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Separating H-sets by Open Sets

Jack Porter and Mohan Tikoo

Abstract. In an H-closed, Urysohn space, disjoint H-sets can be separated by disjoint open sets. This

is not true for an arbitrary H-closed space even if one of the H-sets is a point. In this paper, we provide

a systematic study of those spaces in which disjoint H-sets can be separated by disjoint open sets.

1 Introduction

Let X be a Hausdorff topological space and denote the topology by τ (X); clX(A) (re-

spectively, intX(A)) will denote the closure (respectively, the interior) of A in X. The

family {intX clX(U ) : U ∈ τ (X)} is an open base for a coarser Hausdorff topology.

The space with the topology generated by the open base is denoted by Xs (note that

τ (Xs) ⊆ τ (X)). The space Xs is called the semiregularization of X, and X is called

semiregular if and only if X = Xs. Two nonempty disjoint subsets A and B can be

separated by disjoint open sets in X if and only if they can be separated in Xs. A

subset A of X is called an H-set [11] (respectively, an N-set) in X if, given any open

cover U of A in X, there exists a finite subfamily {Ui : i = 1, 2, 3, . . . , n} ⊆ U

such that A ⊆
⋃n

i=1 cl X(Ui) (respectively, A ⊆
⋃n

i=1 intX clX(Ui).) Obviously, every

N-set is an H-set, and N-sets and H-sets in a Hausdorff space are closed. Further,

if A is an N-set in X, then A is compact in Xs. Now in a Hausdorff space, any two

nonempty disjoint compact sets can be separated by disjoint open sets. Hence, any

two nonempty disjoint N-sets can be separated by disjoint open sets in a Hausdorff

space. If X is also regular, then N-sets and H-sets are all compact. Hence, in a T3

(i.e., regular and Hausdorff) space, any two nonempty disjoint H-sets can be sep-

arated by disjoint open sets. A space X is called Urysohn if given any two distinct

points x, y in X, there exist open sets U and V in X such that x ∈ U , y ∈ V , and

clX(U ) ∩ clX(V ) = ∅. A space X is called H-closed [1] if X is closed in every Haus-

dorff space in which X is embedded. A space X is called completely, i.e., functionally,

Hausdorff if for any two distinct points x and y in X, there exists a continuous map

f : X → [0, 1] such that f (x) = 0 and f (y) = 1. H-sets in Hausdorff spaces are

interesting but not completely understood. Here are some basic properties of H-sets.

Proposition 1.1 (i) An H-set in a Hausdorff space is a closed set.

(ii) If X is a subspace of Y and A is an H-set in X, then A is an H-set in Y .

(iii) A set A in a space X is an H-set in X if and only if A is an H-set in Xs.

(iv) An H-closed subspace in a Hausdorff space is also an H-set.

(v) A space X is H-closed and Urysohn if and only if Xs is compact and Hausdorff.
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(vi) A subset A of a Urysohn H-closed space X is an H-set if and only if A is compact

in Xs.

(vii) Two disjoint H-sets in a Urysohn, H-closed space can be separated by open sets.

(viii) Let A be an H-set in a space X and U ∈ τ (X) such that A ⊆ U ⊆ X. Then A is

an H-set in U .

Proof The results (i)–(vi) are contained in [9, 12] and (vii) is an immediate conse-

quence of (vi). To show (viii), let U be τ (U )-open cover of A. Now, U is a τ (X)-

open cover of A. There is a finite subfamily S such that A ⊆ clX(∪S). Thus, A ⊆
U ∩ clX(∪S) = clU (∪S).

Remark In general, the converse of Proposition 1.1(ii) is false. The usual example

is to use an H-set that is discrete in a space. For example, the discrete subspace κω\ω
is an H-set in κω as noted in [9] (this follows from the fact that (κω)s = βω and thus

κω\ω is an H-set by Proposition 1.1(iii)). However, as noted in Proposition 1.1(v),

the converse is true when the intermediate set is open.

