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Asymptotic Dimension of Proper CAT(0)
Spaces that are Homeomorphic to the
Plane

Naotsugu Chinen and Tetsuya Hosaka

Abstract. In this paper, we investigate a proper CAT(0) space (X, d) that is homeomorphic to R? and
we show that the asymptotic dimension asdim(X, d) is equal to 2.

1 Introduction and Preliminaries

In this paper, we study the asymptotic dimension of proper CAT(0) spaces that are
homeomorphic to R%.

A metric space (X, d) is proper if all closed bounded sets in (X, d) are compact.
We say that a metric space (X, d) is a geodesic space if for any x, y € X, there exists
an isometric embedding &: [0, d(x, )] — X such that £(0) = x and £{(d(x, y)) = ¥
(such a ¢ is called a geodesic).

Let (X, d) be a geodesic space and let T be a geodesic triangle in X. A comparison
triangle for T is a geodesic triangle T in the Euclidean plane R? with the same edge
lengths as T. Choose two points x and y in T. Let X and 7 denote the corresponding
points in T. Then the inequality d(x, y) < dg (%, 7) is called the CAT(0)-inequality,
where dy is the usual metric on R2. A geodesic space X is called a CAT(0) space if the
CAT(0)-inequality holds for all geodesic triangles T and for all choices of two points
xand y in T. Details of CAT(0) spaces are found in [1].

In Section 2, we first investigate proper CAT(0) spaces that are homeomorphic to
R? and we show the following.

Proposition 1.1 Let (X,d) be a proper CAT(0) space that is homeomorphic to R2.
Then S(x, r) is homeomorphic to S for all x € X and all r > 0. Hence the boundary
OX is homeomorphic to a circle S'.

Let (X, d) be a metric space and let U be a family of subsets of (X, d). The family U
is said to be uniformly bounded if there exists a positive number K such that diam U <
K for all U € U. The family U is said to be r-disjoint if d({U,U’) > r for any
U,U' € UwithU # U’.

The asymptotic dimension of a metric space (X, d) does not exceed n and we write
asdim(X, d) < n, if for every r > 0 there exist uniformly bounded, r-disjoint families
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U, UL, ..., U" of subsets of X such that Uzzouk covers X. The asymptotic dimension
of a metric space (X, d) is equal to n, and we write asdim(X, d) = n, if asdim(X, d) <
nand asdim(X,d) £ n— 1.

The asymptotic dimension of a group relates to the Novikov conjecture, and there
is some interesting recent research on asymptotic dimensions [2,5-7,9,15]. In [9],
Gromov remarks that word hyperbolic groups have finite asymptotic dimension, and
Roe gives details of the proof in [12]. The asymptotic dimension of CAT(0) groups
and CAT(0) spaces is unknown in general.

The purpose of this paper is to prove the following theorem.

Theorem 1.2 If (X,d) is a proper CAT(0) space that is homeomorphic to R?, then
asdim(X, d) = 2.

We note that the proper CAT(0) space (X, d) in this theorem need not have an
action of some group. We give an example in Section 4.

2 Proper CAT(0) Spaces that are Homeomorphic to R?

We first give notation used in this paper.

Notation 2.1 Let the set of all natural numbers, real numbers, and [0, o) be de-
noted by N, R, and R, respectively. Set R” = R"! x R, B" = {x € R" :
S < 1} and §" = {x € R™ : Y"1 = 1}. Let Y be a subspace of
a metric space (X, d). The interior and the closure of Y in a space X will be de-
noted by Inty Y and Clx Y, respectively. Also set B(x,r) = {y € X : d(x,y) < r}
and S(x,r) = {y € X : d(x,y) = r}. We denote the geodesic from x to y in a
CAT(0) space (X, d) by [x, y] (cf. [1, Proposition II 1.4]). Set [x, y) = [x, ] \ {y},

(x,y] =[x, 7]\ {x} and (x, y) = [x, y] \ {x, y}.
The following lemma is known.

