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Abstract

The quality of service in healthcare is constantly challenged by outlier events such as pandemics (i.e., Covid-19) and
natural disasters (such as hurricanes and earthquakes). In most cases, such events lead to critical uncertainties in
decision-making, as well as in multiple medical and economic aspects at a hospital. External (geographic) or internal
factors (medical and managerial) lead to shifts in planning and budgeting, but most importantly, reduce confidence in
conventional processes. In some cases, support fromother hospitals proves necessary, which exacerbates the planning
aspect. This paper presents three data-drivenmethods that provide data-driven indicators to help healthcare managers
organize their economics and identify the most optimum plan for resources allocation and sharing. Conventional
decision-making methods fall short in recommending validated policies for managers. Using reinforcement learning,
genetic algorithms, traveling salesman, and clustering, we experimented with different healthcare variables and
presented tools and outcomes that could be applied at health institutes. Experiments are performed; the results are
recorded, evaluated, and presented.

Policy Significance Statement

Conventional decision-making methods fall short in recommending validated and evidence-based policies
during outlier events. During such events, Artificial Intelligence methods provide a viable alternative for better
decision and policy making at medical institutions. We present three methods that provide data-driven guidance
during healthcare crises; the methods aim at helping hospital managers and public health officials in preparing
their budgets, identifying optimized economic plans for distribution of health relevant items (such as vaccines
and masks), and overall resource allocation.

1. Introduction and Motivation

Healthcare resources consist of materials, personnel, facilities, and anything else that can be used for
providing a healthcare service to patients at hospitals. Studies in healthcare economics have suffered from
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lack of relevance to practical realities on the ground. Potential deployments of such economic reevalua-
tions have proven that the reality is different from theory (Niven, 2002). In the wake of a global pandemic,
policy making has been scrutinized and public trust in opinion-based policy making has been diminished.
It is more important than ever to begin integrating Artificial Intelligence (AI) systems into the policy
evaluation and advocacy process. Evidence-based approaches facilitate policy making in a manner that is
more relative to the scientific method, beginning with initial hypotheses and evaluating them based on
experimentation. Accordingly, in this study, we compare: (a) conventional (unnormalized, no learning, no
optimization), with (b) AI-based (normalized, unsupervised learning, with optimization) methods, and
derive recommendations to hospital managers accordingly. Healthcare management and executive teams
often face the challenge of resources’ management but end up compromising decisions to avoid issues
with public health standards/laws and other safety compliances. That strategy is however destined to fail
due to the many hidden consequences; for example, a survey identified that most finance directors in
Scottish hospitals were unaware of the cost of back injuries among nurses (McGuire et al., 1995). The vast
majority of hospitals run their budgets and economics based on previous experiences and heuristic
intuitions of management. Moreover, the Economic Rate of Return is very difficult to quantify in the
context of health, given the multidimensional aspects that feed into the budget. For instance, patient
satisfaction, readmission rates, hospital costs and budgets, and many other factors are important to
consider during the measurement of the efficiency and quality of service.

Moreover, decision-making’s difficulty exacerbates during outlier events that directly affect healthcare
services. Multiple factors influencing healthcare resource allocation in such scenarios arise from eco-
nomic, geographic, or demographic dynamics. Each outlier event enforces a wide variety of factors which
makes its analysis for healthcare policy extremely complicated. In order to extricate the process from such
difficulties, in this paper, we present implementations of AI methods, such as Reinforcement Learning
(RL), and Genetic Algorithms (GAs) to evaluate different policy scenarios and point to the best possible
outcome. By using the mentioned methods, we incorporate the varying factors of healthcare services
along with the Traveling Salesman Problem (TSP), during conventional times as well as during outlier
events to find an optimized equilibrium of resources’ allocation and sharing paths. We argue that AI
methods produce improved results over existing traditional methods. The research hypotheses that our
study aims to evaluate are twofold: (a) AI-basedmethods can provide superior results (fitness value) when
compared to conventional nonoptimized methods for resources allocation; (b) as hospitals are grappling
with datasets that they collect, real-world data (collected from veteran affairs and other sources presented
in Section 3.1) can be used to test the presented methods and develop an interactive dashboard that
presents the outcomes for decision support at a hospital.

This paper is structured as follows: the next section reviews existing resource allocation and sharing
methods, as well as similar AI examples, Section 3 introduces the three methods, Section 4 confers the
results and other discussions, and lastly, Section 5 presents the conclusions.

2. Background and Related Work

2.1. Resource allocation in healthcare

Pandemics (such as Covid-19) and other mass casualty events place enormous demands on public health
and health systems (Christian et al., 2014; Bell et al., 2018). They can cause a shortage of hospital beds and
medical equipment. They are also likely to affect the availability of the medical workforce, since doctors
and nurses likely become ill or quarantined. Such demands create the need to ration the allocation of
scarce resources. If preparedness is inadequate, the foundation of all disaster response efforts can crumble
with subsequent adverse patient outcomes (Sandrock, 2014).