Theorem 1.2 Suppose A is an H-set in a Hausdorff space X and let x ∈ X\A. Then

there exists open sets V and W in X such that A ⊆ clX V , x ∈ W , and W ∩ clX V = ∅.

Proof For each a ∈ A, there exist open sets Oa and Ox such that a ∈ Oa, x ∈ Ox,

and Oa ∩ Ox = ∅. The family U = {Oa : a ∈ A} is an open cover of the H-set A

in X. Hence, there exists a finite subset B ⊆ A such that A ⊆ clX
⋃

{Oa : a ∈ B} =
⋃

{clX Oa : a ∈ B}. Take V =

⋃

{Oa : a ∈ B} and W =

⋂

{Wa : a ∈ B} to complete

the proof.

Theorem 1.2 emphasizes the differences between separating a point from a com-

pact set and separating a point from an H-set.

Corollary 1.3 Suppose A and B are two disjoint, nonempty H-sets in X. Then there

exist open sets U and V in X such that A ⊆ clX U , B ∩ U = ∅, B ⊆ clX V , and

A ∩V = ∅.

Theorem 1.4 (i) Suppose X =

⊕

{Xi : 1 ≤ i ≤ n} is a topological sum of spaces

{Xi : 1 ≤ i ≤ n} and Ai is an H-set in Xi for each i. Then the subspace
⋃

{Ai :

1 ≤ i ≤ n} is an H-set in X.

(ii) The product of two H-sets is an H-set.

Proof The proof of (i) is straightforward. To prove (ii), let A be an H-set in X and B

an H-set in Y . We want to show that A×B is an H-set in X×Y . Let C be an open cover

of A×B using open sets in X×Y . We can assume that C = {Uab×Vab : (a, b) ∈ A×B}
where Uab is an open set in X containing a and Vab is an open set in Y containing b.

Fix a ∈ A. Then {Vab : b ∈ B} is an open cover of B, and there is a finite subset

Fa ⊆ B such that B ⊆ clY (
⋃

{Vab : b ∈ Fa}). Let Ua =

⋂

{Uab : b ∈ Fa}. Note that

a ∈ Ua.

Then

Ua × B ⊆ Ua × clY (
⋃

{Vab : b ∈ Fa}) ⊆ clX Ua × clY (
⋃

{Vab : b ∈ Fa})

= clX×Y (Ua × (
⋃

{Vab : b ∈ Fa}) = clX×Y (
⋃

{Ua ×Vab : b ∈ Fa}).
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Note that {Ua : a ∈ A} is an open cover of A and there is a finite subset G ⊆ A

such that A ⊆ clX(
⋃

{Ua : a ∈ G}). Let F =

⋃

{Fa : a ∈ G}. Now

A × B ⊆ clX(
⋃

{Ua : a ∈ G}) × B

⊆ clX×Y (
⋃

{Ua : a ∈ G}) × B)

= clX×Y (
⋃

{Ua × B : a ∈ G})

⊆ clX×Y (
⋃

{clX×Y (
⋃

{Ua ×Vab : b ∈ Fa}) : a ∈ G})

= clX×Y (clX×Y (
⋃

{
⋃

{Ua ×Vab : b ∈ Fa} : a ∈ G}))

⊆ clX×Y (
⋃

{
⋃

{Uab ×Vab : b ∈ Fa} : a ∈ G})

⊆ clX×Y (
⋃

{Uab ×Vab : (a, b) ∈ G × F}).

This shows that A × B is an H-set in X × Y .

Corollary 1.5 The finite product of H-sets is an H-set.

Remark We do not know whether the infinite product of H-sets is also an H-set.

Vermeer [12, (4.6)] has conjectured that if A is an H-set in X, there is a compact

Hausdorff space Y and a θ-continuous function f : Y → X such that f [Y ] = A. If

this conjecture is correct, then the infinite product of H-sets is an H-set.

