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UPPER TRIANGULAR INVARIANTS 

BY 

H. E. A. CAMPBELL 

ABSTRACT. We modify the construction of the mod 2 Dyer-Lashof 
(co)-algebra to obtain a (co)-algebra W which is (also) unstable over the 
Steenrod algebra A%. W has canonical sub-coalgebras W[k] such that the 
hom-dual W[/:]* is isomorphic as an A-algebra to the ring of upper trian­
gular invariants in Z/2Z [xt, . . . , xk]. 

Introduction. Let Pk = Z/2Z [xu . . . , xk] denote the polynomial algebra over 
Z /2Z on k generators of degree one; we write \XJ\ = 1. Let Gk = G(k(Z/2Z) denote 
the group of kxk matrices of determinant one with entries from Z/2Z acting on Pk as 
a group of algebra automorphisms, that is, if C = [c,/] eGk then Cx, = 2*=, c^Xj and 
C is extended as an algebra map to all of Pk. Let Tk denote the 2-Sylow subgroup of 
Gk consisting of the upper triangular matrices with "ones" on the main diagonal. We 
denote the invariants with respect to the actions of these two groups by Pk

Gk and Pk
Tk. 

It is well known that Pk
Gk (which is called the Dickson algebra) can be obtained as the 

dual of R[k], a canonical subcoalgebra of the Dyer-Lashof algebra R (see section one). 
In this paper we modify the construction of the Dyer-Lashof algebra by killing only 
those monomials suffering from negative excess to obtain a Hopf algebra W with 
subcoalgebras W[k] such that U^/:]* = Pk

Tk as algebras over the Steenrod algebra. We 
use these facts to obtain a description of the action of the Milnor primitives Sq^r on Pk

Tk\ 
this description uses the known action of the Sq^r on Pk

Gk which we reproduce here from 
[1] for completeness. In addition, we provide an invariant-theoretic interpretation of the 
dual basis for Pk

Gk coming from R[k]. 

Recall that Pk
Gk = Z/2Z[auk, . . . , aktk] with \aLk\ = 2k - 2k~l and that Pk

Tk = 
Z/2Z[vi, . . . , vk] with |v,-| = 2'"1; see for example, Dickson [3], Mui [4] or Wilkerson 
[7] (but note that our notation is different auk = Qk,k-i = Q^_/). 

We note that for experts this paper is more or less an observation; the technical details 
in connection with the Dyer-Lashof algebra have long since been worked out. Our 
presentation here relies heavily on J. P. May [2] and C. Wilkerson [7] and our 
inspiration is due, in part, to the work of W. M. Singer [5, 6]. The author is grateful 
to Paul Selick for expert and excellent advice. 

Recollections of the past and the construction and basic properties of W. Let F 
be the free associative algebra on symbols {fs\s ^ 0}, with |/,v| = s. Given a sequence 
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/ = ( / ! , . . . , 4) of non-negative integers we define the length, degree and excess of/ 
by €(/) = k, d(I) = /] + . . . + ik and e(I) = i\ - i2 - . . . - /*, respectively. The 
sequence / determines an element/7 = / ' ' . . ./ '^e/7, and we define the degree of/7 

denoted |/7 | as d(I). Let L denote the two-sided ideal of F generated by the elements 
f' of negative excess, and define W to be the quotient algebra F/L\ let e1 denote the 
image off1 in W. 

Let K' denote the two-sided ideal of F generated by the Adem relations: if r > 2s, 

and let K denote the image of K' in W. It is frequently convenient to use lower notation 
for the elements of W, that is, we define e'x = ej-\x\x, for example e2e] = e2ex = e\e\. 
In this notation \e\ = /, + 2i2 + . . . + 2k~]ik, and the set {e^i, > 0, y = 1, . . . , k} 
is a Z/2Z-basis for W. The Adem relations in lower notation are: for r > s, 

eres + 2 1 ) ^+2,-2/^-
V - 7 - l7 

Let W„ denote the subspace of W spanned by {e/\\ei\ - n}, note that W0 = Z/2Z[e0] ; 
let W[k] denote the subspace of W spanned by {e,\i(I) = k) with W[0] = Z/2Z. We 
have W = 0„>oW„ = ©*>o W[fc]. An element e7 (or / itself) is said to be admissible if 
i, < h < . . . < /*. 

The Dyer-Lashof algebra R, is defined to be the quotient algebra F modulo the 
two-sided ideal generated by both the Adem relations and the monomials of negative 
excess; here we have R = W/K. The image of e7 in R under the natural map 4> : W —» 
R is denoted Q,. The set {0/|/ is admissible} is a Z/2Z-basic for/?. /? is a Hopf algebra 
under the coproduct defined on generators by i|/(ô/) = So/-/ 0 Qi a nd if/?[&] denotes 
<|>(W[fc]) then R[k] is a connected subcoalgebra and R = 0 *>0/?[/:] as a coalgebra. 
In fact, R is a component coalgebra; TIR is the free monoid generated by Q0 and R[k] 
is the component of Q0

k = Qo . . . QQ (k times), k > 0. The product in /? sends /?[/:] 
0 /?[€] to R[k + €] and the elements g,, / ^ 0 are all indecomposable. 