In disasters, while some in “hot spots” have found their resources rapidly depleted, others have found
themselves managing largely empty intensive care units (ICUs) waiting for an inevitable surge of
critically ill patients. A coordinated nationwide response is needed for an effective and responsive
strategy as the outlier eventmoves across the country. However, other than in the case of organ transplants,
governments at all levels have unfortunately had little experience in engaging stakeholders in priority
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setting, rationing lifesaving resources, and implementing policies (Ramachandran et al., 2020). Since the
New York attacks of 2001, the hurricane season of 2005, and the Ebola and Covid-19 outbreaks,
significant resources have been used in the United States to improve the processes behind care provided
in a disaster or pandemic (Romney et al., 2020). However, even the well-designed allocation guidelines
that have been proposed so far by various professional societies present challenging problems in real-time
decision-making and implementation. To help clinicians navigate these challenges, institutions have
employed triage officers, physicians in roles outside direct patient care, or committees of experienced
physicians and ethicists, to assist in applying guidelines and making timely decisions at the bedside
(Emanuel et al., 2020). A lottery system has also been proposed to better promote equity and social justice
by removing the likelihood of people being given preferential treatment on the basis of social or economic
advantages (Silva, 2020). According to theNational Institutes ofHealth (NIH), healthcare disparity can be
recognized by analyzing the relationship between healthcare utilization and household assets; outcomes
of resource allocation can cause different levels of disparities (Gómez et al., 2018).

One of the commonplace methods for resource allocation originated from the United Kingdom and is
currently implemented in multiple health systems of Low- and Middle-Income Countries such as
South Africa (Love-Koh et al., 2020). A regional health-funding formula is created by either taxation
or insurance values; this method promotes both vertical and horizontal equities: for instance, regions with
the same health needs are provided with similar resources (horizontal), while regions with different health
needs are provided with dissimilar resources (vertical).

Another method of resource allocation is through the use of Health Benefits Packages (HBPs). This
method is most beneficial in resource-constrained settings because it offers an alternative to traditional
formulas when defining area-level allocations (Schreyögg et al., 2005). HBPs are funded based on the
expected costs of providing services and the expected target patient population.

In the United Kingdom, the Resource AllocationWorking Party (RAWP)manages the process (Smith,
2008). Historically, resources were allocated based on precedent, which created geographical bias toward
areas such as London and South East England (something we address in Method #3). This produced an
imbalance in the healthcare system in the United Kingdom. Recently, however, health resources are
disaggregated into a small number of disease categories that are based on the World Health Organization
(WHO)’s international classification of disease. This approach allowed for the notion of “weighted
capitation” to surface.

RAWP utilized a predefined set of variables as follows (Gillie et al., 1988): first, per capita need is
calculated by disaggregating the population by age and gender. Corresponding healthcare utilization of
each demographic group is approximated by using the national average hospital bed utilization (per
capita). RAWP broke down healthcare into a smaller number of broad categories of conditions and their
index of approximate need of care. That is determined through the application of standardized mortality
ratios and the population of geographical areas. The formula that was generated from this process relies on
five variables: illness ratios, mortality ratios, proportions of economically active yet unemployed citizens,
proportions of pensionable-age and “living-alone” citizens, and the proportion of dependents per
household.

In the United States, the challenge of healthcare expenditures has been a major part of policy debates.
For example, nearly half of Americans have at least one chronic condition. Direct medical costs for
chronic conditions are >$750 billion annually (Batarseh et al., 2020). Out of the four possible healthcare
models for a country (The Beveridge, Bismarck, Out-of-Pocket, and National Insurance), a model such as
the Affordable Care Act (ACA—i.e., Obamacare) provides guarantees for the pursuit of preventive
healthcare, but no pointers to healthcare access, resource allocation, or other geographical-relevant issues
such as medical deserts in the United States. Additionally, in recent years, the ACA has been deployed
with high costs, the program has low adoption rates, and it still suffers from partial public’s rejection.

Based on our extensive search for a “gold standard” in medical resources sharing, no standard was
found that is agreed upon in the research community or in practice. Generally, every hospital system has
their own network and resources, especially in the case of private institutions. In the case of public
institutions, such as veteran affairs hospitals presented in our study, resources sharing is based on policies
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by the government, and is mostly an opinion/expertise-based process that is maneuvered based on the
context. Even in AI research, no existing methods are found that are dedicated to healthcare resources
management. A key objective of quantitative healthcare economic analyses is to uncover relationships—
for example, number of beds, patients, and staff—for use in making predictions or forecasts of future
outcomes. However, current systems that generate forecasts for decision-making tend to use ad hoc,
expert-driven, personal partisanship, linear, factor, and nonlinear models. Multiple factors influencing
healthcare economics in outlier scenarios arise from nutritional, geographic, or demographic variables
and each policy comes with a wide variety of such factors. Work presented in this paper aims to facilitate
that and provide an intelligible alternative.

