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SIMPLE QUOTIENTS OF EUCLIDEAN LIE ALGEBRAS 

ROBERT V. MOODY 

Introduction. In [2], we considered a class of Lie algebras generalizing 
the classical simple Lie algebras. Using a field 3> of characteristic zero and 
a square matrix (A tJ) of integers with the properties (1) Ati = 2, (2) A tj ^ 0 
if i j£ j , (3) Atj = 0 if and only if Ajt = 0, and (4) (̂ 4 0)diag{ ei, . . . , e*} is 
symmetric for some appropriate non-zero rational eiy a Lie algebra 
E = E((Aij)) over <i> can be constructed, together with the usual accoutre­
ments: a root system, invariant bilinear form, and Weyl group. 

For indecomposable (A if), E is simple except when {A if) is singular and 
removal of any row and corresponding column of (Atj) leaves a Cartan 
matrix. The non-simple Es, Euclidean Lie algebras, were our object of study 
in [3] as well as in the present paper. They are infinite-dimensional, have 
ascending chain condition on ideals, and proper ideals are of finite codimension. 
Furthermore, there exists a special bijective linear mapping '': E —» E with 
the property [a'b] = [ab]f for all a, b £ E. This shift map is determined 
only up to a scalar multiple. For JJL £ <ï>x = $ — {0}, 7(/x) = {a' — jia\a £ E) 
is an ideal, and the quotient E(JJL) of E by this ideal is finite-dimensional 
central simple over <ï>. In this paper we are concerned with the structure of 
these simple quotient algebras. 

Every Euclidean Lie algebra has a tier number associated with it (see § 1), 
and this is one of 1, 2, or 3. In [3] we proved that when the tier number is 
1, E(IJL) = E ( l ) for all ju £ <ï>x and is a split simple Lie algebra of easily 
determined type. For 2-tiered Lie algebras (with the exception of F ̂ 2) we 
showed that E(n) has type independent of /x but E(n) and E(v) may fail to 
be isomorphic for some ju and v in <£x. 

The main results of this paper are the following. 

THEOREM 1. If E is a 2-tiered Euclidean Lie algebra over a field $ of 
characteristic zero, then the shift map can be chosen so thatE(n) splits over $ ( V M ) 
(relative to the Cartan sub algebra (H + Eù^y) for all /* Ç $ x . 

THEOREM 3. Under the assumptions of Theorem 1, E(ix) = E(v) if and only 
if \xv~x is a square. 

We also see along the way that F4,2(M) is of type E& for all /*. 
In the last section we show that the adjoint group of -E(/x), where ^ is a 

non-square of <i>x, is the Steinberg twisted group arising from the split algebra 
<Ê(VM) 0 ^ E(JJL) relative to the non-trivial automorphism of $ ( V M ) over <£. 

Received July 21, 1969. This research was supported by a National Research Council grant, 
No. A-5607. 

839 

https://doi.org/10.4153/CJM-1970-095-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-095-3


840 ROBERT V. MOODY 

1. Proof of T h e o r e m 1. Le t L = {0, 1, . . . , /} where / is some positive 
integer and let $ be a field of characterist ic zero. W e identify the integers 
Z with the pr ime subring of $ . Le t £ be a 2-tiered Euclidean Lie algebra 
over $ with generators {eufu ht\ i G L } . W e briefly recall the re levant facts 
abou t E and refer the reader to [3] for the definitions and further details. 

Let A be the root system for E relative to the given generators (we consider 
0 to be in A). For each a G A let Ea denote the corresponding root space. 
H = $ho + . . . + $h i is Eo and forms an abelian subalgebra of E of dimension 

1 (not I + 1). 
Denote by II the fundamental system of roots {a0, a i , . . . , az} and by A z 

the group generated by them. A z is a free abelian group of rank / + 1 and 
the real space R ® z Az is equipped with a positive semi-definite form ( , ) 
of rank /. T h e reflections r0, ri, . . . , rt defined by a0, «i , . . . , ax generate an 
affine reflection group W which stabilizes A. T h e radical of ( , ) intersects 
A in a cyclic group Z and we can take as a generator for Z the positive element 
£ = lLieh%iai of least height in Z. Our a0 is chosen (to within symmetr ies 
of the diagram of II) by the following condit ions: (1) II — a0 is connected, 
(2) £0 = 1, (3) (used only when (1) and (2) do not characterize a root to 
within diagram symmetr ies) a0 + £ G A. 