Lemma 2.2 Let (X,d) be a proper CAT(0) space, r > 0 and xo € X. Then, the

following are satisfied:

(i)  B(xo,r) is a convex set;

(i) xo & [x, y] C Blxo,r) and (x, y) C B(xo,7) \ S(xo,7) for any x, y € S(xo, r) with
d(x,y) < 2r;

(iii) (cf.[1, Lemma II 5.8 and Proposition II 5.12]) If X is a manifold, for each
x € X\ {xo}, there exists a geodesic line £: R — X such that £(0) = x, and
§(d(xo, %)) = x.

We investigate a proper CAT(0) space that is homeomorphic to R?.

Notation 2.3 Let (X,d),r,x0,x, and y be as in Lemma [2.2(ii). Suppose that X is
homeomorphic to R%. By Lemmal[2.2} there exist two geodesic rays &, x, &4,y 1 Re —
X such that £ x(0) = &, (0) = x0, & x(r) = xand &, ,(r) = y. By Lemma[2.2}
Exox([1,00)) U[x, y] U, ([, 00)) is homeomorphic to R. Since X is homeomorphic
to R?, by Schonflies Theorem there exists the component C of X \ & x([r,00)) U
[x, y] U & ([1, 00)) such that xy & C. Set £(x, y) = S(xp, 1) N Clx C.
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We show some lemmas.

Lemma 2.4 Let (X, d) be a proper CAT(0) space that is homeomorphic to R%. Then,
S(x, 1) is a continuum for all x € X and all r > 0.

Proof Letxy, € X and r > 0. Since B(xo, r) is a convex set, by duality (cf. [13]),
Hy(X \ B(xo, 1)) = H'(B(xo,1)) = 0,

thus, X \ Intx B(xo, r) = Clx(X \ B(xy, 1)) is connected. Since there exists a deforma-
tion retraction of X \ Intx B(xo, r) onto S(xo, 1), S(xo, 1) is connected. |

Lemma 2.5 Let (X, d) be a proper CAT(0) space that is homeomorphic to R%, r > 0,
x0 € X, %,y € S(xp, r) with0 < d(x,y) < 2randz € {(x, y). Then

(i)  Ll(x,y) is a continuum,

(ii) [x,y]1 N [x0,2] # @, and
(ifii) d(x,2) < d(x, ).

Proof (i) By Notation 23] there exists the component D of X \ R such that C C D,
where R = & x(R}) U &, (R}). Since X is homeomorphic to IR?, by Schonflies
Theorem, Clx D is homeomorphic to R?. Let D’ be a copy of D. Define an equivalent
relation: ~ in DU D’ as follows: fora € Dand a’ € D', a ~ a’ if and only if
a—a a € Robanda’ € R'. Set B = B(xo,r)ﬂCIXDﬁ—(DUD)/Nand
= (BUB’)/~. Then there exists a deformation retraction Clx(D \ B) onto £(x, y),

D is homeomorphic to R? and B is a contractible compact set. By the same method
as in the proof of Lemma [2.4] we can show that ¢(x, y) U (¢(x, y))’/~ is connected.
Since there exists the natural surjective map from £(x, y) U ({(x, y))’/~ onto £(x, y),
{(x, y) is connected.

(i) We may assume that z ¢ {x, y}. By Notation 23] there exists the component
C of X \ &, «([1,00)) U [x, y] U &, ([1,00)) such that x, ¢ C and z € C. Thus,
Exox([1,00)) U [x, y] U &, , ([1, 00)) separates xo and z in X. Since [xg, z] C B(xg, r) is
an arc connecting xp and z in X, [x, y] N [x,z] # @.