2.2. Review of existing AI deployments

As it is established, measuring the health of economy is a long-lasting science; however, only recently, the
economy of health is a gaining traction and is a rising research area. Successful national models in
healthcare have varied between public and private. Previous studies (Friedman and Oren, 1995) have
shown that policy making for resource allocation is complex and requires thorough data analysis. AI,
namely, RL and GA can provide improved suggestions over existing traditional methods. During major
economic shifts, AI can capture hidden trends and provide real-time recommendations that conventional
heuristic-based approachesmay fail to arrive at. However, the application of AI in healthcare economics is
still at its inception; in Table 1 we review “similar”methods and illustrate a chronological review (1982–
2020) of RL methods applied in comparable decision-making scenarios.

As shown in Table 1, different researchers have tried applying RL methods to assisting with decision-
making, but to the best of our knowledge, none have provided AI-based methods for policies and
decisions for resource allocation during outlier events. In this project, we present AI-based methods for
that goal.

3. Methods

The results of data mining endeavors are majorly driven by data quality. Throughout these deployments,
serious show-stopper problems are usually unresolved, such as data collection ambiguities, data imbalance,
hidden biases in data, the lack of domain information, and data incompleteness. In a traditional data science
lifecycle, outliers, bias, variance, boosting, over and under sampling, and data wrangling are measures that
can be tuned tomitigate output quality issues andmisinformation. In ourwork,we performed data collection
from multiple sources to mitigate issues relevant to one dataset. Additionally, normalization, descriptive
analytics, hyperparameter selection, and other quality-control methods are implemented.

3.1. Data collection

Real-world data of this study are collected from Centers for Medicare and Medicaid Services (CMS)
including data on patient complications and deaths, hospital general information, cost, and value of care
for each hospital (Centers forMedicare andMedicaid Services, 2020). Additionally, data for hospital beds
are collected fromOpen Data DC—the Office of the Chief Technology (Open Data DC, 2020). Covid-19
patients’ data are collected from Centers for Disease Control and Prevention (CDC) (National Center for
Health Statistics, 2020). CDC data are important in this context because hospitals in the United States
follow CDC regulations when it comes to reporting healthcare-related practices. U.S. Veterans Affairs
(VA) medical centers information is collected as well from the U.S. Department of Homeland Security
(2020); the VA system constitutes the main real-world example of this paper—due to federal regulations,
patients’ data, and hospital network information are scarce and difficult to acquire. Nonetheless, VA
hospital performance star rating is also gathered (U.S. Department of Veterans Affairs, 2018) to be used as
part of the input for training the models. Data from the U.S. Census Bureau provided the files for geo-
visualization, and other studies (Voinsky et al., 2020) have provided the estimated recovery rates for
Covid-19 patients based on gender and age group (U.S. Census Bureau, 2019).
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For all data sources, normalization is performed to standardize and smooth the statistical distributions
of different datasets. The values are scaled to match a range. For instance, data are normalized by
performing simple linear scaling from the original scale to a 0–1 scale, or a 0–100 scale. LinearScaling
(an R package) is used for normalizing the range of values of a continuous variable using a linear scaling
within the range of the variable, using:
LinearScaling(x, mx = max(x, na.rm = T), mn = min(x, na.rm = T)),
where x is a vector with numeric values, mx is the maximum value of the continuous variable being
normalized (defaults to the maximum of the values in x), andmn is the minimum value of the continuous
variable being normalized.

All datasets, code, and scripts used for the experiment are available on a GitHub public page: https://
github.com/ferasbatarseh/EconHealthAI

Table 1. Reinforcement Learning (RL) for decision-making

Year Author(s) Description

1982 Boyan Jovanovic Applied RL with the use of Bayesian Learning to study single firm
dynamics

2001 John Moody and
Matthew Saffell

Implemented an adaptive algorithm: Recurrent RL with the utilization
of Q-Learning for optimizing portfolios and asset allocations

2007 Michael Schwind Applied RL and combinatorial auctions to bidding decision problems
2014 Neal Hughes Author introducedmethods based onQ-iteration and a batch version of

Q-Learning to solve economic problems
2016 Koichiro Ito and Mar

Reguant
Use of RL to characterize strategic behavior in sequential markets

under imperfect competition and restricted entry in arbitrage
2016 Yue Deng et al. Implemented concepts from deep learning and RL for real-time

financial signal representations and trading
2017 Han Cai et al. Built a Markov Decision Process framework for learning the optimal

bidding policy and optimize advertising
2017 Saud Almahdi and

Steve Y. Yang
Developing risk-based RL portfolios for rebalancing and market

condition stop-loss retraining mechanism
2018 Jun Zhao et al. Applied deep RL for bidding optimization in online advertising
2018 Thomas Spooner et al. Authors provided one of the solutions for the market making trading

problem by designing a market making agent using temporal-
difference RL

2018 Zhuoran Xiong et al. Authors implemented Deep Deterministic Policy Gradient (DDPG)
methods based on deep RL for finding the best trading strategy in
complex and dynamic stock markets