T h e hypothesis (2-tiered) on E means t h a t if an element a is in A, then so 
are all its t ransla tes by elements of Z2£ (but there exist elements a in A 
for which a + £ g A). If X is a n y subset of A, X will denote the set of 
equivalence classes represented by the elements of X in A taken modulo 2£. 
T h e shift map ' of E onto itself has the following propert ies: (1) [ab]f = [a'b] 
for all a, b G E and (2) Ea' = Ea+2£ for all a G A. These propert ies character ize 
i t to within a scalar multiple. For each /z G <£x let 7rM be the na tu ra l 
homomorphism of E onto E(n). Then 

0âita<ht2£ 

and (H + E^TT^ is a Ca r t an subalgebra [3, L e m m a 5]. 
In the following we will be considering E(l) for the most pa r t . W e will 

denote E{\) by Ë and (Ea)iri by Ea for all a Ç A. Since Ëa = Ëp if and only 
if a = jS (mod 2£), there is no ambigui ty in speaking of Ëa, where a £ A. 
Since H and 2? are canonically isomorphic, we often consider elements of A 
as functions on H. H + Ë^ will be denoted by K. Finally we define some 
subsets of A: A0 = {a Ç A - Z\ a + | $ A}, Ax = {a G A - Z\ a + ? Ç Aj. 
For « = ]£*€L szaz- define / (a) = z0. Le t T = {a| / (a) is odd} . 

For each fi G A — Z and for each x G .E^, ad x is ni lpotent , and hence 
exp(ad x) is a well-defined au tomorphism of E. T h e group ïp, generated by 
these as x ranges over £# is isomorphic to $ + . As usual, we call the group G 
generated by the Xp, as $ ranges over A — Z, the adjoint group of £ , and see 
t h a t i t is generated by ï± a o , • • • , 3£±<« [6]. For x G £.a, I £ E, I' exp(ad x) = 
(/ exp(ad x ) ) ' , whence G commutes with the shift map . T h u s G stabilizes 
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every ideal of E and induces a group of automorphisms on each quot ient of 
E . T h e group induced on E(/z) will be denoted G> 

For each w G W there is an automorphism 6 = 6(w) G G (not unique) 
such t h a t Epd = E0W for all /3 G A [1, Theorem 2]. We will need the fact 
t h a t if w = rtl . . . rik, then 6(w) can be chosen to be a product of the 
au tomorphisms exp ad ej and exp ad /^ , j = ii , . . . , 4 . We will then say t h a t 
0 is defined over & in . . . , oiik. 

LEMMA 1. If a G Ai and a G Ea, a ^ 0, ^ e n [aE$] ^ (0). 

Proof. Using a suitable automorphism of W if necessary, we can suppose 
t h a t a = at G II and a = et. Let i£* = $et + 3>/̂  + <£>/* and let b G E a i +£. 
By [3, L e m m a 2], the i£*-module M generated by b is irreducible. Since 
(ai + H) {hi) = 2, M C\ Ei ?* (0), and hence [ e ^ ] H M ^ (0). 

Fix a G Ai and let V(a) = Ëa + Ë«+£. F is a two-dimensional i£-module, 
and hence for some finite extension P of <£>, F P

( a ) = P 0 $ F ( a ) has a weight 
vector u\ ^ 0, say with weight <pi. We suppose t h a t P is chosen to be minimal. 
Let a G Ëa — {0}, a* G Ë a +$ — {0}. I t is a consequence of L e m m a 1 t h a t 
P ® Ë a f £ is not a weight space for K. W e can suppose then, t h a t ui = a + Xa*, 
with X G P. I t follows t ha t <pi\H = a, and for all k G Ë$, 

(1) (fi(k)a = X[a*&], X<£i(£)o* = [a&]. 

By L e m m a 1, choose &0 G Ê$ such t h a t [ak0] ^ 0. Using ko in (1), we have 
\ ^ 0 and <£>i|Ë£ ^ 0. Again from (1), it is apparen t t h a t u2 = a — Xa* is a 
weight vector relative to K with weight <p2 satisfying 

ç?2|-9" = OJ, ^2 |E^ = — ç>i|E$. 

