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SIMPLE QUOTIENTS OF EUCLIDEAN LIE ALGEBRAS

ROBERT V. MOODY

Introduction. In [2], we considered a class of Lie algebras generalizing
the classical simple Lie algebras. Using a field ® of characteristic zero and
a square matrix (4 ;) of integers with the properties (1) 4,; = 2, (2) 4,; =0
ifi#34 (38) A;; =0if and only if 4;; = 0, and (4) (4;,)diag{es, ..., €;} is
symmetric for some appropriate non-zero rational e; a Lie algebra
E = E((4,;)) over ® can be constructed, together with the usual accoutre-
ments: a root system, invariant bilinear form, and Weyl group.

For indecomposable (4;;), E is simple except when (4,;) is singular and
removal of any row and corresponding column of (4,,) leaves a Cartan
matrix. The non-simple Es, Euclidean Lie algebras, were our object of study
in [3] as well as in the present paper. They are infinite-dimensional, have
ascending chain condition on ideals, and proper ideals are of finite codimension.
Furthermore, there exists a special bijective linear mapping ': E — E with
the property [a’b] = [ab]’ for all a,b € E. This shift map is determined
only up to a scalar multiple. For p € &< = & — {0}, I(r) = {¢’ — paja € E}
is an ideal, and the quotient E(u) of E by this ideal is finite-dimensional
central simple over ®. In this paper we are concerned with the structure of
these simple quotient algebras.

Every Euclidean Lie algebra has a tier number associated with it (see § 1),
and this is one of 1, 2, or 3. In [3] we proved that when the tier number is
1, E(u) = E(1) for all u € &< and is a split simple Lie algebra of easily
determined type. For 2-tiered Lie algebras (with the exception of Fi,) we
showed that E(u) has type independent of u but E(u) and E(v) may fail to
be isomorphic for some u and » in &%,

The main results of this paper are the following.

THEOREM 1. If E is a 2-tiered Euclidean Lie algebra over a field & of
characteristic zero, then the shift map can be chosen so that E(u) splits over ®(+/u)
(relative to the Cartan subalgebra (H + Eg)m,) for all u € ®*.

THEOREM 3. Under the assumptions of Theorem 1, E(u) = E(») if and only
if w1l is a square.

We also see along the way that Fy.(u) is of type Es for all u.

In the last section we show that the adjoint group of E(u), where u is a
non-square of ®%, is the Steinberg twisted group arising from the split algebra
®(+/1) ® » E(u) relative to the non-trivial automorphism of ®(+/u) over ®.
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1. Proof of Theorem 1. Let L = {0,1,...,7} where / is some positive
integer and let ® be a field of characteristic zero. We identify the integers
Z with the prime subring of ®. Let E be a 2-tiered Euclidean Lie algebra
over ® with generators {e;, f;, ki 2 € L}. We briefly recall the relevant facts
about E and refer the reader to [3] for the definitions and further details.

Let A be the root system for E relative to the given generators (we consider
0 to be in A). For each a € A let E, denote the corresponding root space.
H = ®hy+ ...+ ®h,is Eoand forms an abelian subalgebra of E of dimension
! (not!l+1).

Denote by II the fundamental system of roots {aqg, a1, . .., a;} and by Az
the group generated by them. Az is a free abelian group of rank 7 4 1 and
the real space R ®7 Az is equipped with a positive semi-definite form (, )
of rank I. The reflections 7y, 71, . . ., 7; defined by ao, a1, . . ., @; generate an
affine reflection group W which stabilizes A. The radical of (, ) intersects
Ain a cyclic group Z and we can take as a generator for Z the positive element
£ = > Ei; of least height in Z. Our g is chosen (to within symmetries
of the diagram of 1) by the following conditions: (1) II — g is connected,
(2) &% =1, (3) (used only when (1) and (2) do not characterize a root to
within diagram symmetries) oy + £ € A.

The hypothesis (2-tiered) on £ means that if an element « is in A, then so
are all its translates by elements of Z2¢ (but there exist elements « in A
for which @ + £ ¢ A). If X is any subset of A, X will denote the set of
equivalence classes represented by the elements of X in A taken modulo 2%.
The shift map ’ of E onto itself has the following properties: (1) [ab] = [a'D]
foralla,b € Eand (2) E,/ = E, st foralla € A. These properties characterize
it to within a scalar multiple. For each u € ®< let m, be the natural
homomorphism of E onto E(u). Then

Ew =2 & (E)m,
ogfzﬁihtzs
and (H + E:)m, is a Cartan subalgebra [3, Lemma 5].