Example 1.6 ([7]) Let X = R ∪ {p, q} where R is the space of reals with the usual

topology and p, q are elements not in R. A set U is defined to be open if U ∩ R is

open in R and p ∈ U (respectively, q ∈ U ) implies that for some m ∈ N,
⋃

{(2n, 2n+

1)∪ (−2n− 1,−2n) : n ≧ m} ⊆ U (respectively,
⋃

{(2n− 1, 2n)∪ (−2n,−2n + 1) :

n ≧ m} ⊆ U ). The space X is an H-closed space but the H-sets {q} and {p} ∪ N in

X cannot be separated by open sets in X. Also, the intersection of two H-sets {p}∪N

and {q} ∪ N is N, which is not an H-set in X.

Example 1.7 ([10]) Let

X =

{( 1

n
,

1

m

)

: n ∈ N, |m| ∈ N

}

∪
{( 1

n
, 0

)

: n ∈ N

}

∪ {(0, 1), (0,−1)}.

Let V be an ultrafilter on N. Topologize X as follows: a set U ⊆ X is open in

X if and only if U ∩ (X\{(0, 1), (0,−1)}) is open in the topology induced by the

usual topology of the plane R
2 and if (0, 1) ∈ U (respectively, (0,−1) ∈ U ), then

there is a set K ∈ V such that {( 1
n
, 1

m
) : n ∈ K, m ∈ N} ⊆ U (respectively,

{( 1
n
,− 1

m
) : n ∈ K, m ∈ N} ⊆ U ). Then X is a non-Urysohn (hence, non regu-

lar), non-H-closed Hausdorff space such that every H-set in X is compact, whence

any two disjoint nonempty H-sets in X can be separated by disjoint open sets in X.

Theorem 1.8 In a completely Hausdorff space X, disjoint H-sets can be separated by

a real-valued continuous function.
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Proof The first step is to show that a point a ∈ X and an H-set B such that a 6∈ B

can be separated by a real-valued continuous function. For each point b ∈ B, there

is a real-valued continuous function fb such that fb(b) = 0 and fb(a) = 1. Define

gb = max{ fb,
1
4
} − 1

4
. Note that g←b (0) = f ←b [(−∞, 1

4
]] is a neighborhood of b.

Let z(gb) = g←b (0). Then the neighborhood cover {z(gb) : b ∈ B} of B has a finite

subfamily {z(gb) : b ∈ A} for some finite A ⊆ B such that B ⊆
⋃

clX({z(gb) : b ∈
A}). Let g = min{gb : b ∈ A}. Now z(gb) ⊆ z(g) for all b ∈ A and g(a) =

3
4
. Thus,

B ⊆
⋃

clX({z(gb) : b ∈ A}) ⊆ clX(z(g)) = z(g). Thus, a and B are separated by g.

The final step of separating two disjoint H-sets B and C by a real-valued continuous

function is similar to the first step.

By Proposition 1.1(vii), two disjoint nonempty H-sets of a Urysohn H-closed

space can be separated by open sets in X. Actually, more is true, using Theorem 1.8.

As Xs is compact Hausdorff, both Xs and X are completely Hausdorff. By Theorem

1.8, disjoint H-sets in X can be separated by a real-valued continuous function.

A function f : X → Y between two spaces X and Y is θ-continuous [4] at x ∈ X

if for each open neighborhood V of f (x) in Y there is an open neighborhood U of

x in X such that f [clX] ⊆ clY V . If f is θ-continuous at each x, then f is said to be

θ-continuous on X. A θ-homeomorphism is a bijection f : X → Y such that both f

and its inverse f ← are θ-continuous. A function f : X → Y is called irreducible if f

is onto and for each proper subset A of X, f [A] 6= Y . A function f : X → Y is called

compact if for each y ∈ Y , f ←(y) = {x ∈ X : f (x) = y} is compact in X; f is called

a perfect map if f is both closed and compact. For any Hausdorff space X there exists

an extremally disconnected zero-dimensional space EX, called the absolute of X and

a perfect, irreducible θ-continuous surjection kX : EX → X [6].