]7p(«) = p^j_ 0 p^ 2 . Now, the characterist ic polynomial of adF&0 has as i ts 
split t ing field, 2 , in P either 3> or < £ ( W ) , for some /x G $ . As a ± Xa* 
are characterist ic vectors for ad ko considered as a t ransformation on F P

( a ) , 
and a, a* G F ( a ) , we find X G 2 . Wi th &0 in (1), we see t h a t <pi(ko)/\ and 
X<£i(&o) are in <ï>, whence X2 G $ and P = $(A) is an extension of degree a t 
most two. 

All this depends on our choice of a G Ai which has played no pa r t up to 
this point . In the cases CZ)2, E4)2, and Ai)2, Ai is a single orbit under W, and 
hence, using suitable automorphisms 0(w), we obtain immediately t h a t FP

(/3) 

decomposes into two weight spaces relative to K for all /3 G Ai. In the case 
Bit2, the two orbits making up Ai are interchanged by the na tura l 
au tomorphism which effects et <-» ez_*, /* +-*fi-u hi<-> — hi-u i G L. There 
remains BCi,2. Again there are two orbits, and we can take « M and ax as 
representat ives of them (indexing as in [3, Table 2]). Let us suppose t h a t 
the a G Ai of the previous discussion was taken to be ax. Then, since az_i + at 

and — a i are in the same orbit as ah V?{ai~1+ai) and Vv
{~ai) b o t h break into 

two weight spaces over P. Let a ± a* and b ± b* be corresponding weight 
vectors. [3, Lemma 2] shows t h a t neither [ab] nor [a*b] can be zero. All 
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four of the products [a ± a*, b ± b*] are weight vectors for K in VT
{OCl~l) and 

it is easy to pick two independent ones from amongst them. This shows that 
T7p(«j-i) decomposes into two weight spaces relative to K, and hence so does 
Vj>^ for all fi G Ai. 

We have proved that if E is a 2-tiered Euclidean Lie algebra over a field <ï> 
of characteristic zero, Ê = £ (1 ) splits relative to H + Ë% in some extension 
P of $ of degree at most two. 

We obtain Theorem 1 by judiciously scaling the shift map. Fix a G Ai 
and return to the discussion centering around equation (1). If we replace a 
and a* by their respective pre-images under 71*1 i n ill a and £«+!, respectively, 
and rewrite (1) in E, we obtain 

(2) <Pi(k)a' = \[a*k], X^i(*)a* = [ak] 

for all k G Eb 

We have seen that <pi(k)/\, X^>i(fe), and X2 are all in <ï> for all k G E$. 
Define " to be the shift map ' scaled by X-2, and define ty by \p(k) = \<pi(k). 
Equations (2) become 

(2') iK*K' = [a*k], $(k)a* = [ak], k G Eb 

Thus replacing ' by ", the new Ë = E(l) is already split in <ï> relative to 
K = H + Ëç. Theorem 1 follows. 

2. The root system of E{\). Let A' C K* be the root system for E relative 
to K. To avoid confusion, we denote the root space for <p G A7 by L<p. Each 
a G Âo yields a non-zero root <p G A' with Z^ = £ a , <p|iî = a, ç?|£^ = 0. Each 
pair a, a + £ Ç Ai (a + £ has an obvious interpretation in Ai) yields two 
roots <p and <£ with ^>|2? = a = <p\H, <p\Et = —ç>\Ë^ and L? + L$ = Ëa + £«+£. 
All the roots of A' — {0} are obtained in these two ways. For \f/ G A', we 
define $ by $\H = ^ | i î , ^ |£$ = — #|£ { . ~ maps A' onto itself, is of order two, 
and extends the use of ~ above. 

Define a map i of Ë into itself by i\H = 1, t |£ € = — 1, i|jEa = 1 if 
a G A — (Z U r ) , i\Ëa = — 1 if a G T. Then t is an automorphism of period 
two since its value on any space Ea depends on whether the number t(a) is 
even or odd. 

Suppose that Ai P\ (II — \a0}) = {a1} . . . , ak}. 

LEMMA 2. Let et (f*) be non-zero elements of Eai+^ (£_ a i + f ) , i = 1, . . . , k. 
Then eu . . . , ehfu . . . , / , , ex*, . . . , ek*,/i*, . . . , / * * generate E. 