The (opposite of the) Steenrod algebra A* acts on R via the Nishida relations: 

/\x\ + i - r\ 
Sq*QiX = 2J [ J Qi-r+2SSq*x. 

s v r - 2s ' 
Then R and /?[&] are unstable A*-coalgebras. The set 

is a basis for the primitives PR[k] of R[k]. Consequently, the dual /?[&]* is a poly­
nomial algebra on Q0 . . . (2oôi • • • ôi* a°d /?[/:]* = P*CA as an A-algebra under the 
map Q0. . . g o d • • • Q\* ~^ #/,*> ( see [7], IV, p. 430); we denote the dual of the inverse 
isomorphism £* : Pk

Gk —» /?[&] for later use. For all of the above, see May's paper in 
[2]. 
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Now Pk
Tk = Z/2Z[vi, . . . , v*]; to determine the action of the Steenrod algebra on 

Pk
Tk we recall the work of C. Wilkerson [7]. Let Yk denote the vector space (Pk)} with 

basis {x,, . . . , xk} and let 

fk(x) = EI (x + y) = x2k + a]tkx
2k~l + . . . + ak-\,kx + aktk, 

ver* 

where Pk
c* = Z/2Z[a, . , , . . . , « , . * ] . 

LEMMA 1. Sqrfk{x) = (Sqr~2k]alk)fk(x)Jorr^2korO,andSq2kfk(x) =fk(x)2. 

Sq%(x) = 0, / < *, 

and 

V / A U ) = ak,kfk(x). 

PROOF. See propositions 2.1 and 2.2 in [7] (recall C^k-X = auk). D 

THEOREM 2. 

Î
Vit+iVit + vk+lv

2
k_{ + . . . + v*+,vf ' , r = k - \ 

vl+] r = k 

0 r ± k, k - 1 
(0 , i< k 

Sq^Vk+i = \ 
( Vit+i . . . V, = 0*+! , *+ ! , / = £. 

PROOF. Mùi has observed thatfk(xk+]) = vk+l, (see [4], 3.2, 3.4, p. 328). Since 
|v*+i| = 2 \ it is immediate that Sq2kvk+l = v2

k + ] and that Sq2rvk+\ = 0 for r > k. It 
follows from the lemma that Sq2'vk+1 = 0 if r <C A: — 1, and that Sq2k 'v*+i = a]tkvk+]. 
Now a\nk = vk. - v2

k_] + . . . + vf "' (use proposition 13(b) of [7]). The statements 
concerning the Milnor elements also follow directly, noting that aktk = vk. . . . v,. D 

Thus Pk
Tk is an A-algebra and consequently Pk

Tk* is an A*-coalgebra with primitives 
(v/)* and commutative coproduct, that is, if v7 = v',1 . . . v'k then 

*Kv£) = X v£ 0 v£ 

since v/# v7" = v7 whenever / ' + /" = /. We define a map of vector spaces p : Pk
Tk* —> 

W[k] by p(v£) = e,\ it is clear that p is an isomorphism of vector spaces. We give W[k] 
the induced commutative coproduct 

/ '+ / "= / 

with primitives p((v,-)*) ='e^. k where A, A = (0, . . . , 0, 1, 0, . . . , 0), the 1 in the i-th 
spot from the left. Furthermore, we give W[k] the induced A ̂ -action. This construction 
gives W = ®k>0W[k] the structure of a Hopf algebra (it is easy to check that \\f is an 
algebra map; the augmentation on W0 = Z/2Z[e0] is e(ek

Q) = 1, k > 0), and of an 
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unstable A*-coalgebra (the inclusions Pk
Tk —> Pk±\Tk+x are maps of A*-algebras) and 

W[k] is an unstable A*-subcoalgebra. 
Note that the inclusion 4>* : Pk

Gk —» Pk
Tk is a map of A-algebras; consequently the map 

()>* :PkTk* -^ PkGk* is a map of coalgebras, so we obtain a commutative diagram of 
/4*-coalgebras 

pk
Tk* ^ WW 

** i i 

It follows that the A*-action on W[k] must be given via the Nishida relations: 

/ |JC| + / = r\ 
v r — 2.v 7 

Applications. The Dickson algebra Pk
Gk = Z/2Z[a]A, . . . , akk] has two obvious 

bases, the basis of monomials \aR = a\\k . . . a'kk\rj > Of and the dual basis 
2/* coming from the basis {Q,\l is admissible} for R[k]. The construction above 
provides an invariant-theoretic description of the Q?basis. A duality argument shows 
that if/ is admissible then the 7>invariant v7 determines a unique G^-invariant, namely 
A?= v7 + 2 v7, the sum being taken over all J such that Q, = Q, + others, after applying 
Adem relations. Moreover, given a non-increasing sequence J one determines the 
G^-invariants in which v7 appears as a term by applying Adem relations, that is, if 
Qj = (?/, + • • • + Qi{ for increasing /,-, j = 1, . . . , €, then v7 appears as a term only 
in the GA-invariants Q*, . . . , Q*. For.example, the one term Adem relations are ei:+\e^ 
t > 0 and 2̂̂ +1̂ 0, ^c+2^1» • • •, e^'-i^f-o, ^ — 1- Consequently, if J has consecutive 
entries of the form t + 1, € for Î > 0 or 2€ + m + 1, m for € > 1, 0 < m < 
2€ — 2 then v7 cannot appear as a term in any GA-invariant polynomial. The author has 
not been able to prove these purely invariant-theoretic facts in any other way. 

