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Graetz and Nusselt studied heat transfer between a developed laminar fluid flow and
a tube at constant wall temperature. Here, we extend the Graetz–Nusselt problem to
dense fluid flows with partial wall slip. Its limits correspond to the classical problems
for no-slip and no-shear flow. The amount of heat transfer is expressed by the local
Nusselt number Nux, which is defined as the ratio of convective to conductive radial
heat transfer. In the thermally developing regime, Nux scales with the ratio of position
x̃ = x/L to Graetz number Gz, i.e. Nux ∝ (x̃/Gz)−β . Here, L is the length of the
heated or cooled tube section. The Graetz number Gz corresponds to the ratio of axial
advective to radial diffusive heat transport. In the case of no slip, the scaling exponent
β equals 1/3. For no-shear flow, β= 1/2. The results show that for partial slip, where
the ratio of slip length b to tube radius R ranges from zero to infinity, β transitions
from 1/3 to 1/2 when 10−4 < b/R < 100. For partial slip, β is a function of both
position and slip length. The developed Nusselt number Nu∞ for x̃/Gz>0.1 transitions
from 3.66 to 5.78, the classical limits, when 10−2 < b/R< 102. A mathematical and
physical explanation is provided for the distinct transition points for β and Nu∞.

Key words: boundary layers, convection, free shear layers

1. Introduction

The classical Graetz–Nusselt problem concerns a fluid of uniform temperature T0
flowing in an insulated cylindrical tube. The flow is laminar and hydrodynamically
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re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
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FIGURE 1. The Graetz–Nusselt problem concerns transport of heat between a
hydrodynamically fully developed fluid flow with Θ = (T1 − T)/(T1 − T0) = 1 and
a tube with a constant wall temperature Θ = 0 for x̃ > 0. The velocity profile of the
inflowing fluid is a function of the tube radius r̃ and the slip length b̃, where 06 b̃6∞.
The profile is parabolic for b̃ = 0 and uniform for b̃ = ∞. The contour map gives an
example of a temperature profile.

fully developed, and has constant physical properties (see figure 1). At x = 0
the fluid enters a tube section with a constant wall temperature T1. Neglecting
viscous dissipation and axial heat conduction, Graetz (1882, 1885) and Nusselt
(1910) independently found a mathematical solution to this problem, describing the
temperature profile for x > 0. The problem was solved for both a uniform (Graetz
1882) and a parabolic (Graetz 1885; Nusselt 1910) fluid velocity profile. From the
temperature distribution the local heat flux at the wall can be obtained, which is
commonly expressed by the local Nusselt number Nux, a dimensionless heat transfer
coefficient (Eckert & Drake 1972; Bird, Stewart & Lightfoot 2007). The Nusselt
number

Nux = hxD
k
, (1.1)

where hx is the local heat transfer coefficient, D= 2R is the diameter of the tube and k
is the thermal conductivity, can be interpreted as the ratio of convective to conductive
radial heat transfer (Jakob 1949; Shah & London 1978). The Nusselt number Nux is a
function of the dimensionless downstream position x̃= x/L, L being the length of the
non-insulated section of the tube, and the Graetz number Gz only. The Graetz number
is defined as (Jakob 1949; Shah & London 1978)

Gz= uavD2

αL
= RePr

D
L
, (1.2)

where uav is the average fluid velocity and α is the thermal diffusivity. It is the product
of the Reynolds number Re= uavD/ν, the Prandtl number Pr= ν/α and the ratio D/L,
and can be interpreted as the ratio of axial advective to radial diffusive heat transport.