(iii) On the contrary, suppose d(x,z) > d(x, y). By (ii), there exists z’ € [x, y] N
[x0,z]. Since z’ € [x, y],

dix,z)Y+d(Z,y) =d(x,y) < d(x,z) < d(x,2') +d(Z,2),
thus, d(z’, y) < d(z’,z). Then,
r=d(xo,y) < d(xo,z") +d(z',y) < d(xo,2") +d(z,2) = d(x0,2) =1,

a contradiction. [ ]

Lemma 2.6 Let (X, d) be a proper CAT(0) space that is homeomorphic to R?, r,t > 0,
X0 € X and yo € S(xo, ). Then S(xop,r) N B(yo,t) is connected.
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Proof Set N = S(xg,r) N B(yo,t). Ift > 2r, S(xo,7) C B(yo,t). By Lemma 24 N
is connected. We may assume that ¢t < 2r. Take x € N. Since d(y,x) < t < 2r, by
Lemmal[2.5] we have

E(}’O,x) C S(x())r) ﬁB(}’Oyd()’OJC)) C S(x()vr) ﬂB(}’Oat) = N.

Therefore, by LemmaZ5] N = | J{¢(y0, %) : x € N} is connected, which proves the
lemma. [ ]

We obtain the following proposition from the lemmas above.

Proposition 2.7 Let (X,d) be a proper CAT(0) space that is homeomorphic to R2.
Then, S(x, r) is homeomorphic to S for all x € X and all r > 0.

Proof By Lemma[2.4land [14, Theorem 11.21], it suffices to show the following:

(i)  S(x0,7) \ {»0, y1} is nonconnected for any yo, y; € S(xo, r) with yo # y;, and
(i)  S(x0,7) \ {y0} is connected for each y, € S(xo, r).

We take two points yo, y1 € S(xo,r) with yo # y;. By Lemma 22} there exist
geodesic rays &, y,, x ¢ Ry — X such that &, (0) = &, 5, (0) = x0, &y (1) = y0
and &y, ,, (r) = y1. By Schonflies Theorem, there exist closed sets Zy, Z; of X such
that Z; is homeomorphic to R fori = 0,1,X = ZyUZ;, and ZyNZ; C &y, (R U
&x,,y: (R4) is homeomorphic to R. Since S(xo, r) N Intx Z; # @ fori =0, 1, S(xp, 1) \
{¥0, y1} is nonconnected, which proves (i).

Let x, ¥ € S(xo,7) \ {yo} with x # y. By Lemma there exist geodesic rays
Exors Exory s Ry — X such that & <(0) = &, ,(0) = X0, {4, (1) = xand &, (r) = y.
Set R = &, x(Ry)U&,,,(Ry). By [1, Proposition 1.4(1), p.160], there exists z € [xo, x)
such that & (R;) N &, ,(Ry) = [x),z]. By Schonflies Theorem, there exists the
component C of X \ R such that y, ¢ C and E,, = Clx C is homeomorphic to R2.
Set Ly, = Ey, N S(xg, 7). We see

B(xo, d(x0,2)) C Ey, or B(xg, d(xo,2)) N Ey, = {z}.

Suppose that B(xo, d(x9,z)) C E,,. We note that Ly, B(xo,d(xo,2)) and {z} are
deformation retracts of Clx(E, , \ B(xo, 1)), Ex, N B(xo, r) and B(xo, d(xo, z)), respec-
tively. Thus, {z} is a deformation retract of E,, N B(xo, r). Using the same method
as in the proof of Lemma[2.5(i), we can show that L, , U (L, )"/~ is a deformation
retract of Clx(E,,, \ B(xo,r)) U (Clx(Ex, \ B(xo,7)))’/~ and {z} is a deformation
retract of (E,, N B(xo, 1)) U (Ey,, NB(xo, 7))’ /~, thus, L , is connected. Suppose that
B(xo, d(x0,2)) N Ey, = {z}. Since {z} is a deformation retract of E, , N B(xo, 1), by
the same method above, we can show that L, , is connected.