In the following we will be considering E(1) for the most part. We will
denote E(1) by E and (Eq)w1 by E, for all a € A. Since E, = Ej if and only
if « =8 (mod 2{), there is no ambiguity in speaking of E,, where a € A.
Since H and H are canonically isomorphic, we often consider elements of A
as functions on H. H + E; will be denoted by K. Finally we define some
subsetsof A: Ay ={a € A—Zla+£t¢ A}, Ay ={a € A—Zla+ £ € A}
Fora = Y icL 3.; define (@) = 2. Let T' = {a| {(«) is odd}.

For each B8 € A — Z and for each x € Eg, ad x is nilpotent, and hence
exp(ad x) is a well-defined automorphism of E. The group ¥, generated by
these as x ranges over Eg is isomorphic to ®*. As usual, we call the group G
generated by the Xg, as 8 ranges over A — Z, the adjoint group of E, and see
that it is generated by ¥X.iap . . ., X1a [6]. For x € Eg, 1 € E, I’ exp(ad x) =
(lexp(ad x))’, whence G commutes with the shift map. Thus G stabilizes
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every ideal of E and induces a group of automorphisms on each quotient of
E. The group induced on E(u) will be denoted G,.

For each w € W there is an automorphism 6 = §(w) € G (not unique)
such that Egf = Eg, for all 8 € A [1, Theorem 2]. We will need the fact

that if w =7, ...ry, then 8(w) can be chosen to be a product of the
automorphisms exp ad e; and exp ad f;, j = 1, . . ., %. We will then say that
0 is defined over a;y, . . ., ay.

LEMMA 1. If a« € Ay and a € E,, a # 0, then [aE:¢] # (0).

Proof. Using a suitable automorphism of W if necessary, we can suppose
that « = a; € T and @ = e;. Let K; = ®e; + ®h; 4 ®f; and let b € E,iype.
By [3, Lemma 2], the K,-module M generated by b is irreducible. Since
(i + &) (hy) = 2, MM E; # (0), and hence [e;E:] N M = (0).

Fix o € Ay and let V@ = E, + E,pe. V is a two-dimensional K-module,
and hence for some finite extension P of ®, V3@ = P @ 4 V@ has a weight
vector #; # 0, say with weight ¢;. We suppose that P is chosen to be minimal.
Let a € E, — {0}, a* € E,; — {0}. It is a consequence of Lemma 1 that
P ® E.,:isnota weight space for K. We can suppose then, that#; = a 4+ \a*,
with X € P. It follows that ¢;|H = «, and for all £ € E;,

(1) e1(B)a = Na*E], Aer(R)a* = [ak].

By Lemma 1, choose k¢ € E; such that [ako] 5 0. Using &, in (1), we have
A # 0 and ¢1|E; 5 0. Again from (1), it is apparent that u; = @ — Aa* is a
weight vector relative to K with weight ¢, satisfying

<p2]ﬁ = «, §02!E.§ = -‘ﬂallE_z-

Ve@ = Pu; @ Pus. Now, the characteristic polynomial of adyk, has as its
splitting field, =, in P either ® or ®(+/u), for some pu € ®. As a %+ \a*
are characteristic vectors for ad ko considered as a transformation on Vp®@,
and @, ¢* € V@, we find N € Z. With k¢ in (1), we see that ¢1(ky)/\ and
Ne1(ko) are in ®, whence A2 € ® and P = ®(\) is an extension of degree at
most two.

All this depends on our choice of @ € A; which has played no part up to
this point. In the cases C;,5, Fa,2, and A1,2, A1 is a single orbit under W, and
hence, using suitable automorphisms 6(w), we obtain immediately that V®
decomposes into two weight spaces relative to K for all 8 € A;. In the case
B, the two orbits making up A; are interchanged by the natural
automorphism which effects e; <> e;—y, fi <> fi—sy hi<> — hi—;, © € L. There
remains BC;,. Again there are two orbits, and we can take a;—; and «; as
representatives of them (indexing as in [3, Table 2]). Let us suppose that
the @ € A; of the previous discussion was taken to be a;. Then, since @;—1 + a,
and —a, are in the same orbit as e, Vp@®—11 and V=) both break into
two weight spaces over P. Let ¢ &+ ¢* and b = b* be corresponding weight
vectors. [3, Lemma 2] shows that neither [ad] nor [a*b] can be zero. All
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four of the products [a & a*, b &= b*] are weight vectors for K in Vp®—1 and
it is easy to pick two independent ones from amongst them. This shows that
Vp@®=1 decomposes into two weight spaces relative to K, and hence so does
Ve® for all 8 € Ay

We have proved that if E is a 2-tiered Euclidean Lie algebra over a field ®
of characteristic zero, E = E(1) splits relative to H + E; in some extension
P of ® of degree at most two.