Proof. Let 4̂ be the subalgebra of E which they generate. In the cases 
£ = Bi,2, Ci,2, 7*4,2, ao(fi, . . . , n ) is the set of all roots of A of the form 
OLQ + S i - i ^i«i [3, Lemma 9]. Fix i G {1, . . . , k}. at + £ G A and is in 

«o<ri, . . • , r%) — say («f + t)w = a0, w G <ri, . . . , r , ) . 

We can produce a 0 = 0(«/) defined over ai, . . . , ah Then £i*0 G A C\ Eao. 
Thus e0, and similarly /0, is in 4̂ ; whence 4̂ = £ . 
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In the cases BCh2 and Ait2, with the notation of [3, Table 2], 2ax + £ and 
2ai + £ are roots, respectively, and the corresponding root spaces are clearly 
in A. Using [3, Lemma 11] and the fact that 2a t + £ and 2ai + £ are of 
weight 4, we see that they are in ao(rly . . . , r%). We now proceed as above. 

Let <pi, . . . , <ps be the set of all roots ^ A' such that \p\H € II — {a0} 
(considered as functions on H). 

LEMMA 3. {pi, . . . , ç>s} are linearly independent elements of K*. 

Proof. Suppose that the ps are indexed so that <pt\3 — au i = 1, . . . , k. 
Let e? (ft*) be a non-zero element of Eai+^ (E_ai+^), i = 1, . . . , k. Then 
[ei*fi], • • • » fat*/*] is a basis of £$ [3, Lemma 6 and the discussion in cases 
( l ) - (6) following Proposition 8]. 

(pi\Êz, . . . , <Pk\Ë% are independent functions: for if not, there is a g £ E$ — {0} 
such that | Ç £$ — {0} satisfies p*(g) = 0 , i = 1, . . . , fe. Then by (1), 
[s*g] = 0 for i = 1, . . . , k, and hence for i = 1, . . . , /. Also from (1), 
[e*g] = 0 for i = 1, . . . , k. Now — <pt\H = —at\S and hence [/^g] = 0, 
i Ç L. For i = 1, . . . , k, ft* = [hfft] for suitable ht* Ç E^ from which 
[/**g] = 0. Lemma 2 implies that g is in the centre of E whence g = 0. 

Put 5 = {pi, p2, . • • , <ps} — {pi, pi, . . . , <pk, <pic}. Now, if 

* k 

ï = l 2=1 ? € S 

where all X Ç 3>, then restricting to H and £$ in turn, we see that all the Xs 

are zero. This proves the lemma. 

LEMMA 4: If i ^ j, <Pi — <pj £ A'. 

Proof. Suppose that <pt — p,,- £ A', (p* — p,) | i? is the function am — an, 
where am = p*|iî, an = P;|iî. Since p* — <pj is induced by a non-zero root 
(or root pair) of A — Z, we conclude that am — an or am — an -\- % is in A. 
The only possibility is the latter. [3, Lemmas 9 and 11] show that 

P = am — an + £ £ a0{ri, . . . , fj), 

and since the weight of £ is greater than 1 and / ^ 2 (m, ?z £ L — {0}), 
E must be BCh2. Then weight £ is 4. Now, the proof of [3, Lemma 11] actually 
shows that there exist rtl, . . . , rit £ {n, . . . , rx} such that a0 = $rix . . .rit 

and ht/3 > ht/fr^ > htjSr^r^ . . . > hta0- We see that each rtj must be rm 

or rn. Then / = 2, and a short calculation leads to a contradiction. 

THEOREM 2. {pi, . . . , ps} is a simple system of roots for Ë relative to K. 
The automorphism i is a diagram automorphism of Ë relative to this system. 

Proof. The assertion about t is obvious if {pi, . . . , <ps} is a simple system. 
L±(pi1 . . . , L±vs generate Ë by Lemma 2. Note that if i =̂  j , then 