The temperature profiles found by Graetz and Nusselt involve infinite series in
terms of eigenvalues and eigenfunctions. When x̃/Gz > 0.1, the first terms of the
series solutions dominate. This results in a developed Nusselt number Nu∞ = 3.66
for parabolic flow and Nu∞ = 5.78 for plug flow (Shah & London 1978). The flow
is said to be thermally fully developed. For x̃/Gz< 0.01, when the flow is thermally
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developing, and in particular when x→ 0, a very large number of terms are required
to obtain the Nusselt number with sufficient accuracy. Lévêque (1928) circumvented
this problem by assuming that in the entrance region the thermal boundary layer
is thin compared with the viscous boundary layer (Eckert & Drake 1972; Shah &
London 1978; Bird et al. 2007). In that case curvature effects can be neglected.
Furthermore, it can be assumed that the bulk extends to infinity, and that the velocity
profile is linear. Lévêque showed that

Nux ∝
(

x̃
Gz

)−β
, (1.3)

with β=1/3 for a parabolic velocity profile and β=1/2 for a uniform velocity profile.
Essentially, complete solutions for the Graetz–Nusselt problem found in the literature
are a combination of the methods of Graetz and Lévêque (Shah & London 1978).

There are special cases where the no-slip or the no-shear boundary condition
does not hold. The effects of slip phenomena encountered in rarefied gas flows,
which include velocity and temperature jumps at the tube wall (Eckert & Drake
1972; Karniadakis, Beskok & Aluru 2005), were first investigated by Sparrow &
Lin (1962). Both wall slip and temperature jump are a function of the Knudsen
number Kn, the ratio of mean free path to tube diameter. Their results show that
Nu∞ decreases with increasing mean free path, which implies increasing wall slip and
larger temperature jumps. Barron et al. (1997) found that, for a given Graetz number,
the Nusselt number becomes larger with increasing slip. Although they explicitly
incorporated the temperature jump in the boundary conditions, it was ignored in the
calculation of the eigenvalues (Ezquerra Larrodé, Housiadas & Drossinos 2000). It
is crucial to account for the temperature jump at the wall for rarefied gas flows,
since the effect of this temperature jump is dominant over the influence of wall slip
(Ezquerra Larrodé et al. 2000; Colin 2011).

In continuum flows, i.e. liquid and gas flows for which Kn < 10−2, a temperature
jump is not present (Eckert & Drake 1972; Karniadakis et al. 2005). Moreover, in
most situations the no-slip boundary condition is correct (Eckert & Drake 1972; Lauga,
Brenner & Stone 2007). However, with the rise of micro- and nanofluidics it became
apparent that the no-slip boundary condition for liquid flows does not always hold
(Lauga et al. 2007). Intrinsic slip lengths vary from nearly zero (Bocquet & Barrat
2007; Rothstein 2010) to almost infinity (Whitby & Quirke 2007; Majumder, Chopra
& Hinds 2011). Here, the slip length is defined by Navier’s slip condition (Navier
1823),

us =−b
∂u
∂r

∣∣∣∣
r=R

, (1.4)

which states that the liquid velocity at the wall us is proportional to the slip length b
and the velocity gradient ∂ru at the wall. This implies that the classical Graetz–Nusselt
solutions are not applicable to this type of flow.

In this paper we present numerical and analytical solutions to the Graetz–Nusselt
problem for continuum flows with finite slip. The effects of wall slip on both the
exponent β and Nu∞, characteristic for heat transport in the thermally developing and
thermally developed regimes, are investigated. The results reveal distinct transition
points for β and Nu∞ when the slip length b goes from zero to infinity. These
transition points are explained both mathematically and physically.
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2. Mathematical model

2.1. Heat equation
A schematic representation of the Graetz–Nusselt problem is provided in figure 1.
Here, under the assumptions given in § 1, the governing equation describing stationary
heat transport in a cylindrical system can be written as

u
∂T
∂x
= α

r
∂

∂r

(
r
∂T
∂r

)
, (2.1)

where u(r, b) describes the velocity profile of the laminar fluid flow in the x-direction.
The boundary conditions are T(0, r) = T0 and T(x, R) = T1. At x = 0, the flow
is hydrodynamically fully developed. Solution of the Navier–Stokes equation for
stationary slip flow in the axial direction yields the following expression for the
velocity profile:

ũ= 2
(
1− r̃2

)+ 4b̃

1+ 4b̃
, (2.2)

where ũ= u/uav, r̃= r/R and b̃= b/R. Here, ũ can be interpreted as the sum of the
variable velocity ũv(r̃, b̃)= 2(1− r̃2)/(1+ 4b̃) and the slip velocity ũs(b̃)= 4b̃/(1+ 4b̃).
The heat equation can now be non-dimensionalised using Θ = (T1− T)/(T1− T0) and
x̃= x/L, (

1− r̃2
)+ 2b̃

2(1+ 4b̃)

∂Θ

∂ (x̃/Gz)
= 1

r̃
∂

∂ r̃

(
r̃
∂Θ

∂ r̃

)
, (2.3)

with Θ(0, r̃)= 1 and Θ(x̃, 1)= 0.

2.2. Nusselt number
Using Fourier’s law of thermal conduction, the local heat transfer coefficient hx can
be written as hx =−k/(〈T〉 − T1) ∂rT|r=R (full mathematical and numerical details are
given in the supplementary data available at http://dx.doi.org/10.1017/jfm.2014.733).
By rewriting the temperature gradient in dimensionless form using the dimensionless
flow-averaged temperature 〈Θ〉 = (T1 − 〈T〉)/(T1 − T0), we find for the local Nusselt
number that

Nux =− 2
〈Θ〉

∂Θ

∂ r̃

∣∣∣∣
r̃=1

. (2.4)

When x̃/Gz> 0.1, Nux→Nu∞.

2.3. Analytical expressions for thermally developing flow
To find an analytical expression for Nux near the entrance of the pipe, the Lévêque
approximation is followed. In that case, the governing equation can be solved in a
two-dimensional Cartesian coordinate system:

u
∂T
∂x
= α∂

2T
∂y2

. (2.5)

Here, the wall is located at y= 0, i.e. the direction of the y-axis is the reverse of that
of the r-axis. Then, with ỹ= y/R, the velocity profile becomes ũ= 4(ỹ+ b̃)/(1+ 4b̃).
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The analytical expressions for Nux for no-slip and no-shear flow are known (Bird
et al. 2007). For b̃= 0 one can derive that

Nux = 2
91/3Γ

(
4
3

) ( x̃
Gz

)−1/3

, (2.6)

where Γ denotes the gamma function. For no-shear flow, i.e. b=∞, one finds

Nux = 1√
π

(
x̃

Gz

)−1/2

. (2.7)

Thus, β = 1/3 for parabolic flow and β = 1/2 for uniform flow.
To arrive at an analytical expression for Nux for finite slip (i.e. 0< b̃<∞), (2.5) is

non-dimensionalised using Y = y/b and X = xα(R+ 4b)/(4uavb3)= (x̃/Gz)(1+ 4b̃)/b̃3.
This gives

(1+ Y)
∂Θ

∂X
= ∂

2Θ

∂Y2
, (2.8)

with Θ(0, Y)= 1, Θ(X, 0)= 0 and Θ(X,∞)= 1. To reduce the number of variables,
we perform the Laplace transformation

LX

[
∂Θ

∂X

]
=
∫ ∞

0

∂Θ

∂X
e−pXdX = pΘ̄(p, Y)− 1, (2.9)

where Θ̄ is the Laplace transform of Θ . Furthermore, LX[∂2
YΘ]= ∂2

YΘ̄ . The governing
equation now becomes

(1+ Y)(pΘ̄ − 1)= ∂
2Θ̄

∂Y2
, (2.10)

with Θ̄(p, 0)= 0 and Θ̄(p,∞)= 1/p. Introduction of Θ̂ = Θ̄ − 1/p and subsequent
rewriting yields

