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Abstract

Analyzing the appearances of political figures in large-scale news archives is increasingly important with the
growing availability of large-scale news archives and developments in computer vision. We present a deep
learning-based method combining face detection, tracking, and classification, which is particularly unique
because it does not require any re-trainingwhen targeting new individuals. Users can feed only a few images
of target individuals to reliably detect, track, and classify them. Extensive validation of prominent political
figures in two news archives spanning 10 to 20 years, one containing three U.S. cable news and the other
including two major Japanese news programs, consistently shows high performance and flexibility of the
proposed method. The codes are made readily available to the public.
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1. Introduction

Content analysis of TV news has been a primary methodology for political communication research
(Riff, Lacy, and Fico 2014). While the study of media audiences has been facilitated by the rapid
proliferation of online data collection, content analysis of TV news still relies heavily on human coding.
Conventional human coding of TV news is unsuitable for analyzing large amounts of data and, thus,
requires the timeframe of the analysis to be limited and random sampling of the data.While thismethod
can track obvious changes between several discrete time points, it cannot capture continuous, often
nonlinear changes, and sampling inevitably entails error.

However, the time is ripe to break through the limitations of such conventional content analysis of
TV news. First, large-scale TV news data archives are being developed as a result of the digitization
of TV broadcasting and the increasing scale and affordability of storage capacity. Furthermore, the
rapid development of computer vision technology based on deep learning (DL) is making it possible
to analyze TV news content without relying on human coding. To be sure, there are still many aspects
of content analysis that cannot be replaced by computer vision. For example, analysis at the level of
abstract meaning conveyed to the audience, rather than objective features of the image, still requires
manual judgment by humans. Nevertheless, thanks to DL-based computer vision techniques, it is now
possible to calculate objective indicators of whether a particular person or object appears in the news
with an accuracy comparable to human coding, and in a quantity and speed that is well-beyond the
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capacity of human coding. In particular, today’s media environment is rapidly becoming video-centric.
While television maintains its position as the primary news media, social media is also being used
as news source in video format, such as YouTube, Instagram, and TikTok. Therefore, the application
of such computer vision techniques to TV news analysis will make an essential contribution to the
methodological development of political communication research.

Against this background, this study proposes a face detection and tracking method based on com-
puter vision technology that is more versatile and flexible than other existing methods. The appearance
of individuals in the news, especially politicians and candidates, is a highly relevant driver of media
effects. As an illustration, the frequent appearance of politicians is relevant to the name recognition effect
(Kam and Zechmeister 2013), as well as the mere exposure effect (Bartels 1988). Politicians’ appearance
in news is also crucial to the political neutrality of themedia (Hopmann, VanAelst, and Legnante 2012).
Therefore, the detection and tracking of prominent political figures constitute a critical element of TV
news content analysis. Face detection and tracking is an actively studied area of computer vision and
are increasingly being applied to the social sciences (Joo and Steinert-Threlkeld 2022; Torres and Cantú
2022;Williams, Casas, andWilkerson 2020).We demonstrate the performance of the proposedmethod
by applying it to the analysis of five different TV channels, three corresponding to the U.S. cable news,
and two corresponding to the Japanese news programs. The algorithm used in the analysis is made
public and freely available to researchers.1

2. Literature Review

2.1. Content Analysis of TV News Using Human Coding
Human coding is the gold standard for TV news analysis. Clearly defined rules and reliable coding by
well-trained coders can most faithfully measure contents of news. In particular, many valuable findings
have been delivered by the studies that have used human coding to conduct long-term content analysis
of TV news. For instance, Schulz and Zeh (2005) analyzed television news coverage of four German
Bundestag elections between 1990 and 2002 and found an increasing personalization and dramatization
of media coverage. Cushion, Lewis, and Kilby (2020) analyzed BBC News and other media and survey
data at four time points from 2007 to 2016 and found changes in coverage of issues that were devolved
to the municipalities comprising the British Commonwealth. Bucy and Grabe (2007) analyzed news
from broadcast networks (ABC, CBS, and NBC) during four U.S. presidential elections from 1992 to
2004 and found that image bites had been used more frequently than sound bites. While these studies
capture important changes in TVnews, they are limited to discrete point-in-time comparisons, resulting
in a low granularity of analysis and failing to capture continuous or nonlinear changes. The majority of
TV news content analyses other than these long-term studies cover shorter time periods or focus on
single events. In this regard, recent developments in computer vision technology are making it possible
to analyze larger volumes of media messages over longer periods of time without relying on sampling
and human coding.

2.2. Face Detection and Classification
In this article, we focus on face detection and tracking of politicians because their appearance in news
is a theoretically important factor in political communication. Highly accurate automatic detection,
tracking, and classification of faces in news is feasible thanks to the recent advances inmachine learning
(ML), more specifically in the field of DL, by using convolutional neural network (CNN) approaches.

The earlymethods inML-based face detection are characterized by employing hand-crafted features,
that is, manually designed filters, to extract and classify elements of interest, such as filters focusing
on light contrast between areas to detect the possible location of eyes, nose, and mouth within a
face. Examples of these early methods include the first real-time face detector using a cascade of

1https://github.com/TeleStats/KAO.
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multiple weak classifiers that result on a much stronger detector (Viola and Jones 2001), a person
detector using histogram of gradients (HOG) by Dalal and Triggs (2005), and a joint face detection,
pose estimation, and facial landmark localization using a tree-structured modeling to be flexible over
different perspectives (Zhu and Ramanan 2012).

