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Existence of singular rotationally symmetric
gradient Ricci solitons in higher dimensions
Kin Ming Hui

Abstract. By using fixed point argument, we give a proof for the existence of singular rotationally
symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric
g = d a2

h(a2) + a2 gS n for some function h where gS n is the standard metric on the unit sphere Sn

in R
n for any n ≥ 2. More precisely, for any λ ≥ 0 and c0 > 0, we prove that there exist infinitely

many solutions h ∈ C2((0,∞);R+) for the equation 2r2 h(r)hrr(r) = (n − 1)h(r)(h(r) − 1) +
rhr(r)(rhr(r) − λr − (n − 1)), h(r) > 0, in (0,∞) satisfying lim

r→0
r
√

n−1 h(r) = c0 and prove the
higher-order asymptotic behavior of the global singular solutions near the origin. We also find
conditions for the existence of unique global singular solution of such equation in terms of its
asymptotic behavior near the origin.

1 Introduction

Ricci flow is an important technique in geometry and has a lot of applications in
geometry [10, 12, 14, 15]. For example, recently, Perelman [14, 15] used Ricci flow to
prove the Poincaré conjecture. In the study of Ricci flow, one is interested to study
the Ricci solitons which are self-similar solutions of Ricci flow. On the other hand, by
a limiting argument, the behavior of the Ricci flow near the singular time is usually
similar to the behavior of Ricci solitons.

Hence, in order to understand Ricci flow, it is important to study the Ricci solitons.
In [3], Brendle used singular rotationally symmetric steady solitons to construct
barrier functions which plays an important role in the proof there that confirms a
conjecture of Perelman on three-dimensional ancient κ solution to the Ricci flow.
We refer the reader to the papers by Alexakis, Chen, and Fournodavlos [1], Brendle
[2], Bryant [4], Cao and Zhou [5, 6], Feldman, Ilmanen, and Knopf [8], Hsu [9],
Li and Wang [11], Munteanu and Sesum [13], Petersen and Wylie [16], and so forth
and the book [7] by Chow et al. for some recent results on Ricci solitons.

We say that a Riemannian metric g = (g i j) on a Riemannian manifold M is a
gradient Ricci soliton if there exist a smooth function f on M and a constant λ ∈ R
such that the Ricci curvature R i j of the metric g satisfies

R i j = ∇i∇ j f − λg i j on M .(1.1)
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The gradient soliton is called an expanding gradient Ricci soliton if λ > 0. It is called a
steady gradient Ricci soliton if λ = 0 and it is called a shrinking gradient Ricci soliton
if λ < 0.

Existence of rotationally symmetric steady and expanding three-dimensional gra-
dient Ricci solitons were proved by Bryant [4] using the phase method and by Hsu [9]
using fixed-point argument. On the other hand, as observed by Bryant [4] for n = 2
and Chow et al. (cf. Lemma 1.21 and Section 4 of Chapter 1 of [7]) for n ≥ 2, for any
n ≥ 2, if (M , g) is an (n + 1)-dimensional rotational symmetric gradient Ricci soliton
which satisfies (1.1) for some smooth function f and constant λ ∈ R with

g = dt2 + a(t)2 gS n ,(1.2)

where gS n is the standard metric on the unit sphere Sn in R
n , then the Ricci curvature

of g is given by

Ric(g) = −nat t(t)
a(t) dt2 + (n − 1 − a(t)at t(t) − (n − 1)at(t)2) gS n(1.3)

and

Hess( f ) = ft t(t) dt2 + a(t)at(t) ft(t) gS n .(1.4)

Hence, by (1.1), (1.3), and (1.4) (cf. [1, 4, 7]), we get

−na(t)at t(t) = a(t)( ft t(t) − λ)(1.5)

and

n − 1 − a(t)at t(t) − (n − 1)at(t)2 = a(t)at(t) ft(t) − λa(t)2 .(1.6)

By eliminating f from (1.5) and (1.6), we get that a(t) satisfies

a(t)2at(t)at t t(t) =a(t)at(t)2at t(t) + a(t)2at t(t)2 − (n − 1)a(t)at t(t)
− λa(t)3at t(t) − (n − 1)at(t)2 + (n − 1)at(t)4 .(1.7)

Note that we can express g as

g = da2

h(a2) + a2 gS n ,(1.8)

where h(r), r = a2 ≥ 0, and a = a(t) satisfies

at(t) =
√

h(a(t)2).(1.9)

Then, by (1.7) and a direct computation, h satisfies

2r2h(r)hrr(r) = (n − 1)h(r)(h(r) − 1) + rhr(r)(rhr(r) − λr − (n − 1)), h(r) > 0.
(1.10)

We are now interested in rotational symmetric gradient Ricci soliton which blows up
at r = 0 at the rate

lim
r→0

rα h(r) = c0(1.11)
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for some constants α > 0 and c0 > 0. Let

w(r) = rα h(r) ∀r > 0.(1.12)

By (1.10), (1.12), and a direct computation, w satisfies

2r2w(r)wrr(r) = 2αrw(r)wr(r) + (n − 1)(α − 1)rαw(r) + αλrα+1w(r)
− (n − 1)rα+1wr(r) − λrα+2wr(r) + r2wr(r)2

− (α2 + 2α − (n − 1))w(r)2 .(1.13)

Unless stated otherwise, we now let α =
√

n − 1 > 0 for the rest of the paper. Then
α2 + 2α − (n − 1) = 0. Hence, by (1.13), w satisfies

2r2w(r)wrr(r) = 2αrw(r)wr(r) + (n − 1)(α − 1)rαw(r) + αλrα+1w(r)
− (n − 1)rα+1wr(r) − λrα+2wr(r) + r2wr(r)2(1.14)

with α =
√

n − 1 > 0. We also impose the condition

lim
t→0+

a(t) = 0.(1.15)

Then, by (1.9) and (1.15),

t = ∫
a(t)

0

dρ√
h(ρ2)

.(1.16)

In the paper [4], Bryant by using power series expansion around the singular point at
the origin gave the local existence of singular solution of (1.10) near the origin which
blows up at the rate (1.11) for the case n = 2. On the other hand, by using phase plane
analysis of the functions

W = 1
ft(t) + n a t(t)

a(t)

, X =
√

nW at(t)
a(t) , Y =

√
(n − 1)W

a(t) ,

Alexakis, Chen, and Fournodavlos [1] gave a sketch of proof for the local existence of
singular solution (a(t), f (t)), of (1.5) and (1.6), near the origin and its asymptotic
behavior as t → 0+ for the case n ≥ 2. When λ = 0, the existence of global solu-
tion (a(t), f (t)), of (1.5) and (1.6), in (0,∞) is also mentioned without detailed
proof in [1].