2019 Haoran Wang and Xun
Yu Zhou

Authors achieved the best tradeoff between exploration and
exploitation using an entropy-regularized relaxed stochastic control
problem using RL

2019 Olivier Guéant and
Iuliia Manziuk

Authors proposed a new approach of implementing model-based
approximations of optimal bid and ask quotes for bonds

2019 Xinyi Li et al. A new DDPG technique which incorporates optimistic or pessimistic
deep RL for the portfolio allocation tasks

2019 Yuming Li et al. Deep Q-Network for decision-making
2020 Bastien Baldacci et al. Authors designed approaches to approximate the financial market and

other optimal controls for real-time decisions
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3.2. Method #1: Resource management using RL

RL is a subfield ofAI; it involves the process of learning of an agent by using a trial and error approach that
maximizes rewards by interacting with dynamic environments (Kaelbling et al., 1996; Szepesvári, 2010).
RL is different from supervised and unsupervised learning. In supervised learning, a dataset is available
with predefined labels that represent knowledge; while in unsupervised learning, the labels are not
initially provided, and the outputs are not predetermined. In contrast, RL is goal-oriented, it processes
learning from the interactions as compared to other approaches of AI (Sutton and Barto, 2018). Chades
et al. (2017) noted the application of RL to decision-making such as in the forest management problem;
which inspired part of the work presented here (Method #1). We use a form of RL referred to as Markov
Decision Process (MDP), which is suitable for time series data and does not require a simulation
environment like Q-Learning, (another form of RL). Forest management consists of two contrasting
objectives: maintaining an old forest for wildlife preservation, and/or making money by selling the
forests’wood (Cros et al., 2016). This tradeoff is often the case with decision-making. The concept can be
applied to healthcare resource allocation as follows: keep the resources (i.e., conserve wildlife) versus
share resources with other hospitals in your region (i.e., cut the trees). Such decision questions exacerbate
during externalities—such as outlier events—that directly affect healthcare services and other hospital
processes. In economics, an equilibrium of economic outcomes is usually modeled to study tradeoffs and
support policy and decision-making.

In optimization problems, algorithms are performed in an iterative fashion until the best result is found.
This concept works well with RL (Li and Malik, 2016). In RL, based on the policy chosen, the agent will
take an action, the action will change the environment, and the outcome is then evaluated. As the
environment changes, the policy will be updated based on a reward or a punishment due to the policy
change, and then the model will make a transition into a “better” new state (Mousavi and Li, 2020).

In the RL model developed for resource allocation and sharing, multiple stages are deployed. At the
beginning of each stage, an action is selected and evaluated by the algorithms (good decisions are
rewarded, and “bad” decisions are punished). For instance, in the forest example:

• If the action is “cut”—which equates to the “share” option in our study, the loop goes back to stage 1;
otherwise it moves to the next stage.

• If a wildfire occurs, the loop goes back to stage 1—requires a different decision process.
• The algorithm rewards the decision when the forest trees are old, and presents a cut or wait (which
equates to “idle” in Section 4—the results of our study) suggestion, which in turn, each has a
different reward.

• The goal is to maximize the reward by choosing the appropriate action at each stage.

The initial values for rewards and the probability of wildfire are used through theMDPtoolbox package in
R (Chades et al., 2017). Additionally, a real-time web application is developed to change these values in
real-time and to understand how actions and rewards changes for each state based on the “wildfire”
probability. Execution data are generated using the mdp_example_forest() function from within
MDPtoolbox. The tool, results, and other outcomes are presented in the results section.

3.3. Method #2: Resource management using GA

GA is a subfield of evolutionary algorithms; they are inspired by the process of biological natural
selection. By using bioinspired methods such as crossover, mutation, and selection, GAs have been found
to be one of the relatively effective algorithms for optimization problems. In this study, we deploy GAs
independently, as well as in coordination with algorithms such as TSP (Kim et al., 2013)—an R package,
GA is used. There are three types of GAs: binary, real-valued, and permutation (Scrucca, 2013, 2017).
Binary GAs are used to solve binary representation of decisions such as whether the hospital should share
resources or not, while permutation involves reordering a list of objects, which is suitable with TSP for
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choosing/sorting which hospitals are best to share with due to distance and other external factors—we
experiment with both methods (permutation and binary).

InGA, the input data constitutes the initial randompopulation, or as it is called, the first generation. The
fitness of the generationwill bemeasured; “parents”will be randomly selected based on a fitness function.
During the reproduction state, by crossing over of “genes,” two “children” will be produced, and
mutations occur with a given rate. If a mutation occurs, one gene will be randomly changed, which then
leads to a new generation. The process continues until the termination condition is met and the population
is more “fit” (Woodward and Kelleher, 2016).