In contrast, DL-based methods automatically learn meaningful features from the data, instead
of using manually defined instructions. State-of-the-art methods for generic object detection and
classification use CNNs, which are particularly suitable for processing data with a grid-like structure,
such as images. By using CNNs, new families of object detectors have been developed. Some of the
early examples, which are still broadly used, are Faster RCNN (Region Based Convolutional Neural
Networks) (S. Ren et al. 2015), SSD (Single Shot MultiBox Detector) (Liu et al. 2016), and YOLO (You
Only Look Once) (Redmon et al. 2016). Given their superior performance, they were quickly adopted
for face detection (Jiang and Learned-Miller 2017; Sun,Wu, andHoi 2018), producing the current state-
of-the-art methods in face detection such as MTCNN (Zhang et al. 2016), DFSD (Li et al. 2019), and
YOLO-face (Qi et al. 2021).

In object detection, it is common to do both detection and classification (i.e., what type of object
corresponds to each detection) at the same time. This also can be applied to the face detection, where
the face classification (also known as face recognition) can be defined as assigning a known identifier
(ID) to each detected face. While the combination of face detection and classification at the same time
is a powerful approach, it is common to tackle the face recognition as a problem on its own (Schroff,
Kalenichenko, and Philbin 2015; Meng et al. 2021), applying pre-processing techniques such as face
alignment based on facial landmarks, to better focus on the face characteristics. These face recognition
models are trained with thousands of faces corresponding to many different people with datasets like
WiderFace (Yang et al. 2016) or VGG-face dataset (Cao et al. 2018).

2.3. Applications to Political Science
Automatic coding using computer vision technology reviewed above is steadily being incorporated into
political science. For example, in the analysis of still images, it is now possible to estimate the size of
political protests, the ratio of male to female participants, the percentage of people with children, and
state violence, by analyzing large numbers of images collected from social media (Joo and Steinert-
Threlkeld 2018, 2022; Williams et al. 2020). A growing number of commercial services based on CNNs
are also available without the need to train algorithms themselves. Araujo, Lock, and Velde (2020) used
three commercial APIs (Clarifai, Google CloudVisionAPI, andMicrosoftAzureComputerVisionAPI)
to evaluate the performance of automatic content analysis of images and propose a standard protocol.

More recently, computer vision techniques have been applied to the analysis of video data. Dietrich
(2021) applied computer vision techniques to video recordings of legislators’ movements in the U.S.
Congress and found that it is possible to predict legislator’s partisan votes from automatically detected
physical movements in Congress. A particularly active area of video research in political science is
the analysis of debates in presidential elections. Joo, Bucy, and Seidel (2019) used recurrent neural
networks to analyze videos of debates in the 2016 U.S. presidential election and successfully detected
facial expressions, emotions, gestures, and related movements (see also Bucy and Gong 2016; Bucy
and Stewart 2018). However, the movements of legislators and presidential debates are relatively
straightforward to analyze because time is limited and the formats are somewhat standardized.

More challenging is the analysis of general news videos. Political news videos feature a wide variety
of characters and backgrounds. Hong et al. (2021) conducted a large-scale analysis to detect the faces of
relevant individuals, mainly political figures but also considering TV anchors, from the top three cable
news channels in the US (CNN, FOX, and MSNBC) for 10 years from 2010 to 2019. The quantitative
analysis of 244,038 hours of news videos leads to valuable findings, such as that men have more screen
time than women. Tarr, Hwang, and Imai (2023) attempted CNNs-based face detection using videos of
political campaign ads. They succeeded in automatically extracting summary images of the videos and
detecting the faces of the people in them with high accuracy. However, they were not able to accurately
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Figure 1. Example of publicly available downloaded images for the analysis. Left: The 53 target individuals in the U.S. TV. Right: The

41 politicians to analyze in Japanese TV.

measure the screen time of the political actors because the analysis was done on a per summary image
basis. Screen time is an indispensable measure for calculating indicators of political fairness in TV
programs, such as “stopwatch fairness,” which requires continuous face detection and tracking. In
addition, many of the existing studies applying CNNs to the analysis of political videos require person-
by-person training, and are not easily used by social scientists who are not necessarily familiar with
computer vision. Therefore, more versatile and flexible methods are needed for the widespread use
of DL-based studies of video in political science. This study proposes a method that enables both
face detection and tracking from a few template images without re-training, and demonstrates its
performance.

3. Method

To help on the automatic coding of several thousand hours of videos for specific public figures
appearance on TV programs, we build a system that detects, tracks, and classifies these individuals
based on the face appearance on the screen, providing frame-level accurate information that can then
be exploited for further analysis.

3.1. Data Preparation
First, we prepare the data corresponding to the individuals to be analyzedwithin the TVnews broadcast.
We first download a few images—ranging from 3 to 5 per person—from the internet where the
individuals to detect on the TV videos appear. Each face detected in these online images constitutes
part of the template of that specific individual. In Figure 1, we portray examples of downloaded images
from the internet for the target individuals. On the left panel, we show the 53 target individuals in the
U.S. TV. On the right panel, the 41 politicians to analyze in Japanese TV. Detailed information of the
key actors can be seen in Tables 1 and 2 for U.S. TV and Japanese TV, respectively.

3.2. System Pipeline
To detect and classify the specified individuals, we follow a two-stage approach. Figure 2 represents the
first stage of our system pipeline.The second stage is face tracking and classification, which is described
in Section 3.4.