Fix yg € S(xo,7) \ {yo}- Since S(x0, 1) \ {0} = U{Lx; : x € S(x0,7) \ {y0, ¥0}}>
it is connected, which proves (ii). [ |

Corollary 2.8 If (X,d) is a proper CAT(0) space that is homeomorphic to R?, then
the boundary OX of X is homeomorphic to S'.

We show the following lemma that is used in the proof of the main theorem.
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Lemma 2.9 Let (X, d) be a proper CAT(0) space that is homeomorphic to R?, xy € X,
rt > 0with2t < rand x,x’ € S(xq,r) with 3t < d(x,x") < 2r. Then there exist
Y0y« -vs Vain—1 € S(xo,7), and m € N with 0 < 3m < 3n — 1 such that y, = x,
yam = x', t < dlaml(y;, yic1) < 26 {0, .-, Yan—1} N Lyi, yiv1) = {yi, yin1 } for
eachi = 0,...,3n — 1, S(xo,7) = L(yo,y1) U -+ ULl(Ysn_1, ¥3n), and L(x,x") =
L(yo, y1) U~ UL(y3m_1, Y3m), where y3, = yo.

Proof Setzy = yo = x. By Proposition 2.7} S(x, r) is homeomorphic to S'. Since
S(xo,1) ¢ B(zp,1), by Lemmal2.8 S(xo,r) N B(zo, 1), £(x,x"), and £(x,x") N B(z, 1)
are arcs. Let z; be the end point of £(x, x") N B(zy, t) with zy # z;. By Lemma[2.6] we
have ¢(zg,2,) = £(x,x’) N B(z, t). By Lemmal2.8 S(xy, ) N B(zy,t) is an arc. Since
zp and z; are the end points of £(zy, z;) with d(z,z,) = ¢, there exists the end point
z; of S(xo, ) N B(zy,t) such that diam £(z;,2,) = ¢, €(zp,21) N 4(z1,22) = {z1} and
U(z9,21)Ul(21,2,) = L(x,x")NB(zy,1). Thus, by induction, we can take z;, . . ., zp41 €
S(xo,7) and anarc (z;_, z;) in £(x, x") with the end points {z;_1, z; } such that z,,; =
x', Uzi—1,2z;) N U(zi,zi01) = {z} foreachi = 1,...,p, lzi_1,2) U l(z;,2i11) =
0(x,x")NB(z;,t), foreachi =1,...,p, l(x,x") = Uf’;l Uzi_1,z),diam l(zi_1,z;) =
tforanyi =1,...,pand diam{(z,,z,;) < t. Letk € Nand 0 = 0, 1,2 such that
p = 3k+4. Setm = kand y3,, = zpy,. If 6 = 0,set y; = z;foreachi = 1,...,3m—1.

If6 = 1,set y; = z; foreachi = 1,...,3m — 2 and y3,,—1 = zp—1. If 6 = 2, set
yi=zforeachi=1,...,3(m—1), y3;y—> = zp_3 and y3,,_; = z,_,. Similarly, we
have ¥3,41, - - -, Yan—1 € Clx(S(x0, 1) \ £(x,x")), which proves the lemma. [ |

3 Asymptotic Dimension of Proper CAT(0) Spaces that are
Homeomorphic to R?

First we show the following.

Lemma 3.1 Let (X, d) bea proper CAT(0) space that is homeomorphic to R, Then,
asdim(X, d) > 2.

Proof On the contrary, suppose that asdim(X,d) < 1. Let r > 0. There exist
uniformly bounded, 37-disjoint families U°, U' of subsets of X such that U° U U!
covers X. Since X is homeomorphic to R?, there exist uniformly bounded, r-disjoint
families V°, V! of subsets of X satisfying the following:

(i) V°U V! covers X;

(i) everyV € V° U V! isa compact topological 2-manifold with boundary.