<Pi — <Pj £ A' (Lemma 4). 
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Let ( , } denote the bilinear form on K* induced by the Killing form on 
Ë. For all i 9^ j , {<pu <Pj) = 0 since (pt — <pj (? A'. T h u s the integers 
Bij = 2{<pi, <pj)/(<pj, <Pj) form a generalized Car t an matr ix . Le t N = E((Btj)) 
be the Lie algebra defined by {Bi3). Since <pi, . . . , <ps are linearly independent , 
we can use the subset of Z<pi + . . . + Z(ps obta ined from <pi, . . . , <ps under 
the maps Rf <Pi*-^ <Pi — Bijcpj, j = 1, . . . , s, as the root system of N. Since 
(pt — Bijipj G A', the root system of N is finite, and hence (B^) is a C a r t a n 
matr ix and N is semi-simple. Choosing et G L ^ , / * € L_çi, ht G K such t h a t 
[êifi] = hi, [efhi] = 2êiy [ffii] = —2ft, we obta in a na tura l homomorphism 
of N onto Ë. Clearly N ^ Ë and Np -> Lp for all p G A', whence each /3 G A' 
is either a non-posit ive or non-negat ive integral combinat ion of (pi, . . . , < ŝ. 

3. Proof of T h e o r e m 3. If £ is a semi-simple Lie algebra over a field $ , 
split relat ive to a Car t an subalgebra § , and if ( 5 ^ ) is a Ca r t an matr ix and 
0i, . . . , jSz is a simple root system for 8, we say t h a t a set of generators 
cii G 8fr, &z € 8-0i> '̂ = 1 » • • • > ^ *s a s t andard set of generators for 8, if, 
pu t t ing d = [dibi] we have [ a ^ ] = 5^-a^ and [&^] = —Bifii. 

W e use the nota t ion of the previous section. Then <pi, . . . , <p5. is a simple 
system of roots for A' and we can choose et* G Eai+z,f* G E-ai+^i = 1, . . . , k, 
Xi, . . . , \k G ^ x such t h a t 

ëi ± ë i * , . . . , ë* ± ë**, ë*+ i , . . . , ëïf X i ( / i = b / i * ) , . . . , X*(/* =fc/**),/it+i, . . . , / * 

is a s t andard set of generators for Ë = £ ( 1 ) . (â means (a)in.) 
Let $ be an algebraic closure of <£ and, for each \x G <ï>x, let V M be a square 

root of IJL in <£. Le t /x G $ x and let P = $ ( \ / M ) - Define a linear m a p K: EP —> £ P 

by £« *—» (VM)~'(a)^a f ° r a ^ « G A, and e« G £«. « is an au tomorphism of £ 
and maps the ideal 7(1) onto 7(/x). T h u s there is an induced isomorphism 
K' of £ P ( 1 ) onto £ P ( / i ) . If V M € $, this shows t h a t E ( l ) ^ E(/z). 

Suppose now t h a t V M € $• Le t r0 denote the non-trivial au tomorphism 
of P over <i> and TO' some extension of r0 to an au tomorphism of l> over $ . 
T h e image under K of the s tandard basis of E(\) given above is 

enr» db ( V M ) - 1 ^ * ^ • • • > ejcTf, dz ( V M ) - 1 ^ * ^ , ^A+IT/X» • • • » 0^/0 

etc. These generate, over <ï>, an algebra X isomorphic to the split algebra 
£ ( 1 ) . T h e semi-linear au tomorphism r = T O 0 1 £ W of £ P ( M ) = P 0 $ £ ( M ) 
fixes £ ( M ) while performing a d iagram automorphism on X . This is sufficient 
to prove t h a t X $£ £(/*)• In fact, let r x = r | X , and let rx be the extension 
of TX to an au tomorphism of X = X ^ = E(/x)$. Suppose, by way of 
contradict ion, t h a t co: £(/x) —» X is an isomorphism. Let w be the extension 
of OJ to an au tomorphism of X and r* the extension of r to a ro'-semi-linear 
map of X onto itself. F rom 

(3) Tx lTX = W 11E(»)U 
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we obtain 

(4) TZ-h* = « " V i 

since each side of (4) is the unique ro'-semi-linear extension to X of the 
corresponding side of (3). 

Thus we have rx = T*CÔ-1(T*)-1CO. But rx is a diagram automorphism of 
X, and consequently T*CO_1(T*)_1CÔ is an outer automorphism. This means 
that co must be an outer automorphism. However, it is easy to see that the 
choice of co can be made so that co is inner. This shows that £ ( M ) $kX == E(l). 

The general case JJLP~1 Q $X2 now follows immediately. We can suppose 
that neither n nor v is in <£X2. v $ PX2, where P = <Ï>(VM)> and hence 

£ ( M ) P = £ P W ^ £ P ( 1 ) ^ £ P W = B W P 

from which £(/x) $LE(v). 