GAs are controlled by multiple hyperparameters; we set the following values (deemed as defaults)
throughout: Probability of mutation: 50%; Population size: 1,000; Maximum iterations: 250 (without
improvement); Default iterations: 1,000.

Healthcare variables that are inputted to the GAs as determinants of generational updates are: hospital
performance, death rates, and number of beds. Additionally, two types of fitness functions are used for
comparison: a fitness function with all the mentioned variablesþ hospital ratings (FF1), and fitness function
without hospital rating (FF2). Based on Lewis et al. (2020), hospital ratings, reputation and ranking has a
major effect on the quality of service. (BatarsehandYang, 2020)Therefore,we aimed at exploring that aspect.

In both fitness functions: the following constants are deployed: α, β, and γ. The constants aim to weight
each input variable differently (if needed according to policy). Data used in this analysis have been
normalized. Fitness functions 1 (FF1) and 2 (FF2) are presented below:

FF1=Hospital rating� α�number of  beds
β�death rate

þ 1
γ� cost

� �
, (1)

FF2=
α�number of  beds

β�death rate
þ 1
γ� cost

: (2)

The quality of service is an important indicator of whether the hospital is ready for outlier events and
whether it is well equipped. However, if Methods #1 and #2 can aid with presenting a sharing
recommendation, how can a hospital manager find the best/nearest/readiest hospital to share with or
share from? Method #3 addresses that question.

3.4. Method #3: Resource management using TSP

TSP is an important combinatorial optimization problem in the field of theoretical computer science and
operations research (Lu et al., 2007). The purpose statement of TSP is simple: “to find the best route to
visit each location once and return to the original position”, TSP belongs to a family of nondeterministic
polynomial-time problems (NP) (Calude, 2013; Hillar and Lim, 2013).

By using the concepts of TSP, different factors have been implanted into the traditional algorithms and
used by a fitness function through GA. The goal is to optimize the best route for resources delivery during
outlier events. That is done while not merely considering distances, but also other factors, such as
availability of resources. Due to the lack of patients’ locations at the city and county levels, the algorithm
is not based on specific addresses, rather, on hospital geographical locations and state centers
(by longitude and latitude). We began by using the state center. The variables were used to create an
index to maximize “good” sharing of resources and minimize “bad” resources’ allocation. TSP is coded
into two fitness function of the GA algorithm (to allow the GA to consider distance and traveling
optimizations as it is parsing and learning from the data), one with healthcare variables (FF3), and other
with geographical distance (FF4). Both formulas are shown below:

FF3=
Patient

Cost�distance�hospital performance rating
, (3)
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FF4=
1

Distance
: (4)

FF3 variables have data collected from Covid-19 patients and scenarios to illustrate an outlier situation.
Cost in the fitness functions is based on the following formula:

Cost= average recovery duration� average hospital costperday: (5)

In the experiment, only contiguous U.S. states (excluding Alaska and Hawaii) and the District of
Columbia have been included. For FF4, due to the lack of patients’ data in Minnesota and Wyoming,
these two states are excluded as well. GAs are controlled by multiple hyperparameters; we set the
following values throughout, by trial and error, and they provided the best statistical accuracy:

1. Probability of mutation: 20%
2. Population size: 100
3. Maximum number of iterations: 5,000
4. Default iterations: 1,000

In addition to the GA package, two more R packages are used for mapping: rgdal is used to collect data
from the Geospatial Data Abstraction Library (GDAL), and tidygeocoder was used for mapping the
results (Bivand et al., 2020; Cambon, 2020).

Results for FF3 and FF4 as well as all three methods (#1, #2, and #3) are presented in the next section.

4. Models’ Results, Assurance, and Discussions

This section presents the results of the three methods (RL, GA, and TSP) and discusses the outcomes in
light of deployability and policy.

4.1. RL results

Method #1 is deployed through a real-time R-Shiny web application (shown in Figure 1). But how does
this apply to outlier events? As of September 7, 2020, there have been 6,280,400 patients suffering from
Covid-19 in the United States (Johns Hopkins University & Medicine, 2020). To suitably manage the
resources for patients, it can be essential to understand the pandemic’s hot zones and severities. For this

Figure 1. Resources management dashboard using Reinforcement Learning.
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purpose, we used the Pandemic Severity Assessment Framework (PSAF) proposed by the CDC in 2014
(Centers for Disease Control and Prevention, 2016). PSAF is driven by two factors—clinical severity and
transmissibility—which determine the overall impact of a pandemic (Reed et al., 2013). The presented
web application is to be used at a hospital for real-time decision-making support. The RL algorithm is
connected to the application, and the model could be retrained in real time when new data are available. A
hospital manager can use the “hospitalization ratio,” a parameter in clinical severity (aggregate of
patients’ situation) for determining the amount of resources needed. The mentioned RL stages are
represented as scales based on transmissibility and clinical severity. The outcomes (i.e., actions) are
assigned as either “Idle” or “Share”—which represents the recommendation that the RL algorithm
generates.