In this paper, we will use fixed-point argument for the function w given by (1.12)
to give a new proof of the local existence of solution h of (1.10) satisfying (1.11) for
any constants λ ∈ R, c0 > 0, and 2 ≤ n ∈ Z+. For λ ≥ 0, we will then use a continuation
method to extend the local singular solutions of (1.10) and (1.11) to global solutions of
(1.10) and (1.11). We will also prove the higher-order asymptotic behavior of the local
solutions of (1.10) and (1.11), near the origin.

The main results we obtain in this paper are the following.
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Theorem 1.1 Let 2 ≤ n ∈ Z+, λ ≥ 0, α =
√

n − 1, c0 > 0, c1 ∈ R, and

c2 ∶=
(n − 1)(α − 1)

2
= (n − 1)(

√
n − 2)

2
.(1.17)

There exists a unique solution h ∈ C2((0,∞)) of (1.10) in (0,∞) which satisfies (1.11)
and (2.4) in (0, ε) with w given by (1.12) for some constant ε > 0.

Theorem 1.2 Let 4 < n ∈ Z+, λ ≥ 0, α =
√

n − 1, c0 > 0, c1 ∈ R, and c2 be given by
(1.17). Then there exists a constant 0 < δ0 < 1 such that (1.10) has a unique solution
h ∈ C2((0,∞)) in (0,∞) which satisfies (1.11) and

h(r) = 1
rα {c0 −

c2

α
rα + ( c1

α + 1
− αλ

2(α + 1)2 ) rα+1 + αλ
2α + 2

rα+1 log r

+ c2
2 + (n − 1)c2

4c0α(α − 1) r2α + o(1)r2α} ∀0 < r ≤ δ0 .(1.18)

Moreover,

hr(r) = 1
rα+1 {−αc0 + (

c1

α + 1
+ α2 λ

2(α + 1)2 ) rα+1 + αλ
2α + 2

rα+1 log r

+ c2
2 + (n − 1)c2

4c0(α − 1) r2α + o(1)r2α} ∀0 < r ≤ δ0 .(1.19)

Theorem 1.3 Let n ∈ {2, 3, 4}, α =
√

n − 1, λ ≥ 0, c0 > 0, c1 ∈ R, and c2 be given
by (1.17). Let h ∈ C2((0,∞)) be given by Theorem 1.1. Then there exists a constant
0 < δ0 < 1 such that

h(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
rα (c0 −

c2

α
rα − c2(c2 + n − 1)

4c0α(1 − α) r2α + o(1)r2α) , ∀0 < r ≤ δ0 if n = 2, 3,

1
r
(c0 +

λ
4

r2 log r + o(1)r2∣ log r∣) , ∀0 < r ≤ δ0 if n = 4.

(1.20)

Moreover,

hr(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
rα+1 (−αc0 −

c2(c2 + n − 1)
4c0(1 − α) r2α + o(1)r2α) , ∀0 < r ≤ δ0 if n = 2, 3,

1
r2 (−c0 +

λ
4

r2 log r + o(1)r2∣ log r∣) , ∀0 < r ≤ δ0 if n = 4.

(1.21)

Note that the singular solutions h of (1.10) in (0,∞) given by Theorems 1.1–1.3 sat-
isfy (1.11) with α =

√
n − 1. Moreover, by (1.2), the solitons constructed in Theorems 1.1

and 1.2 are complete at t = +∞. A natural question to ask is that does there exist any
other singular solution of (1.10) in (0, ε) for some constant ε > 0 which blow-up at a
different rate at the origin. We answer this question in the negative. More precisely,
we prove the following result.
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Theorem 1.4 Let 2 ≤ n ∈ Z+, λ ∈ R, ε > 0, and c0 > 0. Suppose h ∈ C2((0, ε)) is a
solution of (1.10) in (0, ε)which satisfies (1.11) for some constant α > 0. Then α =

√
n − 1.

The plan of the paper is as follows. In Section 2, we will prove the local existence
of infinitely many singular solutions of (1.10) and (1.11), in a neighborhood of the
origin, and conditions for uniqueness of local singular solutions are given. We will also
prove the higher-order asymptotic behavior of these local solutions near the origin.
In Section 3, we will prove the global existence of infinitely many singular solutions
of (1.10) and (1.11) and conditions for uniqueness of global singular solution are given.
In Section 4, we will prove the asymptotic behavior of a(t) near the origin.

2 Local existence, uniqueness, and asymptotic behavior of singular
solutions near the origin

In this section, for any 2 ≤ n ∈ Z+, λ ∈ R, and c0 > 0, we will prove the local existence
of infinitely many singular solutions of (1.10) in (0, ε) which satisfy (1.11) for some
constant ε > 0. Under some mild conditions on the singular solutions of (1.10) in
(0, ε), we will also prove the uniqueness of local singular solutions of (1.10) in (0, ε)
satisfying (1.11). We first observe that if h ∈ C2((0, ε];R+) is a solution of (1.10) in
(0, ε] for some constant ε > 0 which satisfies (1.11) for some constant c0 > 0 and w is
given by (1.12) with α =

√
n − 1, then by (1.11), (1.12), and (1.14), w > 0 satisfies

wrr(r) =α
r

wr(r) + (n − 1)(α − 1)
2

rα−2 + αλ
2

rα−1 − (n − 1)rα−1wr(r)
2w(r)