p(1+ Y)Θ̂ = ∂
2Θ̂

∂Y2
, (2.11)

with Θ̂(p, 0) = −1/p and Θ̂(p,∞) = 0. To convert this expression into an ordinary
differential equation (ODE), we define η = p1/3(1 + Y). Now the Airy equation is
found,

d2Θ̂

dη2
− ηΘ̂ = 0, (2.12)

with Θ̂(p1/3)=−1/p and Θ̂(∞)= 0. Its general solution of the first kind is the Airy
function Ai(η), with limη→∞ Ai(η)= 0. Then the solutions for Θ̂ and Θ̄ become

Θ̂ =−Ai(p1/3(1+ Y))
pAi(p1/3)

and Θ̄ = Ai(p1/3)−Ai(p1/3(1+ Y))
pAi(p1/3)

. (2.13a,b)

To obtain Θ , we take the inverse Laplace transform in X, giving

Θ(X, Y)= 1
2πi

∫ c+i∞

c−i∞

Ai(p1/3)−Ai(p1/3(1+ Y))
pAi(p1/3)

epXdp. (2.14)
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For Nux we can derive that, given that 〈Θ〉=1 following the Lévêque approximation,

Nux = 2

b̃

∂Θ

∂Y

∣∣∣∣
Y=0

. (2.15)

Then, finally, we obtain

Nux =− 1

b̃πi

∫ c+i∞

c−i∞

Ai′(p1/3)epX

p2/3Ai(p1/3)
dp= 2

b̃
g(X). (2.16)

The function g(X) is universal, as it does not depend on b̃. The slip length affects
the scaling between X and x̃/Gz, so it determines which part of the function g(X)
is relevant. The supplementary information provides a description of how to evaluate
g(X).

2.4. Thermal and viscous boundary layer thickness

The thermal boundary layer thickness λ̃T is defined as λ̃T = 1 − r̃(Θ = 0.99). When
Θ(x̃/Gz, 0) < 0.99, λ̃T = 1.

The viscous boundary layer δ̃ν is defined as follows. It corresponds to the point r̃=
1− δ̃ν where the parabolic velocity component ũv(r̃) equals c times the slip velocity
ũs at the wall. Thus, δ̃ν(ũv= cũs)= 1− (1− 2cb̃)1/2. When b̃> 1/(2c), δ̃ν = 1. It should
be noted that, for a given b̃ and c, δ̃ν is fixed for all x̃/Gz, while λ̃T = f (x̃/Gz).

2.5. Numerical procedure
Numerically, the Graetz–Nusselt problem for finite slip was solved using the pdepe
solver in MATLAB (MathWorks). The relative and absolute tolerances for the pdepe
solver were set at 10−6 and 10−12 respectively. To calculate ∂r̃Θ at r̃= 1 the MATLAB
function pdeval was utilised.

Because heat transport mainly occurs near the inlet and near the wall, the x̃× r̃=
82 × 101 mesh was refined near these boundaries. The exponent β was evaluated
in two distinct manners. The fitting of a straight line through log10(Nux) for −7 6
log10(x̃/Gz) 6 −4 using the polyfit algorithm gives a specific constant value for β
for each b̃, which is referred to as βf . The gradient of log10(Nux) or log10(g(X))
to log10(x̃/Gz), calculated by employing the second-order-accurate gradient algorithm,
gives a local value for β for each position, which is referred to as βl. Here, Nu∞
is taken as the average of Nux for x̃/Gz > 0.1. To compute 〈Θ〉 the trapz script was
utilised. The value of λ̃T was approximated by linear interpolation using the two grid
points closest to Θ = 0.99.