The MDP RL model intakes all parameters (such as budget and staff availability) and provides a table
indicating a value matrix, where every value is associated with a scale. A negative value indicates an
“Ask” action for more resources, while a higher positive value indicates a surplus in resources (Table 2).
RL is a dynamic classification approach, and it is deemed as one of the most successful for real-time, in
real environments, and for binary outcomes—we apply that for hospital resources allocation, a notion that
has not been deployed prior. Our prototype can be used as an early failure detection system that can guide
hospital policy makers to make resource sharing decisions in a proactive manner.

4.2. GA results

The algorithm in Method #2 provides policy makers suggestions of whether the hospital should request
additional resources based on the current conditions of the hospital (Table 3 shows the top 10 hospitals in
terms of fitness). As it is noted in Batarseh and Yang (2020), hospital rankings are often not specific to
certain goals such as ranking in readiness for resource allocation—which is part of the overall readiness

Table 2. Resources management decisions using Reinforcement Learning (RL) (based on the
Pandemic Severity Assessment Framework scale)

RL model inputs RL model outputs

Use
case

Ratio for case
hospitalization

Scaled measure of
clinical severity

Scaled measure of
transmissibility Stage Value Action Event

1 0.81 Idle Normal
1 0.1 2 2 2 1.71 Idle Normal

3 3.71 Idle Normal
1 2.84 Idle Normal

2 0.1 7 5 2 5.98 Idle Normal
3 12.98 Idle Normal
1 0.4 Idle Normal

3 0.5 2 2 2 1.2 Share Normal
3 2.8 Idle Normal

4 0.5 7 5 1 0.88 Idle Normal
2 2.62 Idle Normal
3 9.62 Idle Normal
1 0.1 Idle Normal

5 0.9 2 2 2 1.05 Idle Normal
3 2.15 Idle Normal
1 0.1 Idle Outlier

6 0.9 7 5 2 1.05 Share Outlier
3 7.41 Idle Outlier
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for an outlier event. Using GAs (two different fitness functions) and based on the variables discussed, in
Table 3, we present the readiness ranking for hospitals. If such results are embedded into a data dashboard
for hospital management, managers can see which hospitals are best candidates for resources sharing
during the time of need. The number of beds is generated as a decimal by the algorithm for accuracy, but
could be rounded up in practice.

FF1 and FF2 use the number of beds, death rate, cost, and hospital ratings as inputs. No correlation
between the input variables is observed. Table 3 presents results for Method #2. Decision 1 is based on
FF1, the fitness values are shown in the FF1 column, and decision 2 is based on FF2, the values are shown
in the FF2 column (both columns are highlighted). We aim to analyze the outcomes to specify which
independent variables had the most effect on the outcomes, for instance, methods such asGain,DeepLift,
and Attributions can be applied to provide such insights.

In Figure 2, green bars indicate which hospitals should receive additional beds in the current context of
healthcare variables (exacerbated by an outlier event), while the red bars represent the hospitals that
should not receive additional beds. The height of the bars represents the fitness value of the hospital.
Figure 2a shows the results of FF1, and Figure 2b shows the results after using FF2. In both figures, the
blue, orange, gray, and purple marks and line represent number of beds, death rate, cost, and hospital
rating for each hospital, respectively. Figure 2a,b indicates how different measures can produce different
rankings, which is commonly a major reason to considering multiple fitness functions and data manage-
ment approaches as presented. The results show that by using FF1, 25% (32% for FF2) of those with high
fitness values are suggested to not receive additional beds, and 8% (12% for FF2) of hospitals with low
fitness values show as they should receive additional beds. FF1 performed better overall, which aligns
well with studies such as in Batarseh andYang (2020) and elects the function as themost accurate resource
allocation that are on a national scale—other functions are expected to perform better in more limited
geographies (such as state level), a question that we aim to answer in our future work.

In Method #2, based on FF1 and FF2, the algorithms provide two different suggestions (Figure 3).
Even though overall the results are highly consistent between the two fitness functions, ~9% of the
hospitals have opposite suggestions on whether the hospitals should request additional beds or not during

Table 3. Top 10 hospitals in terms of resource sharing readiness using Genetic Algorithms

Facility name Rating
No. of
beds

Death
rate cost Decision 1 FF1 Decision 2 FF2

Centra 4 39.1 10.3 63.6 1 29.2 1 7.3
Inova Alexandria

Hospital 5 42.4 25.5 64.5 1 16.9 1 3.4
Bon Secours St Mary’s

Hospital 3 68.5 26.1 77.6 1 15.7 1 5.2
Mary Washington

Hospital 3 29.3 13.3 70.2 1 13.2 1 4.4
Sentara Princess Anne

Hospital 5 16.3 15.2 66.5 1 11.4 1 2.3
Inova Fair Oaks Hospital 5 33.7 30.9 69.2 1 11.3 1 2.3
Sentara Norfolk General

Hospital 3 64.1 34.5 54.8 0 11.0 1 3.7
Winchester Medical

Center 4 51.1 43.6 50.3 0 9.4 0 2.4
Virginia Hospital Center 5 33.7 38.8 68.8 1 9.1 1 1.8
Reston Hospital Center 4 16.3 17.0 66.7 1 8.2 1 2.1
Inova Loudoun Hospital 5 23.9 30.9 49.7 1 8.2 1 1.6
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an outlier event. The bars represent the fitness values; to the left is FF1 and to the right is FF2. Green bars
indicate a recommendation to requesting beds, while red recommends stopping and not requesting beds.