Remark By Theorem 1.8, for a Hausdorff space X, disjoint H-sets in EX can be

separated by a real-valued continuous function.

2 Separation Properties

In this section, we examine closely those spaces in which disjoint H-sets can be sepa-

rated by disjoint open sets or disjoint open sets whose closures are also disjoint. We

will use the following symbols to classify spaces with separation properties for H-sets.

A space X has property λ1 (respectively, cλ1) if, whenever B is any nonempty H-set

in X and x ∈ X\B, there are open sets U and V in X such that x ∈ U , B ⊆ V , and

U ∩V = ∅ (respectively, clX U ∩ clX V = ∅).

A space X has property λ2 (respectively, cλ2) if, whenever A and B are disjoint,

nonempty H-sets in X, there are open sets U and V in X such that A ⊆ U , B ⊆ V ,

and U ∩V = ∅ (respectively, clX U ∩ clX V = ∅).

Recall [8] that a space X is S(3) (respectively S(4)) if for every pair of distinct

points p, q, there are open sets {U0,U1,V0,V1} such that p ∈ U0 ⊆ cl U0 ⊆ U1,

q ∈ V0 ⊆ cl V0 ⊆ V1, and U1 ∩V1 = ∅ (respectively, cl U1 ∩ cl V1 = ∅). Also, recall

that S(2) is the same as Urysohn and S(1) is the same as Hausdorff.

Theorem 2.1 (i) An S(4) space X has property cλ2.

(ii) An S(3) space X has property cλ1.

https://doi.org/10.4153/CMB-2010-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-039-x


364 J. Porter and M. Tikoo

(iii) A Urysohn space X has property λ1.

(iv) A space X with property cλ1 is Urysohn and has property λ2.

(v) A space X with property λ1 is Hausdorff, and a compact set disjoint from an H-set

can be separated by disjoint open sets.

(vi) An H-closed space X is Urysohn if and only if X is λ1

Proof The proofs of (iv) and (v) are clear. The proofs of (i)–(iii) are similar. We

provide the proof for (ii). Let A be an H-set in an S(3) space X and p 6∈ A. For

each a ∈ A, there are open sets U 0
a ,U 1

a and V 0
a ,V 1

a such that a ∈ U 0
a ⊆ cl U 0

a ⊆ U 1
a ,

p ∈ V 0
a ⊆ cl V 0

a ⊆ V 1
a , and U 1

a ∩ V 1
a = ∅. There is a finite subset F ⊆ A such that

A ⊆
⋃

{cl U 0
a : a ∈ F}. Let V0 =

⋂

{V 0
a : a ∈ F} and V1 =

⋂

{V 1
a : a ∈ F}. Note

that A ⊆
⋃

{U 1
a : a ∈ F}, p ∈ V0 ⊆ cl V0 ⊆ V1 and V1 ∩ (

⋃

{U 1
a : a ∈ F}) = ∅.

Thus, cl V0 ∩ cl(
⋃

{U 1
a : a ∈ F}) = ∅. This shows that X is cλ1. To prove (vi), one

direction follows from (iii). To show the other direction, recall [9] that in an H-closed

space, the closure of an open set is H-closed and by Proposition 1.1(iv), an H-closed

subspace is an H-set. Thus, it follows that for an H-closed space X with property λ1,

the semiregularization Xs is regular, and hence compact. So X is Urysohn.

Corollary 2.2 (i) A space that is T3 or completely Hausdorff has property cλ2.

(ii) A semiregular, H-closed space with property λ1 is compact.

We now have this implication diagram:

S(4) //

²²

S(3) //

²²

cλ1
//

²²

Urysohn

²²

cλ2
// cλ1

// λ2
// λ1

// Hausdorff

Remark Recall [9] that for an open set U in a space X, clX U = clXs
(intX clX U ).

Now intX clX U ∈ τ (Xs). Thus, X has property λ1 (respectively, λ2, cλ1, cλ2) if and

only if Xs has property λ1 (respectively, λ2, cλ1, cλ2).