3. Results and discussion

3.1. Nusselt profiles

In figure 2(a) the Nusselt profiles are displayed for a wide range of slip lengths b̃. The
profiles reveal that for b̃< 10−4 the classical Graetz–Nusselt solution for no-slip flow
is approached, with β = 1/3. For b̃ > 102 the classical solution for no-shear flow is
recovered, for which β = 1/2. For intermediate values of b̃, the figure shows that first
the exponent β (the slope) starts to change value, followed by an increase of Nu∞.
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FIGURE 2. (a) The local Nusselt number Nux as a function of the position x̃/Gz for
various slip lengths b̃. The values of the scaling exponent β and the developed Nusselt
number Nu∞ for the limiting cases of no-slip (b̃= 0) and no-shear flow (b̃=∞) are also
indicated. (b) The scaling exponent βf (obtained by fitting) and the developed Nusselt
number Nu∞ as a function of the slip length b̃. Remarkably, these two curves transition
at different values of b̃.

The dependence of βf and Nu∞ on the slip length b̃ is shown in figure 2(b). This
figure illustrates that the transition points for βf and Nu∞ are located more than one
order of magnitude apart. The exponent βf changes value when 10−4 < b̃< 100, while
Nu∞ gradually increases from 3.66 to 5.78 when 10−2 < b̃ < 102. This corresponds
to the values for Nu∞ found by Barron et al. (1997), who solved the Graetz–Nusselt
problem in the thermally developed regime for 0 6 b̃ 6 0.24 (Ezquerra Larrodé et al.
2000). It should be noted that a change in the range of x̃/Gz values used to compute
βf results in a different transition point for βf . The use of larger values shifts the
transition point upwards. Nonetheless, the distance between the transition points for
βf and Nu∞ remains of at least one order of magnitude.

The exponent β is not necessarily a specific constant value for finite slip as it is
for no-slip and no-shear flow. Therefore, the local exponent βl was evaluated both
numerically and analytically. In figure 3(a), βl is plotted versus x̃/Gz for various
slip lengths b̃. The profiles confirm that for approximately 10−4 < b̃ < 100, βl is
not constant and depends on both the position and the slip length. Furthermore, we
observe that βl always transitions from 1/2 to 1/3, except for the limits b̃ = 0 and
b̃=∞.

The numerical and analytical results are in good agreement, but start to deviate
when x̃/Gz > 10−5. In that case the thermal and viscous boundary layer thicknesses
are of the same order of magnitude (λ̃T ≈ 0.1 for x̃/Gz = 10−4). Consequently, the
assumptions arising from the Lévêque approximation, and therefore also the analytical
results, are no longer entirely valid.

3.2. On β and its transition point

That βl must transition from 1/2 to 1/3, except for b̃ = 0 and b̃ = ∞, can be
demonstrated by inspection of the function g(X). First, as figure 3(b) reveals, the
classical limits are recovered by this function, as Nux∝ g(X). When b̃→ 0, we would
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FIGURE 3. (a) The local scaling exponent βl versus the position x̃/Gz for various slip
lengths b̃. (b) The limiting behaviour of g(X), from which βl can be obtained analytically,
is as expected: g(X)∝ X−1/2 when X→ 0, and g(X)∝ X−1/3 when X→∞.

expect that g(X)∝ X−1/3 for X→∞. Thus,

Nux ∝ 1

b̃

(
x̃

Gz
1

b̃3

)−1/3

=
(

x̃
Gz

)−1/3

. (3.1)

When b̃→∞, we would expect that for X→ 0, g(X)∝ X−1/2. Then,

Nux ∝ 1

b̃

(
x̃

Gz
b̃

b̃3

)−1/2

=
(

x̃
Gz

)−1/2

. (3.2)

Second, for each value of 0< b̃<∞ we can choose x̃ such that X→ 0. As in that
case (3.2) is recovered, we find that for finite slip βl always transitions from 1/2 to
1/3. Consequently, it can be concluded that for a given slip length b̃, the Nusselt
profile in the thermally developing regime cannot be characterised by a single βf

value. The range of x̃/Gz values used for computing βf is determinant for the value
of βf that is obtained. Nevertheless, comparison of figures 2(b) and 3(a) shows that βf

does reflect for what range of slip lengths b̃ the exponent β changes value. Finally,
since βl ≈ 5/12 when X = 1, the dimensionless number X = (x̃/Gz)(1 + 4b̃)/b̃3 can
be considered as a kind of criterion for the behaviour of β: β→ 1/2 when X� 1,
whereas β→ 1/3 when X� 1.