Lete > O withe < r/2,let V € V' and let M and M’ be two components of V
with d(M,M') = d(M,V \ M) < e. Then there exists a disk A in X such that
MUAUM/’ is connected, V U A is a compact topological 2-manifold with boundary
and d(V U A, V') > r — ¢ whenever V' € V! with V # V’. Thus, we may assume
that

(iii) d(M,M') > ¢ for each V € V° U V! and each two components M, M’ of V.

Since V° U V! is uniformly bounded, there exists r < s = sup{diamC : C is a
component of V € V® UV'} < oco. Thus, we may assume that there exists a com-
ponent Cy of Vy € VO such that s — ¢ < diamC, < s. We have ¢y,c; € Cg such
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that d(co, ¢;) = diam Cy. By Lemma[2.2] there exists a geodesic line £: R — X such
that £(0) = ¢y and £(diam Cy) = ¢;. Since Cy N E(R) C £([0, diam Cy]), there ex-
ists the component N of 9C containing ¢y, ¢; that is contained in the closure of the
unbounded component of X \ C.

We note that N C |J{V; : V; € V'} is homeomorphic to S'. Since V' is
r-disjoint, there exists a component C, of V|, € V! such that N C C;. Then, there
exist fp, 11 € R with t) < 0 < diamCy < t; such that g(to),f(tl) eCn E(R) C
&([t0,11]). Using a similar argument as above, we can show there exist a component
N’ of OC; containing &£(¢y), £(t;) and V, € VP containing N'. If Vi = V), by (iii),
d(cy,&(t0)) > eand d(cy, &()) > e, ie, d(&(ty),£(8)) > diam Cy + 2 > s, which
contradicts the definition of s. If Vy # V,, d(Vy,V,) > r. Thus, d(cy, &(ty)) > 1
and d(c1,&(t)) > 1, ie, d(&(ty),£(t)) > diam Cy + 2r > s, which contradicts the
definition of s. [ ]

We prove the main theorem.

Theorem 3.2 Let (X, d) be a proper CAT(0) space that is homeomorphic to R%. Then,
asdim(X, d) = 2.

Proof By Lemma[3lit suffices to show that asdim(X, d) < 2.
Letr > 0. Fixxy € X and k € N with k > 6. By Lemma 2.9 there exist
V0,05 - -+ Y0,3n(0)—1 € S(x0, kr) such that

2r < diam £(yo i, y0,i+1) < 168, {¥0.0,- - -+ Yo3n0)—1} N (Y05 Yo,i+1) = {Vo.i, Yo,i+1}
foreachi =0,...,3n(0) — 1 and
S(xo, kr) = £(¥0.0, y0,1) U -+ - UL(Yo3n0)=1, Y0,3n(0))
where yo.3n0) = y0,0. See Figure[3.211. Set
Vo5 = {l(yo3i+s, Yo3i+14s) 11 =0,...,n(0) — 1}

foreachd = 0,1, 2.

Im &, , Im £o,i+1

S(xo, kr) o Dkl

Figure[3.211
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For everyi = 0,...,3n(0) — 1, there exists a geodesic ray & ;: R, — X such that
&0,i(0) = xp and foli(kr) = yo,i- Set yo’, = &,i((k+1)r) foreachi =0,...,3n(0) — 1.
We note that 2r < d(yo i, yo.iv1) < d(¥{;, )’6,;‘+1) < 18rforeachi =0,...,3n(0)—1.

Leti € {0,...,3n(0) — 1}.

Suppose that d(yg;, yg;41) < 12r. We can take yo;0 € £(yoi, yo.i+1) and yg; o €
U(y4i ¥§ie1) such that r < d(yo;, y0.i0) = d(¥oir1, ¥0i0) = d(oi, yoi1)/2 < 67
and {yoi0} = [X0, ¥, 0] NS(x0, kr). We note that r < d(yg;, ¥5,0), (Y0415 Yo,10) <
8r.

