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Bathymetry is an important factor affecting wave propagation in coastal environments
but is often challenging to measure in practice. We propose a method for inferring
coastal bathymetry from spatial variations in surface waves by combining a high-order
spectral method for wave simulation and an adjoint-based variational data assimilation
method. Recursion-formed adjoint equations are derived to obtain the sensitivity of the
wave surface elevation to the underlying bottom topography to any desired order of
nonlinear perturbation. We also develop a multiscale optimisation method to eliminate
spurious high-wavenumber fluctuations in the reconstructed bathymetry data caused by
sensitivity variations over the different length scales of surface waves. The proposed
bottom detection method is validated with a realistic coastal wave environment involving
complex two-dimensional bathymetry features, non-periodic incident waves and nonlinear
broadband multidirectional waves. In numerical experiments at both laboratory and field
scales, the bathymetry reconstructed from our method agrees well with the ground truth.
We also show that our method is robust against imperfect surface wave data in the presence
of limited sampling frequency and noise.

Key words: surface gravity waves, computational methods

1. Introduction

Information about bathymetry, or the topography of the seafloor, is critical for a wide
range of applications, such as the safety of navigation, accuracy of ocean wave models,
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habitat mapping and hydrographic charting (Matsuyama, Walsh & Yeh 1999; Wilson
et al. 2007; Holman & Haller 2013; Wölfl et al. 2019; Monteiro et al. 2021). To obtain
bathymetric data, there are several direct measurement techniques using acoustic devices,
satellite-derived bathymetry (SDB) and bathymetric light detection and ranging (LiDAR).
Acoustic devices such as echo-sounders emit and receive acoustic signals, and the depths
of the seafloor are estimated by measuring the two-way travel time of a sound wave
transmitted to and back from the seafloor (De Moustier 1986). In another seafloor mapping
technique, SDB, satellite platforms obtain multispectral satellite imagery covering the
visible to infrared portions of the spectrum. The attenuation of the electromagnetic signal
in the water column as a function of the wavelength is used to calculate the water depth
(Cahalane et al. 2019). The use of SDB is limited by environmental conditions such
as cloud cover and water turbidity. Bathymetric LiDAR, a technology that sends laser
pulses from an airborne platform and records their return, is another method for mapping
bathymetry data. The time difference between the reflection from the water surface and
that from the seafloor is used to calculate the water depth (Irish & White 1998). However,
such optical solutions can be obtained only in shallow waters with good water clarity.

In contrast to the direct measurement techniques reviewed above, which are expensive
and limited by environmental conditions, there have been studies to invert bathymetry
by combining surface wave information, which can be measured using modern wave
gauging and mapping techniques, with wave dynamics. In early years, the methods
to invert bathymetry from surface waves were based on the dependence of the linear
dispersion relation of surface waves on the depth (e.g. Lubard et al. 1980; Grilli 1998;
Trizna 2001; Piotrowski & Dugan 2002). In addition to the methods solely relying on
the dispersion relation, Nicholls & Taber (2009) derived explicit formulae to obtain
bathymetry data from the free-surface data using a Dirichlet to Neumann operator.
However, their method is only focused on standing waves, which are uncommon in oceans.
Vasan & Deconinck (2013) presented a method based on the Euler equations that can be
applied to transient free-surface data. However, the computational cost, which is related to
the number of Fourier modes, is non-trivial for recovering two-dimensional bathymetry.
Vasan et al. (2021) introduced an algorithm for estimating the ocean bottom using
shallow-water wave equations by assuming a relatively inaccurate initial bottom guess.
Khan & Kevlahan (2021) proposed a method based on variational data assimilation for a
one-dimensional shallow water equation by assuming that the wavelength is much larger
than the water depth. These wave physics-based methodologies mainly focus on relatively
simple conditions where the bathymetry exhibits one-dimensional variation, the surface
waves are assumed to be periodic and narrow-banded, and the effect of measurement noise
is neglected.