In every cycle of theGA algorithm, getting new beds naturally increases the value of the input variable:
number of beds, which then also increases the cost value. That leads—in the next iteration
(i.e., generation) of the algorithm—to assigning some of the high-value hospitals a lower fitness value,
or a slight increase to their fitness that is not representative in that context. Adjusting the number of
generations set in the algorithms for instance would yield slight changes to that premise.

4.3. TSP results and Validation

Method #3 is especially relevant in the case of outlier events. For instance, during the current Covid-19
crises, hospitals are facing shortages on medical resources and medical professionals. A tradeoff in
decisions is presented as follows: delivering the necessary limited resources to hospitals in the shortest
amount of time, saving as many lives as possible, and doing so at a relatively low cost.

The fitness value of the result can vary based on different factors, such as the total number of locations,
whether the data are normalized or not, and different fitness functions (presented in Table 4). It is clear that
using results with state centers (using geographical longitudes and latitudes) is more straightforward and

Figure 2. Resource allocation inputs and outputs for Genetic Algorithms using (a) FF1 and (b) FF2.
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simpler; versus when using locations of hospitals (Figure 4a,b). However, using hospitals’ locations is
obviously more realistic and useful. The fitness value different is 68% higher when comparing routes
between state centers (48 mainland states), or with VA hospitals (141 locations). FF3 seems to provide
suggestion with lower fitness value compared to using FF4 (Table 4). However, when comparing FF3
using normalized data with using unnormalized data, the fitness value improves drastically.

To improve the results further, we deployed clustering of the states by using K-means clustering (the
value of k is selected using the elbowmethod, with the least sum of squared error). In reality, VA facilities
are clustered into groups based on geographical locations, such as the Veterans Integrated Service
Networks system used in VA medical facilities that categorizes the United States into 10 geographical
areas. However, by deploying K-means clustering, the number of locations/region has been changed
based on statistical measures and the size of k, which lead to a higher average fitness value of the
algorithm. Figure 4a provides route suggestion between VAmedical centers using FF4 (all maps’ starting
point is in Pennsylvania); each point represents a VA medical center, sized by hospital rating. Figure 4b
illustrates route suggestions between state centers using FF4; each point represents a state center. Both 4a
and b use data that are not normalized; because distance is the only variable considered in FF4. In
Figure 4c–e, state centers have been used (didnot provide results that are transferable to hospitals given the
sparsity of outcomes); the size of the points indicate the sumof the hospital performance rating in the state.

Figure 3. Beds allocation for Veterans Affairs hospitals based on Method #2.

Table 4. Fitness values with different fitness functions

Algorithm Fitness value

FF4—Medical Centers 1.51 � 10�3

FF4—State Centers 4.74 � 10�3

FF3—State Centers—Unnormalized 1.91 � 10�8

FF3—State Centers—Normalized 1.04
FF3—State Centers—Unnormalized—K-means 1.38 � 10�7

FF3—State Centers—Normalized—K-means 1.64
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Figure 4. Resource allocation routes using Traveling Salesman Problem with Genetic Algorithm.
(a) Veterans Affairs medical centers using unnormalized data with FF3; (b) state centers using unnor-
malized with FF3; (c) state centers using unnormalized data with FF4; (d) state centers using normalized

data with FF4; and (e) state centers using K-means with FF4 with normalized data.

https://doi.org/10.1017/dap.2021.29 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2021.29


Figure 4c presents the route suggestion using unnormalized data using FF3. Figure 4d presents the routes
using normalized data with the same fitness function (FF3), and Figure 4e presents the function with
K-means clustering of the states into four regions (presented by four different colors).

In the resources’ allocation routes experiment (Method #3), Alaska, Hawaii, and other U.S. territories
have been removed from the discussion due to their geographical nature. Since the distances between
those locations to the contiguous United States are significant, the output will be greatly influenced and so
we elected to remove them to avoid disturbance in results. In Figure 4, some routes show the shortest
distance between two locations (a straight line). That leads to routes that go through Canada, the Great
Lakes, and the Gulf of Mexico (which is troublesome). It is important to note that performing similar
analysis on the state level or for within a hospital network will yield more related outcomes to hospitals,
albeit a national recommendation model as the one presented in Figure 4 is beneficial for systems like the
U.S. VA that are national in nature. Based on the result, using FF3 with normalized data yielded the best
outcomes, and is recommended for resources’ allocation routes suggestions.