First, we generate target individuals’ templates by detecting their faces from downloaded images and
extracting a corresponding feature vector for each detected face. Then, we detect all faces in the frames
of a video sampled at one frame per second, as detecting the faces in all frames is computationally
unfeasible. We then extract discriminative features, that is, face embeddings, that will be used to
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Table 1. Target individuals for the U.S. TV channels CNN, FOX, and MSNBC.

Amy Klobuchar Hillary Clinton Mitch McConnell

Barack Obama Jeb Bush Mitt Romney

Ben Carson Jim Gilmore Nancy Pelosi

Bernie Sanders JimWebb Newt Gingrich

Beto O’Rourke Joe Biden Orrin Hatch

Bill Clinton John Boehner Paul Ryan

Bill De Blasio John McCain Pete Buttigieg

Bobby Jindal Jon Huntsman Jr Rand Paul

Carly Fiorina Kamala Harris Rick Perry

Chris Christie Kellyanne Conway Rick Santorum

Dick Durbin Kevin McCarthy Ron Paul

Donald Trump Lincoln Chafee Sarah Palin

Elizabeth Warren Lindsey Graham Steve Scalise

Gary Johnson Marco Rubio Ted Cruz

George W Bush Martin O’Malley Tim Kaine

George Zimmerman Michele Bachmann Trayvon Martin

Harry Reid Michelle Obama Tulsi Gabbard

Herman Cain Mike Huckabee

Table 2. Target individuals for the Japanese TV news programsNHKNews 7 and

HODO station.

Akihiro Ota Nariaki Nakayama Taro Aso

Banri Kaieda Natsuo Yamaguchi Taro Yamamoto

Fumio Kishida Renho Renho Toru Hashimoto

Ichiro Matsui Sadakazu Tanigaki Yasuo Fukuda

Ichiro Ozawa Seiji Maehara Yorihisa Matsuno

Junichiro Koizumi Seiji Mataichi Yoshihide Suga

Katsuya Okada Shigefumi Matsuzawa Yoshihiko Noda

Kazuo Shii Shintaro Ishihara Yoshimi Watanabe

Kenji Eda Shinzo Abe Yuichiro Tamaki

Kohei Otsuka Tadatomo Yoshida Yukiko Kada

Kyoko Nakayama Takako Doi Yukio Edano

Masashi Nakano Takashi Tachibana Yukio Hatoyama

Mizuho Fukushima Takenori Kanzaki Yuko Mori

Naoto Kan Takeo Hiranuma

compare the detected faces in a video against the individuals’ templates face embeddings, extracted
from the previously downloaded images from the internet. If two feature vectors are close, there is a
high chance that they correspond to the same person. The right panel of Figure 2 demonstrates that
the facial images of the same individual are positioned relatively close to one another in the feature
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Figure 2. Pipeline for the first stage.

space. As an illustration, the three blue circles correspond to themodel images that correspond to Yukio
Hatoyama (a former prime minister) gathered from the Internet. The newly detected Hatoyama image
from the system on the left panel of Figure 2 is marked as a blue X and is positioned near the three
model images, indicating that it is highly likely Hatoyama. Conversely, the pink X that represents the
news anchor’s face in the same frame is far away from the three Hatoyama model images and therefore,
it cannot be classified as Hatoyama, Koizumi, or Abe. In the second stage, we track and compare the
face embeddings of the individuals’ templates against the faces detected in the video, and classify the
video face detections.

3.3. Detection and Feature Extraction
To detect the individuals and extract meaningful appearance features we use off-the-shelf, already
trained, state-of-the-art DL methods. To detect faces for both internet images and video frames, we
use YOLO5-face (Qi et al. 2021), trained on the WIDER face dataset (Yang et al. 2016). YOLO-face is
a real-time facial detection and recognition system built on top of an object detector from the YOLO
family by Redmon et al. (2016).The YOLO series is a progression of state-of-the-art DL algorithms that
can detect objects in real timewith high accuracy. It works by dividing an input image into a grid of cells,
predicting the bounding boxes and class probabilities for each cell. Specifically, YOLO-face is designed
for detecting and recognizing faces in real-time video streams.The output of the face detector, specified
in Figure 2 as YOLO, per frame consists on a set of bounding boxes containing the information of the
center points (cx,cy), and width and height (w,h) of the bounding box.

To generate discriminative face features, we crop each detected face, and project it onto anRD feature
space (in this work, we use D = 512) to generate useful representations. Specifically, for each detected
face, we extract a feature vector h ∈ RD using FaceNet (Schroff et al. 2015), denoted as FaceNet in
Figure 2, with Inception-ResNet-v2 introduced in Szegedy et al. (2017) as the backbone, trained with
VGGFace2 dataset (Cao et al. 2018), consisting of many face annotations for 9,139 unique individuals.
The set of feature vectors for a concrete video is defined asH={h1,h2, . . . ,hK}, where K is the amount
of detected faces in a video.

3.4. Classification
Next, we classify each detected face as an individual or background. To assign an identity, it is common to
train a classifier based on the extracted face features, as done by Hong et al. (2021).While powerful, this
strategy requires re-training of the classifier every time a new person is included in the list of individuals
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Figure 3. Representation of template embedding extraction, tracklet clustering, and tracklet ID assignment by voting.

to analyze. To keep the system flexible, we tackle the classification problem as a direct comparison
between the face features in the embedding space, assuming that these generated face embeddings
are similar for a specific individual (intra-class resemblance), and are discriminative enough between
different individuals (inter-class dissimilarity). We separate the classification scheme into two steps. In
the first step, we track every detected face in the video, and, in the second step, we assign an identity to
each tracked face by comparing the tracked faces in the video against the individuals’ templates from
the internet images.