Nearshore surface wave modelling has been studied extensively in the past several
decades. The methods can be divided into two main categories. The first category of
methods is based on the long-wave approximation, such as the Boussinesq or shallow water
equations, by assuming that the wavelength is much larger than the water depth (Peregrine
1966; Grimshaw 1970; Wei et al. 1995; Madsen, Bingham & Liu 2002; Feddersen 2014).
The second category of methods relies on computing power advancement to enable
solution of the full Euler equations, including methods that solve nonlinear potential
flow-based equations with a free surface using the boundary integral method (Clamond
& Grue 2001; Grilli, Guyenne & Dias 2001; Wilkening & Vasan 2015) and methods that
utilise spectral methods based on nonlinear perturbation expansions to perform nonlinear
wave simulations for infinite or constant depth (Dommermuth & Yue 1987; West et al.
1987; Craig & Sulem 1993; Nicholls 1998) and extensions to variable bottoms (Liu &
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Yue 1998; Smith 1998; Guyenne & Nicholls 2008). These methods have a wide range of
applications, such as nonlinear wave shoaling, Bragg scattering and tsunami generation
(Liu & Yue 1998; Guyenne & Nicholls 2008; Alam, Liu & Yue 2009a,b; Gouin, Ducrozet
& Ferrant 2016; Hao & Shen 2022).

As a powerful tool, adjoint-based data assimilation methods aim to find the optimal
control variables that minimise a predefined cost function used to quantify the
difference between measurement data and model prediction. Gradient-based optimisation
approaches are often employed to solve constrained optimisation problems in data
assimilation. Compared with stochastic methods (Cavazzuti 2012), gradient-based
optimisation techniques require fewer iterations to reach convergence, resulting in
a lower computational cost for complex systems. For instance, the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method (Byrd et al. 1995; Zhu et al.
1997) has been widely used because the memory requirement is affordable even when
the dimension of the Hessian matrix is high, e.g. O(109). The gradients of the cost
function with respect to the control parameters are used to identify the search direction for
minimising the cost function. In a complex system with high degrees of freedom, however,
calculating the gradients directly is computationally expensive. To solve this problem, the
adjoint method is employed with the key benefit that the computational cost of gradient
calculation is independent of the degrees of freedom of the control variables (Gronskis,
Heitz & Mémin 2013; Foures et al. 2014; Wu, Hao & Shen 2022).

In this study, we propose a bathymetry reconstruction method that can be applied to
realistic coastal environments involving complex two-dimensional bathymetry features,
non-periodic incident waves and nonlinear broadband multidirectional waves. We also
address issues related to the surface wave data quality, including limited sampling
frequency and noise. Our method combines the high-order spectral (HOS) method for
finite-depth waves developed by Liu & Yue (1998) to capture the nonlinear wave evolution
over complex bathymetry and the adjoint-based data assimilation method that is widely
used in fields such as meteorology, oceanography, fluid dynamics and climate modelling
(Errico 1997; Moore et al. 2004; Foures et al. 2014; Xu & Wei 2016). Note that Khan
& Kevlahan (2021, 2022) adopted the variational data assimilation approach using the
shallow-water wave equation to reconstruct bathymetry from a limited subset of surface
elevation measurements. Their work primarily focused on bathymetry detection from
sparse measurements of surface elevation. In contrast, our work focuses on precise
bathymetry detection from dense surface measurements, such as from marine radars
in realistic coastal environments. Additionally, deriving an adjoint model for the HOS
model for arbitrarily high perturbation orders is a non-trivial task. Previous studies on the
adjoint method for the HOS model have been limited to the third perturbation order and
relied on expanding the water wave equations to the specific perturbation order and then
deriving adjoint terms accordingly (Aragh & Nwogu 2008; Wu et al. 2022). However,
the number of terms in the wave equations increases rapidly with the perturbation order,
making it infeasible for higher perturbation orders. Nonetheless, high perturbation orders
are necessary for accurately capturing bottom–wave interaction using the HOS method.
Our recursive adjoint model overcomes the limitations of previous work and enables the
use of adjoint-based HOS methods effectively for the task of bathymetry reconstruction.