Example 2.3 (A space with property λ1 but not λ2.) Consider the Tychonoff plank

T = (ω1 + 1) × (ω + 1)\{(ω1, ω)} The space T is a zero-dimensional dense subspace

of the compact Hausdorff product space (ω1 + 1) × (ω + 1). A slight modification of

the technique listed in [9, 2R] shows that

(i) If U is an open set in T, C is a cofinal subset of ω and {ω1} × C ⊆ U , there is

some α ∈ ω1 such that [α, ω1) ×C ⊆ U and [α, ω1) × {ω} ⊆ clT U .

(ii) If U is an open set in T and [α, ω1) × {ω} ⊆ U for some α ∈ ω1, then {ω1} ×
[n, ω) ⊆ clT U for some n ∈ ω.

Now let Z = T ×ω. For α ∈ ω1 identify (α, ω, n) and (α, ω, n + 1) if n is odd. For

m ∈ ω identify (ω1, m, n) and (ω1, m, n+1) if n is even. Call the resulting space Y . For

n ≥ 2, let Yn be the image of T × {0, 1, . . . , n}, and let Ti = T × {i}, i = 0, 1, 2, . . . .

Let S2 = {a, b} ∪ Y2, where {a, b} ∩ Y2 = ∅. A set U ⊆ S2 is open in S2

if U ∩ Y2 is open in Y2 and a ∈ U (respectively, b ∈ U ) implies for some α ∈
ω1, ((α, ω1) × ω × {0}) ⊆ U (respectively, ((α, ω1) × ω × {2}) ⊆ U ).
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The subspace Y2 of S2 is a zero-dimensional and locally compact space. To show

that S2 is Urysohn, we need to show only that the points a and b can be S2-separated.

Consider the open neighborhoods U = {a}∪(ω1×ω×{0}) of a and V = {b}∪(ω1×
ω×{2}) of b. Note that clS2

U = {a}∪T0, clS2
V = {b}∪T2, and clS2

U ∩clS2
V = ∅.

So S2 is λ1 by Theorem 2.1(iii). The sets A = {a} ∪ ({ω1} × ω × {0}) and

B = {b}∪ (ω1 ×{ω}×{2}) are disjoint H-sets. By (i), for any open set W of S2 that

contains A, clS2
W contains [α, ω1) × {ω} × {2} for some α ∈ ω1. So (α, ω, 2) ∈

clS2
W ∩ B. Thus, A and B cannot be separated by disjoint open sets and S2 is not λ2.

Since S2 is not λ2, it cannot be cλ1.

Example 2.4 (A space with property cλ1 but not cλ2) We will use the notation of

Example 2.3. Let S3 = {a, b} ∪ Y3, where {a, b} ∩ Y3 = ∅. A set U ⊆ S3 is open

in S3 if U ∩ Y3 is open in Y3 and a ∈ U (respectively, b ∈ U ) implies for some

α ∈ ω1, ((α, ω1) × ω × {0}) ⊆ U (respectively, ((α, ω1) × ω × {3}) ⊆ U ).

The subspace Y3 is a zero-dimensional and locally compact space. To show that

space S3 is S(3), we need to show only that the points a and b can be S(3)-separated.

Consider the open neighborhoods U0 = {a}∪ (ω1 ×ω×{0}) and U1 = {a}∪T0 ∪
(ω1×ω×{1}) of a and V0 = {b}∪(ω1×ω×{3}) and V1 = {b}∪T3∪(ω1×ω×{2})

of b. Note that U1 ∩V1 = ∅, clS3
U0 = {a}∪T0 ⊆ U1, and clS3

V0 = {b}∪T3 ⊆ V1.

This shows that the points a and b can be S(3)-separated.