Step 1: Face tracking
To pursue face tracking, wemake an initial assumption, that is that the appearance of an individual is

similar within neighboring frames. Following this assumption, we are able to group similar faces within
a video by clustering the face embeddings extracted in the previous step.

We define these face embeddings clusters as tracklets, T ⊆H, containing a subset of the face positions
and embeddings within the same video. These tracklets are the representation of a detected person
in a temporal window, for example, capturing the face position of a certain individual along a shot.
In Figure 3, we provide a visual example where the video face embeddings in H, are grouped into
tracklets T 1 and T 2, which will be compared to the template face embeddings inF ={F1,F 2, . . . ,FN},
corresponding to each target individual {1,2, . . . ,N}, to finally assign an ID per tracklet that will be
extended to all the detected faces within each tracklet.

To cluster the face embeddings to generate the tracklets, we use unweighted pair group method with
arithmetic mean (UPGMA) (Sneath and Sokal 1973), which iteratively fuses pairs of clusters, forming
a hierarchy.

Step 2: ID assignment
Once the detected faces along a video are grouped in the form of tracklets, we proceed to assign an

identity to each tracklet, corresponding to the previously selected individuals or with the “unknown”
label. This assigned identity per tracklet is extended to all the face detections within the tracklet. To do
so, we opt to use a majority voting scheme, where each of the face embeddings h ∈ T is compared
independently against all the instances of the individuals’ templates f ∈ F by means of the cosine
distance.

Formally, let Y = {1,2, . . . ,N,N + 1} be a label set representing N target individuals, and N + 1 the
“unknown” label. The face embeddings of the yth individual is denoted as follows:

F y = {f y1 ,f
y
2 , . . .}, (1)
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whereas, each f yi ∈R
D. We use F to represent all faces of all individuals:

F =F 1∪F 2∪⋅ ⋅ ⋅∪FN . (2)

To compare embeddings, we define the distance function d ∶RD×RD→R as follows:

d(h1,h2) = 1−
h⊺1h2

∥h1∥2∥h2∥2
. (3)

This distance function is known as the cosine distance, being 0 for the most similar embeddings, and 2
for the most dissimilar.

Given a tracklet T , let us consider the face embedding h ∈ T . We denote the nearest face embed-
ding as:

f∗ = argmin
f∈F

d(h,f), (4)

where f∗ ∈ F corresponds to the most similar face between the face embedding h and the face
embeddings of the N target individuals contained in F .

Here, we consider the voting function v ∶RD → {0,1}N+1. This function receives a face embedding
and estimates its label as a formof one-hot vector (the last element is for “unknown”), defined as follows:

v(h) =
⎧⎪⎪
⎨
⎪⎪⎩

i(f∗), if d(h,f∗) ≤ α,
[0, . . . ,0,1]⊺, else.

(5)

Here, the indicator function i(⋅) takes a face embedding as an input, and returns its label, for example,
i(f 31 ) = [0,0,1,0, . . . ,0]⊺. If the distance d(h,f∗) is greater than a threshold α, the voting function
returns the “unknown” label, which is represented by a one-hot vector which final element is one.

Finally, we can accumulate the voting results of the target tracklet T as a single counter vector
c = [c1,c2, . . . cN+1]⊺ ∈RN+1 by

c =
1
L ∑h∈H

v(h), (6)

where L is the length of the tracklet T . The sum of the voting for the yth class is represented as cy,
therefore, the most voted label is obtained by

y∗ = argmax
y∈Y

cy. (7)

Finally, we apply a threshold to the result to obtain the final label:

yfinal =
⎧⎪⎪
⎨
⎪⎪⎩

y∗, if cy∗ > 0.7,
N +1, else,

(8)

meaning that themost voted identity for the tracklet T should have at least the 70% of the votes in order
to be labeled as a specific individual, otherwise, the faces within the tracklet are labeled as “unknown,”
specified as the label N + 1. The robustness check for this change in voting thresholds is reported in
Section SI1 of the Supplementary Material.

In Section 4.4, we compare this tracklet voting-based classifier against a K-nearest neighbor (KNN)
classifier, and a classification by directly computing the distance between the centroid of the tracklet T ,
defined as the average of all the embeddings within T , and the target individuals embeddings in F .

4. Evaluation and Performance

In this section, we introduce the evaluation regarding our method’s performance over five different TV
channels from two regions, corresponding to U.S. and Japanese TV.
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4.1. Datasets
To demonstrate the performance and flexibility of our method, we tested it against two datasets, one
corresponding to the U.S. cable news: CNN, FOX, and MSNBC, and the other containing Japanese
TV news programs of NHK (the Japanese public broadcaster) and ANN (a commercial broadcaster).
For Japanese news, we chose the news programs “NHK News 7” from NHK and “HODO (news)
Station” from ANN because these two programs have the highest viewership ratings among public and
commercial broadcasters, respectively. News 7 is an every-day evening hard news program, lasting half
an hour per day, while HODO station, which is a weekday evening soft news consisting of news reports
and talk shows, lasting an hour and a half.

The acquisition of video data is a multifaceted undertaking that entails technical as well as legal
considerations. Technical complications may surface when capturing high-resolution video streams on
a daily basis, whereas legal constraints such as potential copyright infringement may limit the types of
content that can be recorded and made publicly available. In this study, the annotations for U.S. TV
were provided by Hong et al. (2021), to check our system’s performance on the U.S. news videos. We
downloaded the specific news videos corresponding to the annotations from Archive.org, which is an
archive of years of TV recordings. For Japanese data, we utilized a system developed by Katayama et al.
(2004) to capture and save video streams from multiple Japanese television channels over the course of
several years, thereby enabling us to conduct this research.