− λrαwr(r)
2w(r) + wr(r)2

2w(r)(2.1)

in (0, ε] and

w(0) = c0(2.2)

if w ∈ C([0, ε];R+). Hence, the existence of solution h ∈ C2((0, ε];R+) of (1.10)
in (0, ε] which satisfies (1.11) is equivalent to the existence of solution w ∈
C2((0, ε];R+) ∩ C([0, ε];R+) of (2.1) in (0, ε] which satisfies (2.2). Note that (2.1) is
equivalent to

(r−αwr)r(r) =c2r−2 + αλ
2

r−1 − (n − 1)r−1wr(r)
2w(r) − λwr(r)

2w(r) + r−αwr(r)2

2w(r)(2.3)

⇔ r−αwr(r) = − c2r−1 + c1 +
αλ
2

log r + (n − 1)
2 ∫

ε

r

ρ−1wr(ρ)
w(ρ) dρ

− λ
2 ∫

r

0

wr(ρ)
w(ρ) dρ − 1

2 ∫
ε

r

ρ−αwr(ρ)2

w(ρ) dρ ∀0 < r ≤ ε

⇔ wr(r) = − c2rα−1 + c1rα + αλ
2

rα log r + rα {(n − 1)
2 ∫

ε

r

ρ−1wr(ρ)
w(ρ) dρ

− λ
2 ∫

r

0

wr(ρ)
w(ρ) dρ − 1

2 ∫
ε

r

ρ−αwr(ρ)2

w(ρ) dρ} ∀0 < r ≤ ε(2.4)
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for some constant c1 ∈ R. This suggests one to use fixed-point argument to prove
the existence of solution w ∈ C2((0, ε];R+) ∩ C([0, ε];R+) of (2.1) in (0, ε] which
satisfies (2.2).

Proposition Let 2 ≤ n ∈ Z+, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given by
(1.17). Then there exists a constant 0 < ε < 1 such that (2.1) has a unique solution
w ∈ C2((0, ε];R+) ∩ C([0, ε];R+) in (0, ε] which satisfies (2.2) and (2.4). Moreover,

lim
r→0+

r1−αwr(r) = −c2(2.5)

holds.

Proof For any ε > 0, we define the Banach space

Xε ∶={(w , v) ∶ w ∈ C([0, ε];R+), v ∈ C((0, ε];R) such that r1−αv(r) can be
extended to a function in C([0, ε];R)}

with a norm given by

∥(w , v)∥Xε = max (∥w∥L∞([0,ε]), ∥r1−αv(r)∥L∞([0,ε])) .

For any (w , v) ∈ Xε , we define

Φ(w , v) ∶= (Φ1(w , v), Φ2(w , v)) ,

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1(w , v)(r) = c0 + ∫
r

0
v(ρ) dρ,

Φ2(w , v)(r) = − c2rα−1 + c1rα + αλ
2

rα log r + rα {(n − 1)
2 ∫

ε

r

ρ−1v(ρ)
w(ρ) dρ

− λ
2 ∫

r

0

v(ρ)
w(ρ) dρ − 1

2 ∫
ε

r

ρ−αv(ρ)2

w(ρ) dρ}

(2.6)

for any 0 < r ≤ ε. Let

Dε ∶= {∥(w , v) − (c0 ,−c2rα−1)∥Xε ≤ c0/10} .(2.7)

Since (c0 ,−c2rα−1) ∈Dε , Dε ≠ ϕ. We will show that there exists ε ∈ (0, 1/2) such that
the map (w , v) ↦ Φ(w , v) has a unique fixed point in the closed subspace Dε . Let

ε1 = min
⎛
⎝

1
2

,( c0α
10∣c2∣ + c0

)
1/α⎞
⎠

.

We first prove that Φ(Dε) ⊂Dε for sufficiently small ε ∈ (0, ε1). For any ε ∈ (0, ε1),
(w , v) ∈Dε , 0 ≤ r < ε, by (2.7), we have

9c0

10
≤ w(r) ≤ 11c0

10
∀0 < r ≤ ε(2.8)
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and

∣v(r)∣ ≤ c3rα−1 ∀0 < r ≤ ε,(2.9)

where c3 = ∣c2∣ + (c0/10). Hence, by (2.9),

∣Φ1(w , v)(r) − c0∣ ≤ ∫
r

0
c3ρα−1 dρ = (c3/α)rα ≤ (c3/α)εα ≤ c0/10 ∀0 < r ≤ ε

⇒ ∥Φ1(w , v) − c0∥L∞([0,ε]) ≤ c0/10 and ∥Φ1(w , v)∥L∞([0,ε]) ≤ 11c0/10.
(2.10)

We now choose c4 > 1 such that

∣ log r∣ ≤ c4r−1/2 ∀0 < r ≤ 1/2.(2.11)

Then, by (2.8), (2.9), and (2.11), for any 0 < r ≤ ε,

r ∣∫
ε

r

ρ−1v(ρ)
w(ρ) dρ∣ ≤ 10c3r

9c0
∫

ε

r
ρα−2 dρ ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

10c3r(rα−1 + εα−1)
9c0∣α − 1∣ , if n ≠ 4

10c3r(∣ log r∣ + ∣ log ε∣)
9c0

, if n = 4

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

20c3εα

9c0∣α − 1∣ , if n ≠ 4,

20c3c4ε1/2

9c0
, if n = 4,

(2.12)

r ∣∫
r

0

v(ρ)
w(ρ) dρ∣ ≤ 10c3r

9c0
∫

r

0
ρα−1 dρ = 10c3rα+1

9c0α
≤ 10c3εα+1

9c0α
(2.13)

and

r ∣∫
ε

r

ρ−αv(ρ)2

w(ρ) dρ∣ ≤ 10c2
3 r

9c0
∫

ε

r
ρα−2 dρ ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

10c2
3 r(rα−1 + εα−1)

9c0∣α − 1∣ , if n ≠ 4,

20c2
3 r(∣ log r∣ + ∣ log ε∣)

9c0
, if n = 4,

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

20c2
3 εα

9c0∣α − 1∣ , if n ≠ 4,

20c2
3 c4ε1/2

9c0
, if n = 4.