We obtain Theorem 1 by judiciously scaling the shift map. Fix a € A
and return to the discussion centering around equation (1). If we replace a
and «¢* by their respective pre-images under m; in E, and E.¢ respectively,
and rewrite (1) in E, we obtain

(2) e1(k)a’ = Na*k], Aer(k)a* = [ak]

for all & € E..

We have seen that ¢1(k)/N\, Ne1(k), and A% are all in & for all & € E..
Define "’ to be the shift map ’ scaled by A2, and define ¢ by ¢ (k) = \e1(%).
Equations (2) become

2" Y(k)a" = [a*k],  ¢(k)a* = [ak], k € E;.

Thus replacing ’ by /, the new E = E(1) is already split in & relative to
K = H + E.. Theorem 1 follows.

2. The root system of E(1). Let A’ C K* be the root system for E relative
to K. To avoid confusion, we denote the root space for ¢ € A’ by L,. Each
a € Aqyields a non-zero root ¢ € A’ with L, = E,, ¢|H = a, ¢|E; = 0. Each
pair @, @ + £ € A; (e + £ has an obvious interpretation in A,) yields two
roots ¢ and ¢ with ¢|H = a = ¢|H, ¢|E; = —g|Es,and L, + L; = E, + E.,:.
All the roots of A’ — {0} are obtained in these two ways. For ¢ € A/, we
define § by ¥|H = y¢|H, ¢|E; = —§|E;. ~ maps A’ onto itself, is of order two,
and extends the use of ~ above.

Define a map ¢ of E into itself by H =1, JE; = —1, E, =1 if
@€ A— (ZUT),|E,= —1ifa € T. Then ¢ is an automorphism of period
two since its value on any space E, depends on whether the number ¢(c) is
even or odd.

Suppose that A; N (IT — {ae}) = {a1, ..., o).

LEMMA 2. Let e;* (f*) be non-zero elements of Ea;yt (Bwiy), 1= 1,..., k.
Then ey, ... e, f1, ..., fue®™ ..., &% f1% ..., fi* generate E.

Proof. Let A be the subalgebra of E which they generate. In the cases
E = B, Cua Fus, ao(ry,...,r;) is the set of all roots of A of the form
o+ i1 Nwe; [3, Lemma 9]. Fix s € {1,...,kl.a;,+ £€ Aand isin

ao(ry, ..., 7y) — say (o + £)w = ao, wE(”h---y”z>.
We can produce a 6 = 6(w) defined over ai,...,a; Then e*0 € 4 N E,,.

Thus ey, and similarly f,, is in 4; whence 4 = E.
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In the cases BC,s and A44,,, with the notation of [3, Table 2], 2a; + £ and
20 4 £ are roots, respectively, and the corresponding root spaces are clearly
in A. Using [3, Lemma 11] and the fact that 2a; + ¢ and 2a; + £ are of

weight 4, we see that they are in a(ry, . .., r;). We now proceed as above.

Let o1, ..., ¢, be the set of all roots ¥ € A’ such that Y|H ¢ I — {ao}
(considered as functions on H).

LEMMA 3. {¢1, . .., @5} are linearly independent elements of K*.

Proof. Suppose that the ¢s are indexed so that ¢))H =a;, ¢ =1,..., k.
Let e;* (f*) be a non-zero element of Euy¢ (E_art), 2= 1,...,k Then
lex*fil, - - ., lex*fx] is a basis of E; [3, Lemma 6 and the discussion in cases
(1)-(6) following Proposition 8].

¢1|Es, . . ., ¢u] E¢ are independent functions: for if not, thereisa g € E; — {0}
such that g € E; — {0} satisfies ¢;(g) =0, ¢=1,...,k Then by (1),
leigl =0 for ©=1,...,%, and hence for ¢ =1,...,. Also from (1),
le*g] =0 for e =1,...,k Now —¢)]H = —a;/H and hence [fig] = 0,
1 € L. For ¢+ =1,...,k f*=[h*] for suitable h* € E; from which
[f*g] = 0. Lemma 2 implies that g is in the centre of £ whence g = 0.

PutS = {§01, L2y o v oy QOS} - {(pl, §51, ooy Pry @k} NOW, if

k k
D hieit D NG+ D, Ae = 0,
i=1 =1 eeS

where all A € &, then restricting to A and E; in turn, we see that all the AS
are zero. This proves the lemma.