The remainder of this paper is organised as follows. The proposed bathymetry inversion
algorithm is first introduced in § 2. Test cases for laboratory-scale and field-scale
bathymetry reconstruction under monochromatic and broadband waves are then presented
in § 3. The effects of the measurement sampling frequency and measurement noise are
studied in § 4. The effects of small bottom variations and limited measurements are
discussed in § 5. Finally, discussion and conclusions are provided in § 6.
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2. Bathymetry inversion method using adjoint-based data assimilation

2.1. Nonlinear wave simulation over variable bathymetry
We employ the HOS method (Dommermuth & Yue 1987; West et al. 1987; Liu & Yue
1998; Alam et al. 2009a,b) to simulate nonlinear wave propagation over bathymetry
by assuming that the flow is inviscid, irrotational and incompressible. Thus, the flow
velocity can be expressed using the velocity potential function Φ(x, y, z, t) which satisfies
the Laplace equation inside the fluid domain and the boundary conditions at the free
surface z = η(x, y, t) and bottom z = −h + β(x, y), where h is a constant reference depth
and β(x, y) denotes the bottom spatial variation. The governing equations and boundary
conditions are

∇2Φ + Φzz = 0 for − h + β(x, y) < z < η(x, y, t), (2.1)

Φz − ∇β · ∇Φ = 0 on z = −h + β(x, y), (2.2)

ηt + ∇η · ∇Φ − Φz = 0 on z = η(x, y, t), (2.3)

Φt + gη + 1
2(∇Φ · ∇Φ + Φ2

z ) = 0 on z = η(x, y, t), (2.4)

where x and y denote the horizontal coordinates, z denotes the vertical coordinate, ∇ =
(∂/∂x, ∂/∂y) is the gradient operator in the horizontal directions, the subscripts in Φz
and Φzz denote the first-order and second-order partial derivatives in the z-coordinate,
respectively, and g represents gravitational acceleration.

As pointed out in Liu & Yue (1998), assuming both bottom and free-surface slopes are
measured by the same small quantity ε � 1, we can write the velocity potential, surface
elevation and bottom profile in perturbation series as

Φ =
M∑

m=1

Φ(m), η =
M∑

m=1

η(m), β =
M∑

m=1

β(m). (2.5a–c)

In the equation above, ()(m) is a quantity of magnitude O(εm); Φ(m) satisfies the Laplace
equation within the fluid; M is the nonlinear perturbation order. Through the Taylor
expansion, we can obtain the vertical velocity at the free surface expressed by the
surface velocity potential Φs(x, y, t) ≡ Φ(x, y, z = η, t) and surface elevation η(x, y, t) as
(Dommermuth & Yue 1987; West et al. 1987; Liu & Yue 1998; Alam et al. 2009a,b)

Φ(1)(x, 0, t) = Φs, (2.6)

Φ(m)(x, 0, t) = −
m−1∑
l=1

ηl

l!
∂ l

∂zl Φ
(m−l)(x, 0, t), m = 2, 3, . . . , M, (2.7)

Φ(1)
z (x, −h, t) = 0, (2.8)

Φ(m)
z (x, −h, t) =

m−1∑
l=1

∇ ·
(

β l

l!
∂ l−1

∂zl−1 ∇Φ(m−l)(x, −h, t)
)

, m = 2, 3, . . . , M. (2.9)

By employing the HOS method, one can use only the free-surface elevation η and
surface velocity potential Φs to evolve the wave field. The time evolution of η and Φs

can be written as (Dommermuth & Yue 1987; West et al. 1987; Liu & Yue 1998; Alam
et al. 2009a,b)

ηt + ∇Φs · ∇η = (1 + ∇η · ∇η)W, (2.10)
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Φs
t + 1

2∇Φs · ∇Φs + gη = 1
2 (1 + ∇η · ∇η)W2, (2.11)