(2.14)

Let

c5 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4n(c3 + c2
3)

c0∣α − 1∣ + c3∣λ∣
c0α

, if n ≠ 4,

4nc4(c3 + c2
3)

c0
+ c3∣λ∣

c0α
, if n = 4.
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By (2.6) and (2.11)–(2.14),

r1−α ∣Φ2(w , v)(r) + c2rα−1∣

≤∣c1 ∣r +
α∣λ∣

2
r∣ log r∣ + (n − 1)r

2
∣∫

ε

r

ρ−1v(ρ)
w(ρ)

dρ∣ + ∣λ∣r
2
∣∫

r

0

v(ρ)
w(ρ)

dρ∣ + r
2
∣∫

ε

r

ρ−αv(ρ)2

w(ρ)
dρ∣

≤∣c1 ∣ε +
α∣λ∣c4

2
ε1/2 + c5(εα + ε1/2) ∀0 < r ≤ ε.

(2.15)

Let

ε2 = min(ε1 , c0

30(∣c1∣ + 1) , ( c0

30c5
)

1
α

, c2
0

900(α∣λ∣c4 + c5)2 )

and ε ∈ (0, ε2). Then, by (2.15),

r1−α ∣Φ2(w , v)(r) + c2rα−1∣ ≤ c0/10 ∀0 < r ≤ ε
⇒ ∥r1−α(Φ2(w , v)(r) + c2rα−1)∥L∞([0,ε]) ≤ c0/10.(2.16)

By (2.10) and (2.16),

∥Φ(w , v) − (c0 ,−c2rα−1)∥Xε ≤ c0/10.(2.17)

Hence, Φ(Dε) ⊂Dε . Let (w1 , v1), (w2 , v2) ∈Dε , 0 < ε < ε2, δ1 = ∥(w1 , v1) −
(w2 , v2)∥Xε . Then

9c0

10
≤ w i(r) ≤ 11c0

10
∀0 < r ≤ ε, i = 1, 2(2.18)

and

∣v i(r)∣ ≤ c3rα−1 ∀0 < r ≤ ε, i = 1, 2.(2.19)

Now

∣Φ1(w1 , v1)(r) − Φ1(w2 , v2)(r)∣ ≤∫
r

0
∣v1(ρ) − v2(ρ)∣ dρ

≤∥r1−α(v1(r) − v2(r))∥L∞([0,ε])∫
r

0
ρα−1 dρ

≤(δ1/α)εα ∀0 < r ≤ ε,(2.20)

and by (2.11), (2.18), and (2.19), for any 0 < r ≤ ε,

r ∣∫
ε

r

ρ−1v1(ρ)
w1(ρ) dρ − ∫

ε

r

ρ−1v2(ρ)
w2(ρ) dρ∣

≤r∫
ε

r

ρ−1∣v1(ρ) − v2(ρ)∣
w1(ρ) dρ + r∫

ε

r
ρ−1∣v2(ρ)∣ ∣ 1

w1(ρ) −
1

w2(ρ) ∣ dρ

≤
10∥ρ1−α ∣v1 − v2∣(ρ)∥L∞([0,ε])r

9c0
∫

ε

r
ρα−2 dρ

+
100c3∥w1 −w2∥L∞([0,ε])r

81c2
0

∫
ε

r
ρα−2 dρ
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≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( 10
9c0∣α − 1∣ +

100c3

81c2
0∣α − 1∣ ) δ1r(rα−1 + εα−1), if n ≠ 4

( 10
9c0

+ 100c3

81c2
0
) δ1r∣ log r∣, if n = 4

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c6δ1εα

∣α − 1∣ , if n ≠ 4,

c4c6δ1ε1/2 , if n = 4,
(2.21)

where

c6 =
20
9c0

+ 200c3

81c2
0

,

r ∣∫
r

0

v1(ρ)
w1(ρ) dρ − ∫

r

0

v2(ρ)
w2(ρ) dρ∣

≤r∫
r

0

∣v1(ρ) − v2(ρ)∣
w1(ρ) dρ + r∫

r

0
∣v2(ρ)∣ ∣ 1

w1(ρ) −
1

w2(ρ) ∣ dρ

≤
10∥ρ1−α ∣v1 − v2∣(ρ)∥L∞([0,ε])r

9c0
∫

r

0
ρα−1 dρ

+
100c3∥w1 −w2∥L∞([0,ε])r

81c2
0

∫
r

0
ρα−1 dρ

=( 10
9c0α

+ 100c3

81c2
0α

) δ1rα+1 ≤ c6δ1εα+1

α
(2.22)

and

r ∣∫
ε

r

ρ−αv1(ρ)2

w1(ρ) dρ − ∫
ε

r

ρ−αv2(ρ)2

w2(ρ) dρ∣

≤r∫
ε

r

ρ−α ∣v1(ρ) − v2(ρ)∣(∣v1(ρ)∣ + ∣v2(ρ)∣)
w1(ρ) dρ

+ r∫
ε

r
ρ−α ∣v2(ρ)∣2 ∣ 1

w1(ρ) −
1

w2(ρ) ∣ dρ

≤
20c3∥ρ1−α ∣v1 − v2∣(ρ)∥L∞([0,ε])r

9c0
∫

ε

r
ρα−2 dρ

+
100c2

3∥w1 −w2∥L∞([0,ε])r
81c2

0
∫

ε

r
ρα−2 dρ

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( 20c3

9c0∣α − 1∣ +
100c2

3
81c2

0∣α − 1∣ ) δ1r(rα−1 + εα−1), if n ≠ 4

(20c3

9c0
+ 100c2

3
81c2

0
) δ1r∣ log r∣, if n = 4
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≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2c3c6δ1εα

∣α − 1∣ , if n ≠ 4,

2c3c4c6δ1ε1/2 , if n = 4.
(2.23)

By (2.6) and (2.21)–(2.23),

r1−α ∣Φ2(w1 , v1)(r) − Φ2(w2 , v2)(r)∣ ≤ c7δ1(εα + ε1/2) ∀0 < r ≤ ε,(2.24)

where

c7 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c6 (
n(1 + c3)
∣α − 1∣ + ∣λ∣

α
) , if n ≠ 4,

c6 (nc4(1 + c3) +
∣λ∣
α
) , if n = 4.