Physically, the location of the transition regime for βl can be explained by
considering the thickness of the thermal and viscous boundary layers. This is
illustrated in figure 4(a). All heat transport takes place in the thermal boundary
layer, where the temperature gradient at the wall, ∂r̃Θ|r̃=1, is most important. When
the velocity in the thermal boundary layer, which is growing with x̃, is dominated by
the slip velocity ũs, βl→1/2. In that case, the velocity profile in the thermal boundary
layer is approximately uniform, and thereby resembles a no-shear flow. Then, the
left-hand side of (2.5) can be approximated as u∂xT = uv∂xT + us∂xT ≈ us∂xT . On the
other hand, when the velocity in the thermal boundary layer is dominated by the
parabolic velocity component ũv, βl→ 1/3. The flow profile in the thermal boundary
layer resembles a no-slip flow, i.e. u∂xT ≈ uv∂xT , for which β = 1/3.
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FIGURE 4. (a) The location of the transition regime for βl can be explained physically by
considering λ̃T and δ̃ν . When the slip velocity ũs dominates in the thermal boundary layer,
which is the case when x̃/Gz < (x̃/Gz)1/2, βl → 1/2. When the velocity in the thermal
boundary layer is dominated by ũv , βl→ 1/3. This is true when x̃/Gz>(x̃/Gz)1/3. (b) The
locations of (x̃/Gz)1/2 and (x̃/Gz)1/3 as a function of the slip length b̃ are shown here.
These points are estimated by saying that ũv � ũs when ũv = 0.1ũs, and that ũv � ũs
when ũv = 10ũs.

The location where βl transitions from 1/2 to 1/3 can be predicted. In the thermal
boundary layer, the slip velocity ũs is dominating (i.e. ũv � ũs) until the point
(x̃/Gz)1/2. This location is estimated by calculating where λ̃T = δ̃ν(ũv = 0.1ũs). The
parabolic velocity component starts to dominate in the thermal boundary layer
(i.e. ũv � ũs) from the point (x̃/Gz)1/3 on. The point where λ̃T = δ̃ν(ũv = 10ũs)

roughly corresponds to this location. This implies that the transition regime for βl is
located between (x̃/Gz)1/2 and (x̃/Gz)1/3. The locations of (x̃/Gz)1/2 and (x̃/Gz)1/3 are
given in figure 4(b). As an example, for b̃= 10−1 we find that (x̃/Gz)1/2 = 5× 10−7.
This is in agreement with βl for b̃= 10−1 in figure 3(a).

3.3. On Nu∞ and its transition point

The developed Nusselt number Nu∞ concerns heat transfer in the thermally developed
regime (x̃/Gz > 0.1). In this regime the temperature and temperature gradient at the
wall are approaching zero. This implies that Nu∞ can only be enhanced by increasing
advective transport near the wall, where the temperature gradients are largest. Figure 5
demonstrates that when ũs starts to change significantly with b̃, Nu∞ also transitions
from 3.66 to 5.78, the limiting values for zero and infinite slip length.