4.1.1. U.S. TV Dataset
Thedataset was created byHong et al. (2021), which originally covers fromyear 2010 to 2019, containing
annotations of 53 relevant individuals (politicians, TV anchors, and other).2 In this paper, we evaluate
from year 2012 to 2019, due to our lack of access to 2010 to 2012 data.3 The dataset contains 4,346
randomly sampled frames from programs (TV news or talk shows) of three TV channels, CNN (1,083
frames), FOX (1,674 frames), and MSNBC (1,589 frames), with a single face annotation per frame
corresponding to one of the individuals of interest. The 4,346 frames in the U.S. dataset correspond to
874 randomly sampled TV programs totaling 1,140 hours (CNN: 280h, FOX NEWS 415h, MSNBC:
445h).

4.1.2. Japanese TV Dataset
The Japanese NHK dataset was originally developed by Katayama et al. (2004), which led to works
that studied the social networks of politicians based on their co-appearance on news (Renoust et al.
2016), a study on the effectiveness of face detection and text-based detection for DL models (Ren et al.
2019), or topics associatedwith politicians appearance inTVnews (Renoust et al. 2021).We significantly
improved this work by adding high-quality manual annotation, extending the coverage to 2001–2021,
and adding a commercial Japanese news broadcast (HODO station 2014–2021).

We randomly sampled excerpts of videos from both Japanese programs at one frame per second,
and annotated 41 politicians who served as party leaders at least once from 2001 to 2021. The News 7
annotations cover from 2013 to 2021, and HODO station annotations cover from 2014 to 2021, owing
to the availability of video corpus. For every sampled frame, we annotated a region of interest, known
as bounding box, covering each face of the politicians of interest that are present in the frame. As a
result, this dataset contains 19,823 annotated frames from NHK’s News 7 (11,141 frames) and ANN’s
HODO (news) station (8,682 frames), resulting in 29,000 manually annotated bounding boxes (15,101
for NHK News 7 and 13,899 for HODO station). An example of annotations for both datasets can be
seen in Figure 4.

2We appreciate Hong et al.’s (2021) authors for kindly sharing the dataset.
3Note that in Table 4, we compare our results (years 2012–2019) to Hong et al. (2021) (years 2010–2019), in the best effort

to make the comparison as fair as possible.
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Figure 4. Annotation examples for U.S. TV and Japanese TV annotations. The U.S. TV dataset consists of a single face annotation per

frame, whereas in the Japanese TV dataset, all individuals of interest are annotated in every frame. Green bounding boxes indicate

the annotated ground truth data.

With these two datasets, we are able to test the ability of our method to detect and classify the same
individuals within different channels, as well as its performance given different target individuals and
different video settings without the need of any kind of re-training.

4.2. Metrics
To evaluate the performance of our method, we use the metrics for object detection employed by the
widely used COCO dataset (Lin et al. 2014). We compute the Precision, Recall, and F1 score metrics.
In addition, we study the performance of our method for different detection sizes, ranging from very
small to very large, and computed the F1 score and the mean Average Precision (mAP) for each size.

Precision (P), Recall (R) and F1 scores, are defined as:

P = TP
TP+FP

, R = TP
TP+FN

, F1 = 2 ⋅ P ⋅R
P+R

, (9)

where TP corresponds to True Positives (correct matching between annotated ground truth (GT) and
detections), FP to False Positives (faces wrongly classified), and FN to False Negatives (faces present in
the GT that are not classified). Note that a face of an individual that is wrongly classified will count both
as FP and FN.

ThemAP score is defined as a weightedmean of precision values at different Intersection over Union
(IoU) sensitivities, in the form of thresholds, of the detector.

mAP = 1
N

N
∑
k=1

APk , (10)
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Table 3. Missed detections percentage per TV channel over the three different

face detectors DFSD, MTCNN, and YOLO-face.

Detector CNN FOX MSNBC NHK HODO OVERALL

DFSD 4.62% 3.88% 5.16% 3.13% 6.28% 4.61%

MTCNN 5.36% 4.60% 6.36% 2.84% 8.55% 5.54%

YOLO 1.11% 0.96% 1.01% 0.65% 0.33% 0.81%

where APk is the average precision of the class k for a specific IoU threshold, andN the number of classes
in the dataset.

Given the sparse annotations present in the U.S. dataset (a single annotation per frame), we follow
the evaluation criteria of Hong et al. (2021), and only consider the detections with an associated GT.
For the Japanese TV dataset, where all faces per frame are annotated, we consider all the detections
and classifications from our system, that is, also considering misclassifications of random people in the
background as one of the individuals of interest. Note that this difference in evaluation criterion will
affect the amount of FPs, conditioning the Precision score to be higher in Table 4 and lower in Table 5.

4.3. Procedure
For the U.S. TV dataset, we download the videos containing the validation frames used in the paper
presented by Hong et al. (2021) stored in Archive.org.The videos have a resolution of 640x360 for CNN
and 640x480 for FOX and MSNBC, and are recorded at 30 or 60 frames per second, depending on the
program. For the Japanese TV dataset, we gathered the data for both TV programs, NHK News 7 and
HODO station, whose videos have a resolution of 352x240, and recorded at 30 fps. In our method, for
each dataset, we model the set of corresponding individuals using 3 to 5 images publicly available in the
internet.

