\{\alpha, \beta\}, \omega, 2) \in \operatorname{cl}_{S_3} U \cap \operatorname{cl}_{S_3} V$. Thus, A and B cannot be separated by disjoint open sets whose closures are disjoint and this shows that S_3 is not $c\lambda_2$.

Example 2.5 (A space with property λ_2 but not $c\lambda_1$) This space is a modification of the space described in Example 2.3. Let $Y_2' = Y_2 \setminus (\omega_1 \times \{\omega\} \times \{0\})$, $S_2' = \{a,b\} \cup Y_2'$, where $\{a,b\} \cap Y_2' = \varnothing$. Let \mathcal{U} be a free ultrafilter on ω . A set $U \subseteq S_2'$ is open in S_2' if $U \cap Y_2'$ is open in Y_2' , $a \in U$ implies for some $\alpha \in \omega_1$ and $V \in \mathcal{U}$, $((\alpha,\omega_1) \times V \times \{0\}) \subseteq U$, and $b \in U$ implies for some $\alpha \in \omega_1$, $(\alpha,\omega_1] \times \omega \times \{2\} \subseteq U$. The space S_2' is Urysohn (and hence λ_1 by Theorem 2.1(iii)), $\{b\} \cup T_2$ is H-closed, and Y_2 is a zero-dimensional, locally compact space.

The set $B = \{b\} \cup (\omega_1 \times \{\omega\} \times \{2\})$ is an H-set but the set $A = \{a\} \cup (\{\omega_1\} \times \omega \times \{0\})$ is not. Clearly a and B can be separated by disjoint open sets. Let V be an open set in S_2' that contains B. By Example 2.3(ii), $\operatorname{cl}_{S_2'} V$ meets a tail of A. However, for any open set U of a, $\operatorname{cl}_{S_2'} U$ contains a cofinal subset of A. Thus, a and B cannot be separated by open sets whose closures are disjoint. This shows that S_2' is not $c\lambda_1$.

To show that S_2' is λ_2 , let C and D be disjoint H-sets. If C or D is compact, we are done by Theorem 2.1(v). If $C \cap \{a, b\} = \emptyset$, then C is an H-set in the T_3 subspace $S_2' \setminus \{a, b\}$ by Proposition 1.1(v). Thus, C is a compact subspace. We can assume that $a \in C$ and $b \in D$.

Let $S = \{n \in \omega : (\omega_1 + 1) \times \{n\} \times \{0\} \cap C \neq \emptyset\}$. Assume that $S \in \mathcal{U}$. Then there is some $R \in \mathcal{U}$ such that $R \subset S$ and $S \setminus R$ is infinite. Let $U = \{a\} \cup (\omega \times R \times \{0\})$; for $n \in S$

 $SV_n = (\omega_1 + 1) \times \{n\} \times \{0, 1\}$ (note that V_n is clopen in S_2'); $V = \bigcup \{V_n : n \in S\}$; and for $p \in C \setminus \{a\} \cup V$), there is a clopen set W_p in S_2' such that $p \in W_p \subseteq T_1 \cup T_2 \cup \{b\}$. So, $U \cup \{V_n : n \in S\} \cup \{W_p : p \in C \setminus \{a\} \cup V)$ is an open cover of the H-set C. There are finite subsets $F \subset S$ and $G \subseteq C \setminus \{a\} \cup V$) such that $C \subseteq \operatorname{cl}_{S_2'} U \cup \bigcup \{V_n : n \in F\} \cup \bigcup \{W_p : p \in G\}$. Note that $\operatorname{cl}_{S_2'} U \subseteq \{a\} \cup (\omega_1 + 1) \times R \times \{0\}$. For $m \in S \setminus (R \cup F)$, $C \cap ((\omega_1 + 1) \times \{m\} \times \{0\}) \neq \emptyset$. But $((\omega_1 + 1) \times \{m\} \times \{0\}) \cap [\operatorname{cl}_{S_2'} U \cup \bigcup \{V_n : n \in F\} \cup \bigcup \{W_p : p \in G\}] = \emptyset$. This contradiction implies that $S \not\in \mathcal{U}$. Hence there is some $P \in \mathcal{U}$ such that $((\omega + 1) \times P \times \{0\}) \cap C = \emptyset$. This shows that $C \setminus \{a\}$ is an H-set in a T_3 space and hence compact. It follows that C is compact.

Added in Proof R. Hodel [5] has shown that an infinite product of H-sets is an H-set. This answers the question contained in the remark following Corollary 1.5.

References

- P. S. Alexandroff and P. Urysohn, Zur Theorie der topologischen Räume. Math. Ann. 92, 1924, no. 3-4, 258–266. doi:10.1007/BF01448008
- [2] R. F. Dickman, Jr. and J. R. Porter, θ -closed subsets of Hausdorff spaces. Pacific. J. Math. **59**(1975), no. 2, 407-415.
- [3] R. F. Dickman, Jr. J. R. Porter, and L. R. Rubin, Completely regular absolutes and projective objects. Pacific. J. Math. 94(1981), no. 2, 277–295.
- [4] S. Fomin Extensions of topological spaces. Ann. of Math. 44(1943), 471–480. doi:10.2307/1968976
- [5] R. E. Hodel, A theory of convergence and cluster points based on κ -nets. Top. Proc. **35**(2010), 291–330.
- [6] S. Iliadis, Absolutes of Hausdorff spaces Dokl. Akad. Nauk. SSSR 149(1963)22–25.
- [7] J. Porter and M. Tikoo, On Katětov spaces. Canad. Math. Bull. 32(1989), no. 4, 425–433.
- [8] J. Porter and C. Votaw, S(α) spaces and regular Hausdorff extensions. Pacific J. Math 45(1973), 327–345.
- [9] J. Porter and G. Woods, Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, New York, 1988.
- [10] M. Tikoo, A note on H-sets. Kyungpook Math. J. 28(1988), no. 1, 91–95.
- [11] N. V. Veličko, *H-closed topological spaces*. Amer. Math. Soc. Transl. **78**(1968), 103 118.
- [12] J. Vermeer, Closed spaces of H-closed spaces. Pacific J. Math. 118(1985), no. 1, 229–247.

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA e-mail: porter@ku.edu

Department of Mathematics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA e-mail: mtikoo@semo.edu