5. Conclusions and Discussions

The resource management R dashboard using RL can help hospital administrations know whether they
have additional resources that they may be able to share with others in the near future. The binary GA
model provides administrators unbiased information to suggest whether the hospital should receive
additional resources or not. Finally, the TSP with GA can provide unbiased route suggestion based on
cost, emergency, distance, and other factors. These models can be used together but may also be used
independently during outlier events. Instead of using merely historical data to provide suggestions for
future events, these models collect current data and provide solutions based on the current context.

Due to the Covid-19 pandemic, telehealth service has increased dramatically (more algorithmic and
real-time systems becamemore relevant). The algorithm for resources’ allocation routes can be applied to
homecare providers and others such as prescription drug delivery service. Besides distance, some patients
might have more emergence conditions compared to others; therefore, using the system can provide the
best route suggestion while balancing all factors.

Resource allocation strategies (even using AI) strive to maximize, treat people equally, promote and
reward instrumental value, and give priority to theworst off (Emanuel et al., 2020). The need to balance all
these values for various interventions and in different circumstances is likely to lead to differing
judgments about how much weight to give each value in particular cases (i.e., where hospital managers
can then use the constants presented in our methods). The choice to set limits on access to resources is a
necessary response to the overwhelming effects of mass casualty events but the question is how to do so in
an ethical and systematic way, rather than basing decisions on individual institutions’ approaches or a
clinician’s intuition in the heat of the moment (Emanuel et al., 2020).

Pandemics have shaken healthcare systems around the globe, turning attention and resources away
from patients who need other types of care. Providers defer elective and preventive visits. Patients decline
emergency room (ER) visits, hospitalizations, and elective procedures. Children go unvaccinated; blood
pressure is left uncontrolled; cancer survivors miss their checkups. A decline of 42% was reported by the
CDC in ER visits because of the Covid-19 pandemic (Hartnett et al., 2020), a decline of 42% in VA
hospitals admissions (Baum and Schwartz, 2020) and 33.7% in hospital admissions for eight other acute
care hospitals (Oseran et al., 2020), a decline of 38–40% in myocardial infarctions (Garcia et al., 2020),
and a decline in the use of stroke imaging by 39% (Kansagra et al., 2020). Sicker admissions of non-
Covid-19 patients to the ICU are noted (Fadel et al., 2020), confirming a trend where patients most often
reached sicker health status, seeking care later and avoiding hospitals due to fear of the Covid-19
infection. To mitigate the risks for decompensation, morbidity, and loss to follow-up that could result
from delayed care for patients, providers are now converting, when possible, in-person visits to
telemedicine visits (Gadzinski et al., 2020; Mann et al., 2020). Our models could be merged with some
telehealth services and provide amore comprehensive view to hospital management. Telehealth and other
digital services come along with additional benefits for both the patient and the provider including
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potential faster care, cost savings, time savings, increased access to healthcare for rural areas, limiting the
spread of Covid-19, and help preserve the limited supply of Personal Protective Equipment (Kichloo
et al., 2020). Patient satisfaction for telemedicine care has been consistently high (Kruse et al., 2017). A
recent report, evaluating 400 patients scheduled for office consultation, showed that about 95% of the
patients were at increased risk for a severe outcome of Covid-19 and that 85%of themwould have favored
telemedical consultation during the pandemic (Novara et al., 2020). However, there are also some
potential negatives about telemedicine services, including less access for those without basic technology
or computer skills, the potential of paying out-of-pocket, interstate licensure challenges and other
regulatory issues that may vary by state, the need to address sensitive topics, especially if there is patient
discomfort or concern for privacy, and that not all conditions are appropriate for online treatment (Hjelm,
2005; Ruiz Morilla et al., 2017). Properly trained, a learning algorithm can augment physician judgment
about when to offer or subtract lifesaving care and how to allocate scarce resources in challenging mass
critical illness (Alimadadi et al., 2020; Allam and Jones, 2020).We anticipate that ourmethodswill help in
these scenarios; however, the following limitations are also areas where wewish to improve on: (a) testing
the system with data from other health institutions and (b) trying different AI models to evaluate if they
overperform RL and GA. (c) Although healthcare data are scarce and difficult to gather, we aim to inject
more health variables into our algorithms to improve their accuracy and usability. Additionally, as part of
future work, (d) we will test the mentionedmethods presented in real-world scenarios, at hospitals such as
Massachusetts General Hospital, the U.S. VA network, and other potential locations. Besides testing
feasibility, deploying the system at a hospital will help evaluate its sanity and confirm its accuracy and
relevance. It is evident that human judgment will remain important and ultimate (Garratt and Schneider,
2019; Shah et al., 2019), but it can be supported with the dispassionate independent score-keeping
capabilities of AI. This will be a logical extension of the risk-assessment tools used today in medicine.
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