To address potential dependency on different detectors and classification strategies, we tested three
popular face detectors, YOLO-face (Qi et al. 2021), DFSD (Li et al. 2019), and MTCNN (Zhang et al.
2016), trained on WIDER face for YOLO-face and DFSD, and VGGFace2 for MTCNN, and tried
three different classification strategies. The main classification strategy of our method, introduced in
Section 3.4, is presented as vote in Tables 4 and 5.The centroid classification strategy averages the feature
vectors within a tracklet and compares the resulting embedding to each target individual template
embeddings, and KNN classifies each detected face in the video using the KNN algorithm (in this
analysis, we set K = 3) introduced by Fix and Hodges (1989).

Note that throughout the analysis of our method, the evaluation criteria for US and Japanese data
differ, as described in Section 4.2. Specifically, for the U.S. dataset, only detections with an associated
ground truth are considered for evaluation. This is because the dataset has sparse annotations, with
only a single face annotated per frame. This approach reduces the number of false positives, resulting
in a more lenient evaluation and increasing the Precision score. However, for the Japanese dataset, all
detections are considered, regardless of whether they are associated with ground truth. This provides
a more realistic evaluation of the model’s performance, as it considers all possible misclassifications
within a frame.

4.4. Analysis
First, we check the detection capabilities of the different face detectors we tested in Table 3, as missed
detections highly impact the performance of the overall system. From this preliminary analysis, we
observe that YOLO-face outperforms DFSD and MTCNN by a considerable margin in all tested
channels, providing the best possible performance for the whole detection and classification system
shown in Tables 4 and 5.
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Table 4. Evaluation of our method over the three U.S. TV cable news channels.

Overall CNN FOX News MSNBC

Detector Classifier P R F1 P R F1 P R F1 P R F1

DFSD 1.0 0.63 0.773 1.0 0.63 0.773 1.0 0.66 0.796 1.0 0.60 0.750

MTCNN KNN 1.0 0.62 0.764 1.0 0.64 0.779 1.0 0.64 0.782 1.0 0.58 0.732

YOLO 1.0 0.68 0.807 1.0 0.69 0.814 1.0 0.70 0.822 1.0 0.65 0.786

DFSD 1.0 0.74 0.849 1.0 0.74 0.850 1.0 0.76 0.860 1.0 0.72 0.837

MTCNN Centroid 1.0 0.71 0.830 1.0 0.73 0.844 1.0 0.74 0.852 1.0 0.66 0.793

YOLO 1.0 0.77 0.873 1.0 0.80 0.891 1.0 0.79 0.883 1.0 0.73 0.846

DFSD 1.0 0.76 0.862 1.0 0.78 0.875 1.0 0.77 0.867 1.0 0.73 0.844

MTCNN Vote 1.0 0.74 0.847 1.0 0.77 0.869 1.0 0.75 0.858 1.0 0.69 0.814

YOLO 1.0 0.79 0.885 1.0 0.82 0.902 1.0 0.80 0.889 1.0 0.76 0.865

Hong et al. (2021) 0.96 0.64 0.768 – – – – – – – – –

Note: For reference, we compare to Hong et al. (2021), which needs to be re-trained for newly added individuals. Note that Hong et al. (2021) use
MTCNN as face detector. The best F1 scores overall and for each TV channel are shown in bold font.

Table 5. Comparison of our method between two Japanese TV programs, NHK News 7 and Hodo Station, for

different detectors and classifiers.

Overall NHK News 7 (2013–2021) HODO station (2014–2021)

Detector Classifier P R F1 P R F1 P R F1

DFSD 0.81 0.69 0.738 0.81 0.75 0.776 0.80 0.63 0.701

MTCNN KNN 0.78 0.69 0.731 0.79 0.74 0.766 0.77 0.63 0.696

YOLO 0.80 0.72 0.756 0.81 0.78 0.793 0.79 0.66 0.720

DFSD 0.78 0.74 0.760 0.77 0.79 0.780 0.78 0.70 0.741

MTCNN Centroid 0.79 0.77 0.778 0.79 0.82 0.806 0.78 0.72 0.749

YOLO 0.77 0.79 0.785 0.79 0.84 0.816 0.75 0.75 0.754

DFSD 0.83 0.74 0.784 0.82 0.78 0.799 0.85 0.70 0.768

MTCNN Vote 0.86 0.73 0.793 0.86 0.78 0.819 0.87 0.69 0.768

YOLO 0.85 0.78 0.815 0.84 0.81 0.825 0.87 0.75 0.804

Note: The best F-scores overall and for each TV channel are shown in bold font.

For the overall face detection, tracking, and classification of the specified individuals, we present the
results over the U.S. TV dataset in Table 4. For reference, we extrapolate the results per individual from
Hong et al. (2021).