COROLLARY. F4>2(IJL) is of type E6for all y £ <£x. 

Proof. From [3, p. 1453], £4,2 (ju) is of type £6 , C6, or £6 . £4,2(1) is split 
and has a diagram automorphism, and hence is of type £6 . For other /x, 
3>(vV) ® * ^4,2(/x) ~ * ( V / 0 ®* ^4.2(1). 

4. Connections with Chevalley groups. Our aim in this section is to 
prove the following result. 

THEOREM 4. If n (t $X2 and r0 is the automorphism of V — <£(VAO over $ 
of period two, then the Steinberg group Go of the split simple algebra £P(ju) 
relative to TO is precisely the group of automorphisms G> of £ ( M ) induced by G. 
{Every automorphism of £ ( M ) can obviously be identified with one of £P(ju).) 

Go is obtained as follows. Let X be a split simple ^-subalgebra of £P(ju) 
such that I p = -EP(M)- Let 5 be the diagram automorphism of X and extend 
it to a semi-automorphism ô of X? with automorphism r0 on P. The elements 
of the adjoint group of £ P ( M ) invariant by conjugation by ô form G0. 

For convenience we will denote (V)TQ by v, for y G P. 
We select X as in § 3 so that r is the semi-automorphism 5. Using the K 

and K of § 3, we have the diagram 

P <g) E * ® *"> EpOO < X 

J K' K' 

P (g) £ * ® ^ £ p ( i ) < £(1) 

For each root space L9 of £(1) , let £ / denote its image in X under /c'. Since 
we will be working entirely in £(/x), it is convenient to use eu e*, etc., instead 
of î7rM, e^Tfi, etc. 

Gn is generated by the elements exp Xad eif expXad/*, where À É $ and 
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i = 0, 1, . . . , I. These extend uniquely to automorphisms in Go, providing us 
with an injective homomorphism of GM into Go. Conversely, each element of 
Go induces an automorphism of E(n), and thus we have an injective 
homomorphism of Go into Aut E(IJL). 

X has et ± ( V A O - 1 ^ * , i = 1, . . . , *, ek+u . . . , eh X, ( / , db (vV)"1/*), 
i = 1, . . . , k, Xfc+i/fc+i, . . . ,\ifi as a standard set of generators. By [5, 
Lemmas 4.6 and 7.6], Go is generated by the following sets of elements: 

(1) exp ad veh i = k + 1, . . . , /, v G $; 
(2) exp ad v(et + ( V M ) - 1 ^ * ) exp ad v(et — ( vV) - 1 ^*) , i = 1, . . . , £, 

when (ft + <pt g A' (v G P); 
(3) exp ad *>(£* + ( V M ) " 1 ^ * ) exp ad v(et — (vV) - 1 ^*) exp ad y for i = 

1, . . . , k, when <Pi + <pi G A' (V G P). Here y is in P(Z/^+£-) and its precise 
form is of no importance to us; 

(4) the expressions resulting from (1), (2), and (3) when the es are replaced 
b y / s . 

Generators of type (1) are clearly in GM. In the case (2), 

[et + (V/*)" V , et - (VM)-1^*] = 0, 

and so we obtain (exp ad(P + v)et)(exp ( v V ) - 1 ^ — v)e*), which is in GM. 
In case (3), put x+ = et + (Vv)~1e*, x~~ = et — ( V M ) - 1 ^ * - Using the facts 
that 2(pi + Vi and <pt + 2<ft are not in A', y G P(L/

Ç5-+^), and the Campbell-
Hausdorfï formula [1] we obtain 

exp ad vx+ exp ad vx~ exp ad y = exp ad(*>x+ + vx~~ + \vv\x+x~\) exp ad y 

= exp ad(z^x+ + *>x~) exp ad(^7>[x+x~] + 3/). 

Since r commutes with our generator, g = ^vv[x+x~] + y is in E(n). Thus 
exp ad g G G> Writing vx+ + vx~ = a + b, where a G (£«,)*>> 6 G (E^H-É)*-,,, 

exp ad a exp ad b = exp ad(a + b + I M ] ) = exp ad(a + 6) exp ad §[a&], 
since 3a^ and 3a* + £ are not in A. Thus exp ad (a + b) G GM. Now the 
homomorphism G0 —> Aut E(M) maps G0 into GM, whence Go = GM on 
identification. 
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