W =
M∑

m=1

M−m∑
l=0

ηl

l!
∂ l+1

∂zl+1 Φ(m)(x, 0, t), (2.12)

where W = ∂Φ/∂z is the vertical velocity at the free surface. Periodic boundary conditions
are imposed in the horizontal directions. The spatial derivatives are calculated in the
spectral space using fast Fourier transform. For time advancement, the fourth-order
Runge–Kutta method is employed. More details on the numerical schemes and their
validations can be found in Liu & Yue (1998), Mei, Stiassnie & Yue (2005) and Hao
& Shen (2022) and discussions about the efficiency and stability of HOS methods based
upon boundary perturbations can be found in Nicholls & Reitich (2005, 2006).

2.2. Recursive adjoint equations and gradients
As shown in Appendix A, we have derived the recursive adjoint equations for the HOS
method with arbitrary nonlinear perturbation order M. We define three linear operators,
namely, L, G and H, as

L[ f ] = F−1|k| tanh[|k|h]F [ f ]], (2.13)

G[ f ] = F−1
[ F [ f ]

cosh[|k|h]

]
, (2.14)

H[ f ] =

⎧⎪⎨
⎪⎩

F−1
[− tanh[|k|h]

|k| F [ f ]
]

|k| > 0

F−1[−hF [ f ]] |k| = 0
, (2.15)

where F and F−1 denote the Fourier and inverse Fourier transforms, respectively, and
|k| is the wavenumber magnitude. Note that all the operators L, G and H are self-adjoint
operators. With the aid of the defined operators, the vertical derivatives ∂ lΦ(m)/∂zl are
written as

∂ lΦ(m)

∂zl (x, 0, t) = a(l)[Φ(m)(x, 0, t)] + b(l)[Φ(m)
z (x, −h, t)], (2.16)

∂ lΦ(m)

∂zl (x, −h, t) = c(l)[Φ(m)(x, 0, t)] + d(l)[Φ(m)
z (x, −h, t)], (2.17)

where the operators a(l), b(l), c(l) and d(l) are

a(l) =
{

(−1)(l−1)/2∇ l−1L, if l is odd,

(−1)l/2∇ l, if l is even,
(2.18)

b(l) =
{

(−1)(l−1)/2∇ l−1G, if l is odd,

0, if l is even,
(2.19)

c(l) =
{

0, if l is odd,

(−1)l/2∇ lG, if l is even,
(2.20)
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d(l) =
{

(−1)(l−1)/2∇ l−1, if l is odd,

(−1)l/2∇ lH, if l is even.
(2.21)

As shown in the derivations in Appendix A and the supplementary material available
at https://doi.org/10.1017/jfm.2023.712, the adjoint equations of the HOS method with
variable bathymetry for arbitrary nonlinear perturbation order M are

λ1,t = −∇ · (λ1∇Φs) + 2∇ · (λ1W∇η) + gλ2 + ∇ · (λ2W2∇η)

+
[ M∑

m=1

M−m∑
l=1

ηl−1

(l − 1)!
∂ l

∂zl Φ
(m)(x, 0, t)

]
γ

−
M∑

m=2

[m−1∑
l=1

ηl−1

(l − 1)!
∂ l

∂zl Φ
(m−l)(x, 0, t)

]
α

(m)
1 , (2.22)

λ2,t = −∇ · (λ2∇Φs) − ∇ · (λ1∇η) + α
(1)
1 , (2.23)

where λ1 and λ2 are adjoint variables, corresponding to η and Φs, respectively, and γ ,
α

(m)
1 and α

(m)
2 are adjoint variables corresponding to W, Φ(m)(x, 0, t) and Φ

(m)
z (x, −h, t)

as
γ = −λ1(1 + ∇η · ∇η) − λ2W(1 + ∇η · ∇η), (2.24)

α
(m)
1 =

M−m∑
l=0

a(l+1)

[
ηl

l!
γ

]
+

M−m∑
l=1

a(l)
[
−ηl

l!
α

(l+m)
1

]

+
M−m∑
l=1

c(l−1)