Without the need of any kind of re-training across datasets and individuals, the proposed method
presents an impressive performance. For both datasets, Tables 4 and 5, the F1 score exceeds 0.8 out
of a maximum of 1 points, making the system suitable for further analysis of TV data. The best
results are achieved with the YOLO-face detector, using the voting scheme presented in Section 3.4 for
classification. Examples of misclassification are presented in Section SI2 of the SupplementaryMaterial.
We also probed why our system outperformed Hong et al. (2021). Specifically, we controlled for factors
other than differences in the use of classifiers and clustering by employing the same detector as Hong
et al. (2021) and not using tracking (see Section SI3 of the Supplementary Material for details). The
results show that while clustering makes the system flexible and renders classification and retraining
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F-score and mAP for US dataset
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Figure 5. F-score andmAP evaluation for different face sizes on the three channels of the U.S. dataset. As ground truth annotations in
the U.S. dataset are not tight to the faces, they produce a IoUmisalignment with predictions. To compute themAP, wemodify the IoU

sweep threshold to [0.4, . . .0.6] with an increase of 0.05 per step.
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Figure 6. F-score and mAP evaluation for different face sizes on the two channels of the Japanese dataset. Here, we follow the COCO
standard procedure of computing mAP, with the IoU sweep threshold as [0.5, . . .0.95] with an increase of 0.05 per step.

unnecessary, which is the unique advantage of our system, it also undermines overall performance
compared with classifiers. However, this performance loss is compensated for by using amore advanced
backbone for FaceNet and tracking using tracklets. As a result, our flexible system pipeline outperforms
Hong et al.’s (2021) system overall.

In Figures 5 and 6, we include a study over the F1 score and the mAP at different detection sizes.
This analyses help to understand the limits of our system when dealing with very small faces in a video.
We filter bounding boxes considering the area in pixels per bounding box for the following squared
area thresholds: [8,16,32,64,96,128,156]. From these results, we observe the consistent behavior of our
method across datasets and all channels, having a very high performance for medium and large faces,
struggling when analyzing very small detections.

While the face detector is crucial for a good performance, face tracking, presented in Section 3.4, is
also a key component of our system. In Table 6, we studied the performance using or not face tracking
as part of the voting classification method. For every tested detector and across every TV channel,
generating face tracklets for further classification is key for a better overall performance, both reducing
false positives and false negatives, improving the Precision and Recall scores.

With the presented results, we can rely on our method to find specific key actors generically in large-
scale video archives for further analysis, without needing any kind of re-training.
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Table 6. Performance with or without face tracking for different detectors.

CNN FOX MSNBC NHK HODO

Detector Tracking P R F1 P R F1 P R F1 P R F1 P R F1

DFSD No 1.0 0.65 0.787 1.0 0.67 0.804 1.0 0.61 0.761 0.79 0.75 0.769 0.78 0.63 0.700

DFSD Yes 1.0 0.78 0.875 1.0 0.77 0.867 1.0 0.73 0.844 0.82 0.78 0.799 0.85 0.70 0.768

MTCNN No 1.0 0.65 0.787 1.0 0.66 0.793 1.0 0.59 0.744 0.78 0.75 0.765 0.76 0.64 0.695

MTCNN Yes 1.0 0.77 0.869 1.0 0.75 0.858 1.0 0.69 0.814 0.86 0.78 0.819 0.87 0.69 0.768

YOLO No 1.0 0.70 0.827 1.0 0.71 0.830 1.0 0.66 0.797 0.80 0.78 0.791 0.78 0.67 0.722

YOLO Yes 1.0 0.82 0.902 1.0 0.80 0.889 1.0 0.76 0.865 0.84 0.81 0.825 0.87 0.75 0.804

Note: In bold, we highlight the best F-score performance per detector and TV channel.

https://doi.org/10.1017/pan.2023.33 Published online by Cambridge University Press
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Table 7. Screen timeofmajorU.S. candidates over the 847 randomly sampled videos for the 2016

general elections.

CNN FOX MSNBC Total

Republican primary

(2016-02-01 to 2016-06-07)

Donald Trump 6,470 2,670 4,548 13,688

Ted Cruz 3,454 2,330 3,522 9,306

Marco Rubio 1,838 1,025 1,435 4,298

John Kasich 1,206 1,246 1,596 4,048

Democratic primary

(2015-04-12 to 2016-06-02)

Hillary Clinton 9,953 3,744 9,916 23,613

Bernie Sanders 8,941 1,828 7,362 18,131

General election

(2016-06-02 to 2016-11-08)

Donald Trump 5,064 2,204 6,425 13,693

Hillary Clinton 3,562 2,476 6,497 12,535

4.5. Application 1: The 2016 U.S. Presidential Election
As an example of the applications of our system pipeline, we first compare the screen time of major
candidates during the 2016 primaries and the general election. Because the U.S. data we utilized are a
random sample from all cable news data from CNN, FOX, andMSNBC, visualizing longitudinal trends
is not suitable as it involves periods without data. Therefore, we examine the sum of each candidate’s
screen time, which can be found in Table 7. It should be noted that these screen time totals do not
match the screen time totals from the entire period.

In the Republican primary, Donald Trump received the most screen time overall, which is consistent
with the findings ofHong et al. (2021). However, while Hong et al. (2021) estimated that Trump received
more than 2.6 times as much screen time as Cruz (342 vs. 130 hours), our estimate is approximately
1.5 times. This suggests that the disproportionate media attention to Trump may not have been as
substantial as reported in prior studies. Furthermore, it is interesting to observe that the attention given
to Trump was more prominent on liberal CNN and MSNBC than on conservative FOX. It is possible
that during the Republican primaries, the liberal media were warier of Trump and aired himmore often
as a target for criticism.

On the other hand, in theDemocratic primaries, Hillary Clinton had 1.3 timesmore screen time than
Bernie Sanders. On CNN andMSNBC, the two candidates were more balanced in terms of screen time,
but on FOX, Clinton had more than twice as much screen time as Sanders, a symmetrical result with
the Republican primaries. In the general election, Trump and Clinton’s screen time was nearly identical.
Thus, utilizing the system pipeline proposed in this study, we find that the inter-candidate imbalance
in screen time during the primaries was relatively large for coverage of partisan opponents (Republican
primary for CNN andMSNBC and Democratic primary for FOX) and that in the general election, such
inter-candidate imbalances are small even on partisan media outlets.