Let

ε3 = min (ε2 , (α/6)1/α , (6c7)−1/α , (6c7)−2)

and 0 < ε < ε3. By (2.20) and (2.24),

∥Φ(w1 , v1) − Φ(w2 , v2)∥Xε ≤ δ1/2.(2.25)

Hence, Φ is a contraction map on Dε . Therefore, by the contraction map theorem,
there exists a unique fixed point (w , v) = Φ(w , v) in Dε . Thus,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(r) = c0 + ∫
r

0
v(ρ) dρ,

v(r) = − c2rα−1 + c1rα + αλ
2

rα log r + rα {(n − 1)
2 ∫

ε

r

ρ−1v(ρ)
w(ρ) dρ

− λ
2 ∫

r

0

v(ρ)
w(ρ) dρ − 1

2 ∫
ε

r

ρ−αv(ρ)2

w(ρ) dρ} .

(2.26)

By (2.26), v(r) = wr(r) for any 0 < r ≤ ε and w ∈ C2((0, ε];R+) ∩ C([0, ε],R+) sat-
isfies (2.2) and (2.4). Hence, w satisfies (2.1). By (2.4) and (2.12)–(2.14), we get (2.5)
and the proposition follows. ∎

By an argument similar to the proof of Proposition 2.1, we have the following result.

Proposition Let n ∈ Z+, n > 4, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given
by (1.17). Then there exists a constant 0 < ε < 1 such that (2.1) has a unique solution
w ∈ C2((0, ε];R+) ∩ C([0, ε];R+) in (0, ε] which satisfies (2.2) and

wr(r) = − c2rα−1 + c1rα + αλ
2

rα log r + rα {−(n − 1)
2 ∫

r

0

ρ−1wr(ρ)
w(ρ) dρ

− λ
2 ∫

r

0

wr(ρ)
w(ρ) dρ + 1

2 ∫
r

0

ρ−αwr(ρ)2

w(ρ) dρ} ∀0 < r ≤ ε.(2.27)

Moreover, (2.5) holds.
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Corollary Let 2 ≤ n ∈ Z+, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given by (1.17).
Then there exists a constant 0 < ε < 1 such that (1.10) has infinitely many solutions
h ∈ C2((0, ε]) in (0, ε] which satisfies (1.11). Moreover, (1.10) has a unique solution
h ∈ C2((0, ε]) in (0, ε] which satisfies (1.11) and (2.4) with w being given by (1.12).
Moreover, (2.5) holds.

Corollary Let n ∈ Z+, n > 4, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given by
(1.17). Then there exists a constant 0 < ε < 1 such that (1.10) has a unique solution
h ∈ C2((0, ε]) in (0, ε] which satisfies (1.11) and (2.27) with w being given by (1.12).
Moreover, (2.5) holds.

Proposition Let n ∈ Z+, n > 4, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given by
(1.17). Then there exists a constant 0 < ε < 1 such that (1.10) has a unique solution
h ∈ C2((0, ε]) in (0, ε] which satisfies (1.11) and (1.18) for some constant 0 < δ0 < ε.
Moreover, (1.19) and (2.5) hold with w being given by (1.12).

Proof Since n > 4, α > 1 and c2 > 0. Let w be given by (1.12). By Corollary 2.4, there
exists a constant 0 < ε < 1 such that (1.10) has a unique solution h ∈ C2((0, ε]) in (0, ε]
which satisfies (1.11), (2.5), and (2.27). Let

0 < δ1 < min(ε, ∣c2∣
2c0

, c2
2

2c0
) .(2.28)

By (1.11) and (2.5), there exist constants δ0 ∈ (0, ε) and c8 > 0 such that

− c2

c0
− δ1 ≤

r1−αwr(r)
w(r) ≤ − c2

c0
+ δ1 ∀0 < r ≤ δ0(2.29)

and

c2
2

c0
− δ1 ≤

(r1−αwr(r))2

w(r) ≤ c2
2

c0
+ δ1 ∀0 < r ≤ δ0(2.30)

holds. Then, by (2.29) and (2.30),

− (n − 1)
2 ∫

r

0

ρ−1wr(ρ)
w(ρ) dρ − λ

2 ∫
r

0

wr(ρ)
w(ρ) dρ + 1

2 ∫
r

0

ρ−αwr(ρ)2

w(ρ) dρ

≤(n − 1)
2

( c2

c0
+ δ1)∫

r

0
ρα−2 dρ + λ

2
( c2

c0
+ sign (λ)δ1)∫

r

0
ρα−1 dρ

+ 1
2
( c2

2
c0

+ δ1)∫
r

0
ρα−2 dρ

≤ c2(n − 1 + c2)
2c0(α − 1) rα−1 + λc2

2c0α
rα + nδ1

2(α − 1) rα−1 + ∣λ∣δ1

2α
rα ∀0 < r ≤ δ0(2.31)
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and

− (n − 1)
2 ∫

r

0

ρ−1wr(ρ)
w(ρ) dρ − λ

2 ∫
r

0

wr(ρ)
w(ρ) dρ + 1

2 ∫
r

0

ρ−αwr(ρ)2

w(ρ) dρ

≥(n − 1)
2

( c2

c0
− δ1)∫

r

0
ρα−2 dρ + λ

2
( c2

c0
− sign (λ)δ1)∫

r

0
ρα−1 dρ

+ 1
2
( c2

2
c0

− δ1)∫
r

0
ρα−2 dρ

≥ c2(n − 1 + c2)
2c0(α − 1) rα−1 + λc2

2c0α
rα − nδ1

2(α − 1) rα−1 − ∣λ∣δ1

2α
rα ∀0 < r ≤ δ0 .(2.32)

Hence, by (1.11), (2.27), (2.31), and (2.32),

wr(r) = −c2rα−1 + c1rα + αλ
2

rα log r + c2(n − 1 + c2)
2c0(α − 1) r2α−1 + o(1)(r2α−1)(2.33)