So S3 is cλ1 by Theorem 2.1(ii). The subspaces {a}∪T0 and {b}∪T3 are H-closed

and disjoint. The sets A = {a}∪ ({ω1}×ω×{0}) and B = {b}∪ ({ω1}×ω×{3})

are H-sets and disjoint. By Example 2.3(i) for any open set U of S3 that contains A,

clS3
U contains [α, ω1)×{ω}×{2} for some α ∈ ω1. By Example 2.3(ii) for any open

set V of S3 that contains B, clS3
V contains [β, ω1) × {ω} × {2} for some β ∈ ω1. So

(max{α, β}, ω, 2) ∈ clS3
U ∩ clS3

V . Thus, A and B cannot be separated by disjoint

open sets whose closures are disjoint and this shows that S3 is not cλ2.

Example 2.5 (A space with property λ2 but not cλ1) This space is a modification of

the space described in Example 2.3. Let Y ′

2 = Y2\(ω1×{ω}×{0}), S ′

2 = {a, b}∪Y ′

2 ,

where {a, b} ∩ Y ′

2 = ∅. Let U be a free ultrafilter on ω. A set U ⊆ S ′

2 is open in S ′

2

if U ∩ Y ′

2 is open in Y ′

2 , a ∈ U implies for some α ∈ ω1 and V ∈ U, ((α, ω1) ×V ×
{0}) ⊆ U , and b ∈ U implies for some α ∈ ω1, (α, ω1] × ω × {2} ⊆ U . The space

S ′

2 is Urysohn (and hence λ1 by Theorem 2.1(iii)), {b} ∪ T2 is H-closed, and Y2 is a

zero-dimensional, locally compact space.

The set B = {b} ∪ (ω1 × {ω} × {2}) is an H-set but the set A = {a} ∪ ({ω1} ×
ω × {0}) is not. Clearly a and B can be separated by disjoint open sets. Let V be an

open set in S ′

2 that contains B. By Example 2.3(ii), clS ′

2
V meets a tail of A. However,

for any open set U of a, clS ′

2
U contains a cofinal subset of A. Thus, a and B cannot

be separated by open sets whose closures are disjoint. This shows that S ′

2 is not cλ1.

To show that S ′

2 is λ2, let C and D be disjoint H-sets. If C or D is compact, we are

done by Theorem 2.1(v). If C ∩ {a, b} = ∅, then C is an H-set in the T3 subspace

S ′

2\{a, b} by Proposition 1.1(v). Thus, C is a compact subspace. We can assume that

a ∈ C and b ∈ D.

Let S = {n ∈ ω : (ω1 +1)×{n}×{0}∩C 6= ∅}. Assume that S ∈ U. Then there is

some R ∈ U such that R ⊂ S and S\R is infinite. Let U = {a}∪(ω×R×{0}); for n ∈
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S Vn = (ω1 +1)×{n}×{0, 1} (note that Vn is clopen in S ′

2); V =

⋃

{Vn : n ∈ S}; and

for p ∈ C\({a}∪V ), there is a clopen set W p in S ′

2 such that p ∈ W p ⊆ T1∪T2∪{b}.

So, U ∪{Vn : n ∈ S}∪{W p : p ∈ C\({a}∪V ) is an open cover of the H-set C . There

are finite subsets F ⊂ S and G ⊆ C\({a} ∪ V ) such that C ⊆ clS ′

2
U ∪

⋃

{Vn : n ∈
F}∪

⋃

{W p : p ∈ G}. Note that clS ′

2
U ⊆ {a}∪(ω1 +1)×R×{0}. For m ∈ S\(R∪F),

C ∩ ((ω1 + 1) × {m} × {0}) 6= ∅. But ((ω1 + 1) × {m} × {0}) ∩ [clS ′

2
U ∪

⋃

{Vn :

n ∈ F}∪
⋃

{W p : p ∈ G}] = ∅. This contradiction implies that S 6∈ U. Hence there

is some P ∈ U such that ((ω + 1) × P × {0}) ∩C = ∅. This shows that C\{a} is an

H-set in a T3 space and hence compact. It follows that C is compact.

Added in Proof R. Hodel [5] has shown that an infinite product of H-sets is an

H-set. This answers the question contained in the remark following Corollary 1.5.
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