LemMmA 4: If ¢ # j, 01 — ¢; ¢ A,

Proof. Suppose that ¢; — ¢; € A'. (¢; — ¢;)|H is the function e, — ay,
where an, = ¢;|H, a, = ¢;]H. Since ¢; — ¢; is induced by a non-zero root
(or root pair) of A — Z, we conclude that a,, — a, or @, — a, + £ is in A.
The only possibility is the latter. [3, Lemmas 9 and 11] show that

6=am—an+£€a0<71,---,7’1>,

and since the weight of 8 is greater than 1 and I = 2 (m,n € L — {0}),
E must be BC,5. Then weight 8 is 4. Now, the proof of [3, Lemma 11] actually
shows that there exist 7;,...,7; € {ry, ..., 7} such that @y = Bryy .. .1y
and htp > htBr, > htfryry, ... > htag. We see that each 7;; must be 7,
or 7,. Then I = 2, and a short calculation leads to a contradiction.

THEOREM 2. {¢1, ..., ¢} is a simple system of roots for E relative to K.
The automorphism v is a diagram automorphism of E relative to this system.

Proof. The assertion about ¢ is obvious if {¢1, . .., ¢} is a simple system.
Lipy ..., Ly, generate £ by Lemma 2. Note that if ¢ # 7, then

¢i — ¢; ¢ A (Lemma 4).
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Let (, ) denote the bilinear form on K* induced by the Killing form on
E. For all 7#j, {¢s¢;) =0 since ¢; — ¢; € A’. Thus the integers
B, = 2{¢i, ¢;)/{¢, ¢;) form a generalized Cartan matrix. Let N = E((B;;))

be the Lie algebra defined by (B;;). Since ¢y, . . . , ¢; are linearly independent,
we can use the subset of Z¢; 4 ... 4+ Zp, obtained from ¢y, ..., ¢s under
the maps R;: ¢i+— ¢; — By, 7 =1,...,5, as the root system of N. Since

0; — Biyp; € A, the root system of NV is finite, and hence (B,;) is a Cartan
matrix and NV is semi-simple. Choosing &; € Lw,fi € L_,, k. € K such that
[é,fi] = h,, [6:h] = 26, [fiﬁ,-] = —2f,, we obtain a natural homomorphism
of N onto E. Clearly N =~ E and Ng — Lg for all 8 € A’, whence each 8 € A’
is either a non-positive or non-negative integral combination of ¢y, ..., ¢,.

3. Proof of Theorem 3. If ¢ is a semi-simple Lie algebra over a field &,
split relative to a Cartan subalgebra §, and if (B;;) is a Cartan matrix and

B1, ..., B; is a simple root system for ¥, we say that a set of generators
a; € Ly, b € L, 1 =1,...,1, is a standard set of generators for &, if,
putting ¢; = [ab;] we have [a,;] = Bja; and [bic;] = —B ..

We use the notation of the previous section. Then ¢y, ..., ¢, is a simple
system of roots for A’ and we can choose e¢* € Eyyt, [* € E_gpt,2 = 1,...,k,
i, ..., \x € ®¥ such that
gk a* ., e ek, Gy e M(AEFT), o M (Fe £, i - Fo

is a standard set of generators for £ = E(1). (@ means (a)m1.)

Let & be an algebraic closure of & and, for each u € &, let +/u be a square
rootof pin & Let u € ®<andletP = ®(+/u). Define a linear map «: Ep — Ep
by exr— (\V/u)"'@e, for all « € A, and e, € E,. k is an automorphism of E
and maps the ideal I(1) onto I(u). Thus there is an induced isomorphism
k" of Ep(1) onto Ep(u). If /u € &, this shows that E(1) = E(u).

Suppose now that 4/u ¢ ®. Let 7o denote the non-trivial automorphism
of P over ® and 7 some extension of 7, to an automorphism of & over ®.
The image under «” of the standard basis of E(1) given above is

€1y = ('\/p‘)_lel*"rl“ ey €Ty =+ <\/“)—lek*7r#y Crt1Tpy « « oy €Ty,

etc. These generate, over ®, an algebra X isomorphic to the split algebra
E(1). The semi-linear automorphism 7 = 7¢®@1lzy) of Ep(u) = P Q4 E(u)
fixes E(u) while performing a diagram automorphism on X. This is sufficient
to prove that X 2% E(u). In fact, let ry = 7|X, and let 7y be the extension
of 7y to an automorphism of X = X3 = E(u)s. Suppose, by way of
contradiction, that w: E(u) — X is an isomorphism. Let & be the extension
of w to an automorphism of X and 7* the extension of = to a r/-semi-linear
map of X onto itself. From

(3) TX_ITX = w_llE(,‘)w
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we obtain
(4) Fxlr* = & lr*)

since each side of (4) is the unique 7(-semi-linear extension to X of the
corresponding side of (3).