⇒ rα h(r) = c0 −
c2

α
rα + ( c1

α + 1
− αλ

2(α + 1)2 ) rα+1 + αλ
2α + 2

rα+1 log r

+ c2(n − 1 + c2)
4c0α(α − 1) r2α + o(1)r2α ∀0 < r ≤ δ0

and (1.18) follows. Since

wr(r) = αrα−1h(r) + rα hr(r) ∀r > 0,(2.34)

by (1.18) and (2.33), we get (1.19).
Suppose h1 ∈ C2((0, ε)) is another solution of (1.10) which satisfies (1.11) and

h1(r) = 1
rα {c0 −

c2

α
rα + ( c1

α + 1
− αλ

2(α + 1)2 ) rα+1 + αλ
2α + 2

rα+1 log r

+ c2(n − 1 + c2)
4c0α(α − 1) r2α + o(1)r2α} ∀0 < r ≤ δ0 .(2.35)

Let w1(r) = rα h1(r). Then w1 satisfies (2.3). Integrating equation (2.3) for w1 over
(0, r), we get

w1,r(r) = − c2rα−1 + c′1rα + αλ
2

rα log r + rα {−(n − 1)
2 ∫

r

0

ρ−1w1,r(ρ)
w1(ρ) dρ

− λ
2 ∫

r

0

w1,r(ρ)
w1(ρ) dρ + 1

2 ∫
r

0

ρ−αw1,r(ρ)2

w1(ρ) dρ} ∀0 < r ≤ ε(2.36)

for some constant c′1 ∈ R. By (2.36) and a similar argument as before, we get

h1(r) = 1
rα {c0 −

c2

α
rα + ( c′1

α + 1
− αλ

2(α + 1)2 ) rα+1 + αλ
2α + 2

rα+1 log r

+ c2(n − 1 + c2)
4c0α(α − 1) r2α + o(1)r2α} ∀0 < r ≤ δ0 .(2.37)
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By (2.35) and (2.37),

c1 − c′1 = o(1)(rα−1) ∀0 < r ≤ δ0 ⇒ c1 = c′1 as r → 0+.

Hence, both w and w1 satisfy (2.27). Then, by Proposition 2.2, w ≡ w1 on [0, ε]. Thus,
h = h1 on [0, ε] and the solution h is unique. ∎

Proposition Let n ∈ {2, 3, 4}, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given by
(1.17). Let 0 < ε < 1, and let h ∈ C2((0, ε]) be the unique solution of (1.10) in (0, ε] given
by Corollary 2.3, which satisfies (1.11), (2.4), and (2.5) with w being given by (1.12). Then
there exists a constant 0 < δ0 < ε such that (1.20) and (1.21) hold.

Proof Note that α < 1, 1/(1 − α) ≤ 4, and c2 < 0 when n = 2 or 3, and α = 1 and
c2 = 0, when n = 4. Let δ1 satisfy (2.28) when n = 2, 3 and 0 < δ1 < ε when n = 4. By
(1.11) and (2.5), there exists a constant 0 < δ0 < ε such that (2.29) and (2.30) hold.
Hence, by (2.29) and (2.30), for any 0 < r < δ0,

(n − 1)
2 ∫

ε

r

ρ−1wr(ρ)
w(ρ) dρ − λ

2 ∫
r

0

wr(ρ)
w(ρ) dρ − 1

2 ∫
ε

r

ρ−αwr(ρ)2

w(ρ) dρ

≤(n − 1)
2

(− c2

c0
+ δ1)∫

δ0

r
ρα−2 dρ + λ

2
( c2

c0
+ sign (λ)δ1)∫

r

0
ρα−1 dρ

− 1
2
( c2

2
c0

− δ1)∫
δ0

r
ρα−2 dρ + c8

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− c2(c2 + n − 1)
2c0(1 − α) (rα−1 − δα−1

0 ) + λc2

2c0α
rα + nδ1

2(1 − α)(rα−1 − δα−1
0 )

+ ∣λ∣δ1

2α
rα + c8

, if n = 2, 3

nδ1

2
(log δ0 − log r) + ∣λ∣δ1

2
r + c8 , if n = 4

(2.38)

and
(n − 1)

2 ∫
ε

r

ρ−1wr(ρ)
w(ρ) dρ − λ

2 ∫
r

0

wr(ρ)
w(ρ) dρ − 1

2 ∫
ε

r

ρ−αwr(ρ)2

w(ρ) dρ

≥(n − 1)
2

(− c2

c0
− δ1)∫

δ0

r
ρα−2 dρ + λ

2
( c2

c0
− sign (λ)δ1)∫

r

0
ρα−1 dρ

− 1
2
( c2

2
c0

+ δ1)∫
δ0

r
ρα−2 dρ + c8

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− c2(c2 + n − 1)
2c0(1 − α) (rα−1 − δα−1

0 ) + λc2

2c0α
rα − nδ1

2(1 − α)(rα−1 − δα−1
0 )

− ∣λ∣δ1

2α
rα + c8 ,

if n = 2, 3,

− nδ1

2
(log δ0 − log r) − ∣λ∣δ1

2
r + c8 , if n = 4,

(2.39)
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where

c8 =
(n − 1)

2 ∫
ε

δ0

ρ−1wr(ρ)
w(ρ) dρ − 1

2 ∫
ε

δ0

ρ−αwr(ρ)2

w(ρ) dρ.

Thus, by (1.11), (2.4), (2.38), and (2.39),

wr(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− c2rα−1 − c2(c2 + n − 1)
2c0(1 − α) r2α−1 + o(1)(r2α−1) ∀0 < r ≤ δ0 , if n = 2, 3,

λ
2

r log r + o(1)(r∣ log r∣) ∀0 < r ≤ δ0 , if n = 4,

(2.40)

⇒ w(r) = rα h(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c0 −
c2

α
rα − c2(c2 + n − 1)

4c0α(1 − α) r2α + o(1)r2α ∀0 < r ≤ δ0 , if n = 2, 3,

c0 +
λ
4

r2 log r + o(1)r2∣ log r∣ ∀0 < r ≤ δ0 , if n = 4,

(2.41)

and (1.20) follows. By (1.20), (2.34), and (2.40), we get (1.21) and the proposition
follows. ∎

3 Global existence and uniqueness of singular solutions

In this section, we will use a modification of the technique of Hsu [9] to prove the
global existence of infinitely many singular solutions of (1.10) and (1.11) in (0,∞). We
will also prove the uniqueness of the global singular solution of such equation in terms
of its asymptotic behavior near the origin.