Suppose that 12r < d(y,;, ¥ ,41)- We note that 10r < d(yo ;, yo,i+1)- There exist
20,2001 € LYo, yoirt) and z ;0,201 € (¥ ¥iv1) such that d(yos,z050) =
d(yo,iv1,20i1) = rand {zg;;} = [Xo,Zé,,‘,j] N S(xp, kr) for j = 0,1. We note that
d(y0.::2050)>4(¥0,i415%01) < 3rand 6r < d(zg; 4,2, ). By Lemma[2Z9] there exist
}’671',17 ce Y(;,i,sko,,-q € é()’é,i,m y(;.i,3k0_,-) such that 2r < d(y(/),i,j’ )’6,1'7]41) < 4r and
Yoo ¥oi o) V000> Yoikes } = V0, Vo,jer } foreach j=0,... 3ky; — 1,
where yg ;0 = 20 and yg; 5. = 21 See Figure[3.2]2.

Im &, Im o,i+1

Ox+1

\
S(xo, kr) \

[x07 }’6,,"0] [x07 }’0.,'_3](%.]

X0
Figure[3212

SetY, = {yOU 0<i<3n0) —1landj=0,...,3ky;}and n(1) € N with
3n(1) — 1 = |Y1|. We can renumber Yy = {y,:i = 0 ..,3n(1) — 1} such that

{}// S S()C()7 (k+ 1)1’) 1y € UV(),] N UVO,Z} C le_o,
{yl S S(Xo, (k+ 1)1') 1y € U’Vo’o n UVO,2} C UV]?],
{r" € Sxo, (k+ D)y € UVoo NUVoa} € UV,
and £(y14, y1i+41) N Y1 = {y1i,y1in} foreach i = 0,...,3n(1) — 1, where we

let y13,1) = y10 and Vis = {(y13is, Y13i+146) © 8 = 0,...,n(1) — 1} for each
0 =0,1,2. We note that 2r < diamV < 16rforalld =0,1,2andallV € V, ;.

By induction, for every m € N with m > 2, there exists

Y =4{ymi:i=0,...,3n(m) — 1} C S(xo, (k+ m)r)

https://doi.org/10.4153/CMB-2010-069-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-069-1

636 N. Chinen and T. Hosaka

such that
{y" € SCxo, (k+m)r) 1 y € UVim—10 NU V123 € U Vi,
{y" € S(xo, (k+m)r) : y € UVi—10 NUVim—12} €U V1,
{y" € S(xo, (k+m)r): y € UVm—10NUVim-11} T U V2,

CYmis Ymiv1) N Ym = {Ymis Ymir1} for each i = 0,...,3n(m) — 1 and 2r <
diamV < 167 foralld = 0,1,2and all V € V,, 5, where we let

Vs = {l(Ymsivs, Ymsivies) 11 =0,...,n(m) — 1}

foreachd = 0,1, 2.
ForeachV € V,, s and each = 0, 1, 2, set

V = {x € B(xo, (k+m+ 1)r) \ Intx B(xo, (k+ m)r) : [x0,x] NV # &},

Vs ={V:V €V} and Wy = {W : W is a component of | J7_ V5 }-
By construction, we have the following:
(i) forV € V., diam VNS(xo, (k+m+1)r) < 12rifand only if VA Vi1 5 = 5
(i) let Vs (V) ={U € Vypy15: VNU # @} foreach V € V5, then U C V for
Ue varl(V);
(iii) we have V,,,;,(U) = & foreach V € V,, 5 and each U € V,,.1(V), because
diam U < 12r by construction.

For every 6 = 0, 1,2 and every W € W;, we have
diam W < sup{diamV :V € V,,,sform > 0and 0 = 0,1,2} + 4r
< 16r +4r = 20r.