4.6. Application 2: Public versus Commercial Broadcasters in Japan
The next application considers the potential pro-incumbent bias of public compared with commercial
broadcasters. As the public broadcaster in Japan, NHK’s budget is required by the Broadcasting Law
to be approved by the Diet each fiscal year. Furthermore, the prime minister appoints the governors of
NHK, NHK’s highest decision-making body, with the consent of both houses of the Diet. Moreover, the
chairman, who is responsible for NHK’s business operations, is appointed by the governors. Therefore,
it has been pointed out that NHK is influenced by politics in both budget and personnel matters, which
may cause its pro-incumbent bias (Krauss 2000).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.33


“PAN_Driver” — 2024/2/19 — 10:37 — page 236 — #16

236 Andreu Girbau et al.

Figure 7. Share of screen time of incumbent party leaders among all leaders and its NHK/HODO ratio. The three vertical solid lines

represent the timing of the House of Representatives elections, whereas the dashed lines indicate the timing of the change of prime

ministers.

Figure 7 plots the shares of screen time of the incumbent party leaders in the total screen time of all
party leaders since January 5, 2014, for which both NHK and HODO data are available.The incumbent
party leaders are those of the LDP and the Kōmeitō party (the coalition partner of the LDP).The trends
represent 15-day moving averages, and smoothed lines represent 90-day moving averages.

Figure 7a shows the trends of share of screen time of incumbent party leaders among all leaders. From
2014 to the end of 2019, NHK andHODO show similar trends, with the percentage of incumbent party
leaders ranging from 60% to 70%. However, since the end of 2019, the percentage of incumbent party
leaders on NHK has been on an upward trend, reaching over 80% by the end of 2022. This means that,
of the screen time of all party leaders, the incumbent party leaders (mainly the prime minister) account
for 80%. This upward trend is not seen on HODO. Part of the increase in the percentage of incumbent
party leaders inNHKarguably reflects the increase in the number of primeministerial press conferences
related to the pandemic. However, the incumbent party holds about 60% of the seats in the House of
Representatives and about 57% in theHouse of Councilors.The fact that 80% of the party leaders’ screen
time is devoted to the incumbent party leaders indicates that pro-incumbent bias is intensifying, at least
in terms of “stopwatch fairness.”

Figure 7b more explicitly shows the NHK/HODO ratio of the share of screen time of incumbent
party leaders among all leaders. The trend shows the ratio between NHK and HODO was around 1
until 2017, indicating that the screen time share of incumbent party leaders was more or less equal
between NHK and HODO. However, it began to rise in 2017 and reached around 1.3 in 2022. Figure
7a shows that it was late 2019 when the screen time share of incumbent party leaders in NHK began to
rise, but the NHK/HODO ratio began to rise earlier in 2017 because the screen time share of incumbent
party leaders in HODO slightly dropped after the House of Representative election in 2017.

5. Discussion

With the aim to apply recent developments in computer vision techniques to TV news content analysis,
this study proposed a versatile and flexible face detection, tracking and classification method that does
not need re-training. With the proposed method, feeding only a few template images allows us to
analyze the appearances of previously specified individuals of interest in large-scale video settings.
As television maintains its position as a major media outlet and communication on social media is
increasingly becoming image and video oriented, media messages in political communication are also
shifting to video-centric from text-based. Traditional manual coding has been, and will continue to
be, a necessary tool that provides valuable insights by most faithfully measuring the contents of media
messages. However, analyzing large amounts of “video as data” without relying on sampling andmanual
coding is essential for detecting long-term, continuous, nonlinear changes in political communication.

We empirically demonstrated the flexibility of the proposed method by testing it over two datasets
focusing on U.S. and Japanese TV news, each dataset containing a different set of videos and target
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individuals. The consistent high performance across the two datasets strongly indicates the robustness
and the broad utility of the proposed method across different political contexts.

Before discussing the potential range of applications of the proposed method, some limitations
of this study should be noted. This study focuses only on face detection and tracking and does not
address other rich information in video data. In addition to face images, videos contain a variety of
other information such as voice, body motion, closed caption text information, and background music,
which are extremely useful for analyzing speaker emotions and message framing (Dietrich 2021; Tarr
et al. 2023; Rheault and Borwein 2019). Although this study contributed to extending existing research
by focusing on face detection and tracking, the analysis combined with other types of information is
promising for future research.

The potential applications of the face detection and tracking proposed in this study are wide. For
example, in many Western democracies, there is a growing trend toward presidentialization, whereby
power andmedia attention are increasingly focused on individual presidents and primeministers rather
than on political parties and other institutions (Garzia 2011; Poguntke andWebb 2007). To demonstrate
the increasing media attention to political leaders, one important aspect of presidentialization, the
proposed face detection and tracking can be used to examine whether the screen time of presidents
and prime ministers is increasing over time. Another future direction is to apply this system to analyze
the imbalance of screen time by gender and race in the news. Furthermore, detecting the co-presence
of politicians in the news will allow us to extract networks among them (Renoust, Le, and Satoh 2016)
or to identify specific news formats such as talk shows.

Analyzing “video as data” is the most recent introduction of machine learning in political science.
Given the growing amount of available video data and rapid development of computer vision tech-
nology, we can expect that many creative political science studies using computer vision will emerge
in the future. To contribute to such future studies, we make the code and models openly available in
https://github.com/TeleStats/KAO.
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