Thus we have 7x = 7¥&1(7*)71&. But 7x is a diagram automorphism of
X, and consequently 7*&1(r*)"1& is an outer automorphism. This means
that @ must be an outer automorphism. However, it is easy to see that the
choice of w can be made so that & is inner. This shows that E(u) 22 X = E(1).

The general case u~! ¢ &< now follows immediately. We can suppose
that neither u nor » is in %2, v ¢ PX2, where P = ®(+4/u), and hence

E(w)p = Er(u) —%EP(I) %EP(V) = E(V)P
from which E(u) 22 E(»).
COROLLARY, Fy4,9(u) is of type Eg for all u € &%,

Proof. From [3, p. 1453], Fa () is of type Bs, Cs, or Eg. Fy(1) is split
and has a diagram automorphism, and hence is of type E; For other g,
B(Vi) @s Fup(p) = (Vi) Qa Fupa(l).

4. Connections with Chevalley groups. Our aim in this section is to
prove the following result.

THEOREM 4. If u € %% and 7 is the automorphism of P = ®(/u) over &
of period two, then the Steinberg group Go of the split simple algebra Ep(u)
relative to rq is precisely the group of automorphisms G, of E(u) induced by G.
(Every automorphism of E(u) can obviously be identified with one of Ep(u).)

Gy is obtained as follows. Let X be a split simple ®-subalgebra of Ep(u)
such that Xp = Ep(u). Let 8 be the diagram automorphism of X and extend
it to a semi-automorphism & of X » with automorphism 7, on P. The elements
of the adjoint group of Ep(u) invariant by conjugation by § form G,.

For convenience we will denote (v)7y by 7, for v € P.

We select X as in § 3 so that 7 is the semi-automorphism §. Using the «
and «’ of § 3, we have the diagram

PQE—5
T
PR E-® ™, B (1) e— E(1)
For each root space L, of E(1), let L,’ denote its image in X under «’. Since
we will be working entirely in E(u), it is convenient to use ¢;, €;*, etc., instead

of e;m,, e¥m,, etc.
G, is generated by the elements exp Aad e;, exp Aad f;, where N € ® and
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2=20,1,...,. These extend uniquely to automorphisms in G,, providing us
with an injective homomorphism of G, into G, Conversely, each element of
Go induces an automorphism of E(u), and thus we have an injective
homomorphism of G, into Aut E(u).

X has e & (Wu) e i=1,...,k err1,--.,€, N(fi£ V)Y,
1=1,...,k Ngife+n, --.,Nfr as a standard set of generators. By [5,
Lemmas 4.6 and 7.6], G, is generated by the following sets of elements:

(1) expadve, 2=k +1,...,],v € &

(2) exp ad »(e; + (Vu)7le) exp ad ple; — (V)7le*), i =1,... &,
when ¢; + ¢; ¢ A" (v € P);

3) expadvr(e; + (Wu)te*) exp ad 5(e; — (Vu)"le*) exp ad v for 7 =
1,...,k when ¢; + ; € A" (v € P). Here y is in P(L',;44;) and its precise
form is of no importance to us;

(4) the expressions resulting from (1), (2), and (3) when the es are replaced
by fs.

Generators of type (1) are clearly in G,. In the case (2),

lei + (Vu)TleX er — (Vu)Tle ] = 0,

and so we obtain (exp ad(v 4 7)e;) (exp (v/u)™ (v — 7)e;*), which is in G,.
In case (3), put xt = ¢; + (V) le*, = = e; — (v/u)"le*. Using the facts
that 2¢; + @; and ¢; + 2%, are not in A’, y € P(L,:44;), and the Campbell-
Hausdorff formula [1] we obtain

Il

exp ad vxt exp ad sx~expad y = exp ad(vx™ + 72~ + $r7[xtx"]) expady

exp ad (vxt 4 7x7) exp ad (3v7[xtx~] + ).

Since 7 commutes with our generator, g = 3v[xtx~] + v is in E(u). Thus
exp ad g € G,. Writing »x* 4 ¢~ = a + b, where ¢ € (Ey)mu 0 € (Eaiyt)my
exp ad @ exp ad b = exp ad(a + b + %[ab]) = exp ad(a + b) exp ad i[ab],
since 3a; and 3a; + £ are not in A. Thus exp ad(a + b) € G,. Now the
homomorphism Gy — Aut E(x) maps G, into G, whence Go = G, on
identification.
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