Lemma 3.1 Let 2 ≤ n ∈ Z+, λ ∈ R, and L > 0. Suppose h ∈ C2((0, L)) satisfies (1.10)
in (0, L). Then

hr(r1) =
n − 1

r1
+ λ +



��� h(r1)

h(r2)
(hr(r2) −

n − 1
r2
− λ) +

(n − 1)
√

h(r1)
2 ∫

r1

r2

h(ρ) + 1
ρ2
√

h(ρ)
dρ

(3.1)

holds for any 0 < r2 < r1 < L.

Proof By (1.10),

(h−1/2 hr)r =
(n − 1)(h − 1)

2r2 h1/2 − (n − 1 + λr)hr

2rh3/2 ∀r > 0

⇒ hr(r1) =
√

h(r1)
⎧⎪⎪⎨⎪⎪⎩

hr(r2)√
h(r2)

+ (n − 1)
2 ∫

r1

r2

h(ρ) − 1
ρ2
√

h(ρ)
dρ − ∫

r1

r2

(n − 1 + λρ)hr(ρ)
2ρh(ρ)3/2 dρ

⎫⎪⎪⎬⎪⎪⎭

=
√

h(r1)
⎧⎪⎪⎨⎪⎪⎩

hr(r2)√
h(r2)

+ (n − 1)
2 ∫

r1

r2

h(ρ) − 1
ρ2
√

h(ρ)
dρ + (n − 1

r1
+ λ) 1√

h(r1)

−(n − 1
r2
+ λ) 1√

h(r2)
+ (n − 1)∫

r1

r2

dρ
ρ2
√

h(ρ)

⎫⎪⎪⎬⎪⎪⎭
∀0 < r2 < r1 < L

and (3.1) follows. ∎
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We now observe that by an argument similar to the proof of Lemmas 2.3–2.6 of [9]
but with (1.10) and (3.1) replacing (1.6) and (2.25) of [9] in the proof there, we have
the following results.

Lemma 3.2 (cf. Lemmas 2.3 and 2.4 of [9]) Let 2 ≤ n ∈ Z+ and λ ∈ R. Suppose
h ∈ C2((0, L)) satisfies (1.10) in (0, L) for some constant L ∈ (0,∞) such that
L < −(n − 1)/λ if λ < 0. Then there exist constants C2 > C1 > 0 such that

C1 ≤ h(r) ≤ C2 ∀L/2 ≤ r ≤ L.(3.2)

Lemma 3.3 (cf. Lemmas 2.5 and 2.6 of [9]) Let 2 ≤ n ∈ Z+ and λ ∈ R. Suppose
h ∈ C2((0, L)) satisfies (1.10) in (0, L) for some constant L ∈ (0,∞) such that
L < −(n − 1)/λ if λ < 0. Then there exist constants C4 > C3 such that

C3 ≤ hr(r) ≤ C4 ∀L/2 ≤ r ≤ L.(3.3)

We next observe that by standard ODE theory, we have the following result.

Lemma 3.4 (cf. Lemma 2.7 of [9]) Let 2 ≤ n ∈ Z+, λ ∈ R, L > 0, b0 ∈ (C1 , C2),
b1 ∈ (C4 , C3) for some constants C2 > C1 > 0, and C3 > C4. Then there exists a constant
0 < δ1 < L/4 depending only on C1 , C2 , C3 , C4 such that for any r0 ∈ (L/2, L), (1.10) has
a unique solution h̃ ∈ C2((r0 − δ1 , r0 + δ1)) in (r0 − δ1 , r0 + δ1) which satisfies

h̃(r0) = b0 and h̃r(r0) = b1 .(3.4)

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1 We will use a modification of the proof of Theorem 1.1 of [9]
to prove the theorem. We first observe that by Corollary 2.3, there exists a constant
0 < ε < 1 such that (1.10) has a unique solution h ∈ C2((0, ε]) in (0, ε] which satisfies
(1.11) and (2.4) with w being given by (1.12). Moreover, (2.5) holds. Let (0, L) be the
maximal interval of existence of solution h ∈ C2((0, L)) of (1.10) in (0, L) which
satisfies (1.11). Suppose L < ∞. Then, by Lemmas 3.2 and 3.3, there exist constants
C2 > C1 > 0 and C3 > C4 such that (3.2) and (3.3) hold.

Then, by Lemma 3.4, there exists a constant 0 < δ1 < L/4 depending only on
C1 , C2 , C3 , C4 such that for any r0 ∈ (L/2, L) (1.10) has a unique solution h̃ ∈ C2((r0 −
δ1 , r0 + δ1)) in (r0 − δ1 , r0 + δ1)which satisfies (3.4) with b0 = h(r0) and b1 = hr(r0).
We now set r0 = L − (δ1/2) and extend h to a function on [0, L + (δ1/2)) by setting
h(r) = h̃(r) for any r ∈ [L, L + (δ1/2)). Then h ∈ C2((0, L + (δ1/2))) is a solution of
(1.10) in (0, L + δ1) which satisfies (1.11) and (2.4). This contradicts the choice of L.
Hence, L = ∞ and there exists a solution h ∈ C2((0,∞)) of (1.10) which satisfies (1.11)
and (2.4).