Let V;,V; € V,, 5 with V; # V;. We show that d(V;,V;) > r. On the contrary,
suppose that d(x, y) < r for some x € V; and some y € V;. By Lemma [2.6] let
£(x, y) denote the arc in S(xo, (k + m)r) N B(x, d(x, y)) with the end points {x, y}.
By construction, we have i = 0,...,n(m) — 1 such that £(y,. i, ymis1) S £(x, ).
However, r < diam (i, Ym,i+1) < diam £(x, y) = d(x, y) < r, a contradiction.

Let V;,V; € Vs with V; # V;. We show that d(V;,V;) > r. Letx’ € V;
and y' € V. Set {x} = [xo,x'] N V;and {y} = [x,y'] N Vj. By the above,
r < d(V;,V;) < d(x,y). Let T be the geodesic triangle consisting of three points
xo,x', y',let T be a comparison triangle for T in R?, and let X;, X, 7, x’, and y’ denote
the corresponding points in T. Since X is a CAT(0) space, we have

r<d(x,y) < dp(%,7) < dpe(x’,y) =dx',y"),

thus, d(V;,V;) > r.

Let V; € Vs and Vj € V15 with ViNV; = @. Set W; = {[x0, x] N S(xo, (k +
m)) : x € V;}. By the definition of Vi’ similarly, we can show d(V;, W) > r.
Since X is a CAT(0) space, we can obtain that d(V;, Vj) > r by the same method. By
(1), (ii), and (iii), we have d(W,W’) > r for any W, W' € Ws with W # W,

Let Uy = {U : U is a component of B(xy, kr) U|J Wy} and Us = W; for § = 1, 2.
By the above, Uy UU; UU, is a uniformly bounded cover of (X, d) and d(U,U") > r
forany U, U’ € Us with U # U’, which proves the theorem. [ |
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4 Application
As an application of Theorem [3.2] we obtain the following corollary.

Corollary 4.1 Let (W,S) be a Coxeter system. If the boundary 03(W, S) of £(W, S)
is homeomorphic to S', then asdim W = 2.

Proof Let (W,S) be a Coxeter system whose boundary 93(W, S) is homeomorphic
to S'. Then the Coxeter group W is a virtual Poincaré duality group, and W =
Ws X Wy, for some S C S, where the nerve N(W5, S) is homeomorphic to S! and
Wgsis finite ([4], cf. [10]). Then the Davis complex (W, S) splits as

S(W, ) = S(Ws,$) x (W 5,5\ 9.

Here ¥(W5, S) is homeomorphic to R* and 3(W,, S \ S) is bounded. By Theo-
rem[3.2] we obtain that asdim X (W, S) = 2. Hence asdim W = 2. [ |

In general, it is known that every Coxeter group has finite asymptotic dimension

([6], cf. [8]).

Example 4.2 Let m € Nand let D,, C R? be a regular m-polygon with a metric
dyn = dge|p, and edges ey, ..., e, such that dilame; = 1 foreachi = 1,...,n. We
consider a noncompact cell 2-complex (3, d) with a triangulation T as follows:

(i) foreveryo € T\ TW there exist m(c) € N and a simplicial isometry f, from
(Dm(o)a dm(o’)) onto (|0‘7 d‘l(fl))

(i) [{oeT\TV:7 <o} =2foreachr € TW\ TO;

(iii) r(v) =Y {m —27/m(0) :v <o € T\ TV} > 27 foreachv € T;

(iv) foranyx,y € ¥

k
d(x,y) = min{} dm(a)(fg7l(xj—1), fo’?l(xj)) :
iz
x=x € |o],xj € loj|N|oj1]|(1 < j<k),y =xc € |on|}

By [3] or [11], every (X, d) above is a CAT(0) space that is homeomorphic to
IR?, hence we obtain that asdim(X,d) = 2 from Theorem 3.2l Here we note that
(X, d) need not have an action of some group, and (X, d) is neither a Euclidean nor
a hyperbolic plane in general.
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