We now want to compute the action of the Milnor primitives Sq*r, which are 
inductively defined as Sq*> = [Sq2'~\ Sq*'-*] with S<?A' = Sq\ on Pk

Tk. We first 
reproduce the description of the action of the Sq A' on Pk

Gk from [ 1 ] (we include the proof 
for completeness). It is well-known that Sq^aik = àj~Jak,k,j < k, where 

i • f0 , * ~ j * i 
8 -' = 

[U k-j=i 

and that Sq^kaik — ai%kak,k (see, for example, [7], Corollary 2.3(b), p. 425). 

THEOREM 3: Sq*k+*aLk = Qffor 

Note that Q*= a^k ~aukak^k + others, where r — k + s. 
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PROOF. Write the / of the theorem as I(s), and induct on s. When s = 0 we have 

Sq *«/,* — aiAak,k — 0(0 0, 1)0(1 1) = Q(\ 1,2 2) — 0/(0). 

So assume Sq^k+saik = Q*s) and write k + s — r; now 

Sq^ahk = Sq2rSqà'aj.k + Sq*'Sq2raj.k = S<T <2*,) 

by induction. So we have to show that Sq2' Q*s) = G*,+ n- By duality, it is sufficient 
to show that 2/(.v+i) is the only element mapped to g/(v) under Sq2'* and since we are 
in R[k] we need only consider admissibles. So suppose that J — (j\, . . . , jk) is 
admissible and that Sq2'Qj — Q,{s). Write x(: for Q(j{ /() so that X\ = <Qy and note that 
\Qj\ ~ |ô/(.y+i)l = 2 r+1 — 1 + 2k' — 2k~'. Repeated applications of the Nishida relations 
yield 

SqiQj = 2 C-, . . . CkQh-2>+2r2Qj2-r2 + 2r, • • • ô^-r*, 

where 

k+il +7/ ~ r^ 
C/ = 

with r, = 2f and rk+] = 0 = |xA+,|. 
Let's note right away that, for c\ = . .. = Q = 1 (mod 2), we must have 2re+! ^ 

re, for € = 1, . . . k ~ 1 with r, = 2r so that r, < 2 ' - f + ' for € - 1, . . . , k. We also 
require 7, < y2 < . . . < 7* and 

r l , 1 < € < it - / 
7< - re + 2re+] = i 

l 2 , * - / + l < € < * - l , 
and 7* - r* = 2S + I. Hence 

/2-v+l 

so that rk = 0, 2V+1 for Q = 1 (mod 2). 

CASE (I) . rk = 2V+1. Then 7* = 2V+2 and rA._, is forced to be 2V+2 for Q_, = 1 
(mod 2). The same argument forces r(: = 2 r _ f + I for 1 < t < k — 2, so that 

7i ~ 1> • • • >Â-i = UA-/+1 — 2, . . . ,7^-1 = 2,7'jt — 2s 

and 7 = l(s + 1). 

CASE (//). rk = 0. Then 7* = 2s+lfor ck = 1 (mod 2). Now, if c, = 1 (mod 2), we 
must have |JC2| + j \ ^ 2r but since 7 is admissable, 

7, 4- |JC2| < 2V+1 + 2V+1 + . . . + 2*~2(2-v+I) 

= 2V+1 + 2V+I + 2A'+2 + . . . + 2r~l = 2 r, 

so thaty'i + |JC2| = 2r and jc = 2V+1 for 1 < € < fc. But such a (2/ can never give QI(S) 

since, for example, we need 7*-1 - rk-] = 2 and thus 
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Sqà,vk 

2s+] + 2\ 
^ 0 ( m o d 2 ) . 

2-ï+1 - 2> 
Note that the above arguments work with minor changes required for i — 1 or 
i = k. D 

This theorem also computes the action of the SqA' on Pjk since auk = vk + vjjL, + 
. . . + v] "so that SqA'a]k = SqA,vk since 5^A' is a derivation. Consequently, com­
bining theorems 2 and 3 we have 

THEOREM 4. 

0 , r < k - 1 

<3*.A , r = fc - 1 

ai,*a*,* , r = k 

g* LTV-H), r = ik + 5, ^ > 0. 

n 
Of course, we have that 

0(1 I.2V+I) = V, . . . VA._,vf+l + 2 V7, 

the sum over all J such that Qj = Q(, i, 2v+ ' > + others, after applying Adem relations. 
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