Replacement of ũs by the velocity gradient at the wall, ∂r̃ũ|r̃=1, leads to the same
conclusion, however. An increase in ũs implies that |∂r̃ũ| must decrease. This follows
from Navier’s slip condition, ũs =−b̃ ∂r̃ũ|r̃=1, which shows that the slip velocity and
the velocity gradient at the wall are directly related to each other via the factor −b̃.
Moreover, from the definitions of ũs = 4b̃/(1 + 4b̃) and ∂r̃ũ|r̃=1 = −4/(1 + 4b̃), we
find that they have the same transition point, which is b̃ = 1/4. This is close to
the transition point of b̃= 0.4 for Nu∞. Furthermore, their derivatives to b̃, ∂b̃ũs and
∂b̃(∂r̃ũ)

∣∣
r̃=1, are both proportional to (1+ 4b̃)−2.
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FIGURE 5. The developed Nusselt number Nu∞ and slip velocity ũs versus the slip
length b̃.

Therefore, the change of neither ũs nor ∂r̃ũ|r̃=1 with slip length b̃ fully explains
the dependence of Nu∞ on b̃. It is the relation between the velocity distribution
and the slip length b̃ that explains how Nu∞ depends on b̃. Nevertheless, because
heat transport is largest when temperature gradients are maximum, the change of ũs

with b̃ most dominantly affects the behaviour of Nu∞. This is in agreement with
the observation of Barrow & Humphreys (1970) that, given an average fluid velocity,
increase of the velocity at the wall leads to larger Nusselt numbers.

3.4. Employing wall slip to increase heat transfer
The Nusselt profiles in figure 2(a) suggest that heat transport can be optimised by
employing wall slip, provided that the wall slip is large enough. Partial slip lengths
are usually of the order of tens of nanometres for microscale systems (Rothstein 2010).
As a consequence, the maximum tube radius is approximately 1 µm for β to be
significantly larger than 1/3. For Nu∞ to be larger than 3.66, tube radii should be
of the order of nanometres. However, the Graetz number is usually very small. For
a typical liquid like water, Re ∼ 1 and Pr ∼ 1. For both micro- and nanofluidics it
is estimated that D/L< 10−3, implying that Gz< 10−3. In that case, the temperature
profile is almost instantaneously thermally developed, as this is then true for x̃ > 10−4.

Thus, enhancement of heat transfer by employing finite slip, while avoiding reaching
the thermally developed regime, is possible if two conditions are met. First, the system
should be designed such that Gz> 1. Second, the slip length should be of the order
of the tube radius, i.e. b̃ ∼ 1. These conditions oppose one another. In nanofluidic
systems, slip lengths b̃ of approximately 103 can be obtained (Whitby & Quirke 2007;
Majumder et al. 2011). This implies that b̃ is large enough to let Nu∞→ 5.78, albeit
the thermally developing section is negligibly small. Additionally, for instance, highly
slippery liquid-infused porous surfaces (Lafuma & Quéré 2011; Wong et al. 2011)
could be exploited to enhance heat transport.

It should be noted that the results presented here are applicable to systems that
display homogeneous wall slip. Distinct results are expected for systems concerning
effective slip (Maynes, Webb & Davies 2008; Maynes et al. 2012; Enright et al.
2013). As such, the Graetz–Nusselt problem for heterogeneously slippery surfaces
deserves to be studied separately.
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4. Conclusion

This study provides numerical and analytical solutions to the Graetz–Nusselt
problem for continuum flows with finite slip. The classical solutions to this problem
concern no-slip and no-shear flow. These form the lower and upper limits of the
solutions for partial slip, as the resulting Nusselt profiles gradually transition between
these limits on increasing the wall slip from zero to infinity.

The heat transfer mechanism in the thermally developing regime depends on
the velocity profile in the thermal boundary layer, and is a function of wall slip and
position. The ratio of the parabolic velocity component to the slip velocity determines
whether it resembles the transport mechanism for no-slip or for no-shear flow. The
Nusselt number in the thermally developed regime depends on the fluid velocity
profile only.

By considering slip lengths ranging from zero to infinity, this study is the first to
connect the classical solutions to the Graetz–Nusselt problem. This is not only of
fundamental interest, but also makes it possible to evaluate the influence of wall slip
on heat transfer in many forced convection problems in science and engineering.
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