Suppose h1 ∈ C2((0,∞)) is another solution of (1.10) which satisfies (1.11) and (2.4)
with w being replaced by w1 = rα h1(r). Then both w and w1 satisfy (2.3). Hence, both
w and w1 satisfy (2.1) and (2.2) in (0, ε]. Therefore, by Proposition 2.1, w(r) ≡ w1(r)
in (0, ε]. Hence, h(r) = h1(r) in (0, ε]. Then, by standard ODE theory, h(r) = h1(r)
in [ε,∞). Thus, h(r) = h1(r) in (0,∞) and the solution h is unique. ∎
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Proof of Theorem 1.2 By Corollary 2.4 and an argument similar to the proof of
Theorem 1.1, there exists a unique solution h ∈ C2((0,∞)) of (1.10) in (0,∞) which
satisfies (1.11) and (2.27) in (0, ε) with w given by (1.12) for some 0 < ε < 1. By (2.27)
and the same argument as the proof of Proposition 2.5, we get (1.18) and (1.19). Suppose
h1 ∈ C2((0,∞)) is another solution of (1.10) in (0,∞) which satisfies (1.11) and (1.18).
Then, by an argument similar to the proof of Proposition 2.5, h1(r) ≡ h(r) in (0, ε].
Hence, by standard ODE uniqueness theory, h1(r) ≡ h(r) in [ε,∞) and the theorem
follows. ∎

Finally, by Theorem 1.1 and an argument similar to the proof of Proposition 2.6,
we get Theorem 1.3.

Proof of Theorem 1.4 Without loss of generality, we may assume that ε = 2. Let w
be given by (1.12) and

q(r) = rhr(r)
h(r) .(3.5)

We first claim that there exists a decreasing sequence {r i}∞i=1 ⊂ (0, ε) such that
lim
i→∞

q(r i) = −α.(3.6)

To prove the claim, we note that by (1.12),

wr(r) = αrα−1h(r) + rα hr(r) = w(r)
r

(α + q(r)) ∀0 < r < ε.(3.7)

For any i ∈ Z+ by the mean value theorem, there exists r i ∈ (1/(2i), 1/i) such that
wr(r i) = 2i(w(1/i) −w(1/(2i)).(3.8)

By (1.11), (3.6), and (3.8),

∣α + q(r i)∣ ≤
2ir i ∣w(1/i) −w(1/(2i))∣

w(r i)
≤ 2∣w(1/i) −w(1/(2i))∣

w(r i)
∀i ∈ Z+

⇒ lim
i→∞

∣α + q(r i)∣ = 0

and the claim follows. By (1.10) and a direct computation, q satisfies

qr(r) + (−
1
r
+ λ

2h(r) +
n − 1

2rh(r)) q(r) = − 1
2r
(q(r)2 − (n − 1)(h(r) − 1)

h(r) ) ∀0 < r < ε.

(3.9)

Let

F(r) = exp( λ
2 ∫

r

0

dρ
h(ρ) +

n − 1
2 ∫

r

0

dρ
ρh(ρ)) ∀0 < r < ε.(3.10)

Then, by (3.9),

(r−1F(r)q(r))r = −
F(r)
2r2 (q(r)2 − (n − 1)(h(r) − 1)

h(r) ) ∀0 < r < ε

⇒ q(r) = 1
r−1F(r)(F(1)q(1) + I1(r)) ∀0 < r < ε,(3.11)
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where

I1(r) = ∫
1

r

F(ρ)
2ρ2 (q(ρ)2 − (n − 1)(h(ρ) − 1)

h(ρ) ) dρ ∀0 < r < ε.(3.12)

We now divide the proof into two cases.
Case 1: lim sup

i→∞
∣I1(r i)∣ < ∞.

By (3.6) and (3.11),

−α = lim
i→∞

q(r i) = 0,

which contradicts the assumption that α > 0. Hence, Case 1 does not hold.
Case 2: lim sup

i→∞
∣I1(r i)∣ = ∞.

Then, we may assume, without loss of generality, that limi→∞ ∣I1(r i)∣ = ∞. Since
α > 0, by (1.11), (3.6), (3.11), and the l’Hospital rule,

− α = lim
i→∞

q(r i) = lim
i→∞

− F(r i)
2r2

i
(q(r i)2 − (n−1)(h(r i)−1)

h(r i) )

−r−2
i F(r i) + r−1

i F(r i) ( λ
2h(r i) +

n−1
2r i h(r i))

= α2 − (n − 1)
2

⇒ α2 + 2α − (n − 1) = 0
⇒ α =

√
n − 1

and the theorem follows. ∎

4 Asymptotic behavior of the function a(t) near the origin

In this section, we will prove the asymptotic behavior of a(t) near the origin.

Proposition Let 2 ≤ n ∈ Z+, α =
√

n − 1, λ ≥ 0, c1 ∈ R, c0 > 0, and let c2 be given
by (1.17). For n > 4, let h ∈ C2((0,∞)) be the unique solution of (1.10) in (0,∞),
which satisfies (1.11) and (1.18) for some constant 0 < δ0 < 1 given by Theorem 1.2. For
n ∈ {2, 3, 4}, let h ∈ C2((0,∞)) be given by Theorem 1.1, which satisfies (1.20) for some
constant 0 < δ0 < 1. Then

a(t) ≈ (√nc0 t)1/
√

n as t → 0+.(4.1)

Proof By (1.18) and (1.20),

(h(ρ2))−1/2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c−1/2
0 ρα (1 + O(ρ2α))−1/2 , if n ≠ 4

c−1/2
0 ρ (1 + O(ρ4∣ log ρ∣2))−1/2 , if n = 4

=
⎧⎪⎪⎨⎪⎪⎩

c−1/2
0 (ρα + O(ρ3α)) , if n ≠ 4,

c−1/2
0 (ρ + O(ρ5∣ log ρ∣2)) , if n = 4.

(4.2)
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By (1.16) and (4.2),

t ≈ a(t)
√

n
√nc0

as t → 0+

and (4.1) follows. ∎

By a similar argument, we have the following proposition.

Proposition Let 2 ≤ n ∈ Z+, α =
√

n − 1, λ, c1 ∈ R, c0 > 0, and let c2 be given by (1.17).
For n > 4, let h ∈ C2((0, ε]) be the unique solution of (1.10) in (0, ε], which satisfies (1.11)
and (1.18) for some constants 0 < δ0 < ε < 1, given by Proposition 2.5. For n ∈ {2, 3, 4},
let h ∈ C2((0, ε]) be given by Corollary 2.3, which satisfies (1.20) for some constants
0 < δ0 < ε < 1. Then (4.1) holds.
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