[
∇ · β l

l!
∇α

(l+m)
2

]
, m = M, M − 1, . . . , 1, (2.25)

α
(m)
2 =

M−m∑
l=0

b(l+1)

[
ηl

l!
γ

]
+

M−m∑
l=1

b(l)
[
−ηl

l!
α

(l+m)
1

]

+
M−m∑
l=1

d(l−1)

[
∇ · β l

l!
∇α

(l+m)
2

]
, m = M, M − 1, . . . , 1. (2.26)

The adjoint equations, (2.25) and (2.26), share the same recursion relation as the wave
model (2.6)–(2.8). However, contrary to the wave model (which progresses forwards), the
recursion relation for the adjoint equations is from the highest to the lowest nonlinear
perturbation orders. While the numerical method for time advancing the adjoint equations
uses the same fourth-order Runge–Kutta scheme as that for the wave model, the adjoint
equations are integrated backwards in time.

In this study, we define the cost function based on the widely used L2 norm error,

J = 1
2

NX∑
i=1

NY∑
j=1

NT∑
k=1

(η(i, j, k) − ηM(i, j, k))2, (2.27)

where ηM denotes the measured surface elevation, NX and NY denote the grid numbers
of the measurement in the x and y coordinates, respectively, and NT denotes the number

972 A41-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.712
https://doi.org/10.1017/jfm.2023.733


Adjoint-based method for coastal bathymetry reconstruction

Wave

absorption 

Wave

generation 

Wave

absorption 

Bathymetric

region

y

x
Figure 1. Schematic of lateral boundary condition treatment for the case of a shoal on a sloping beach.

of available time instants of the measurement. The simulated surface elevation η(x, y)
and thus the cost function J are functions of the bathymetry data β(x, y), bounded by
the wave model. At each observation time instant, the difference between the predicted
surface elevation obtained from the wave model and the measured data, i.e. (η − ηM),
is added to the adjoint variable λ1 at the corresponding measurement locations as λ1 =
λ1 + (η − ηM). As shown in the derivations in Appendix A, the sensitivity of the cost
function J with respect to the bottom bathymetry variable β is

∂J
∂β

= −
NT∑

n=1

M∑
m=2

m−1∑
l=1

[
β l−1

(l − 1)!
∇α

(m)
2

]
·
[
∇ ∂ l−1

∂zl−1 Φ(m−l)(x, −h, tn)
]

. (2.28)

2.3. Lateral boundary conditions
The bathymetry distributions and surface waves generally do not satisfy the periodic
boundary conditions in real applications. However, the HOS method is designed to
simulate waves with periodic conditions in space. We adopt a numerical treatment from
Guyenne & Nicholls (2008) to accommodate the inflow condition to simulate the evolution
of spatially non-periodic waves over the bathymetry features. In addition, we develop
the corresponding treatment in the adjoint model. As shown in figure 1, we add a wave
absorption and generation zone at the inlet and add a wave absorption zone at the outlet.
In the forward wave simulation, the free-surface elevation and surface velocity potential
are updated for each computational step as(

η

Φ

)
= cr(xr)

(
η

Φ

)
+ [1 − cr(xr)]

(
η̃

Φ̃

)
, (2.29)

cr(xr) = 1
2

+ 1
2

tanh
(

2π

(
xr

L
− 1

2

))
. (2.30)

Here, L is the length of the wave generation zone and wave absorption zone, xr is the
relative distance from the boundary of the wave generation zone or wave absorption
zone in the x-direction, and cr is a relaxation coefficient ranging from 0 to 1 in the
absorption and generation zones and equal to 1 in the bathymetry variation region. In
the wave generation zone, (η̃, Φ̃) are the inlet wave fields. In the wave absorption zone,
(η̃, Φ̃) are set to 0. Therefore, the wave state (η, Φ) diminishes at the two ends of the
computational domain to satisfy the periodic boundary conditions in the x direction, while
the waves satisfy the inlet boundary conditions when entering the bathymetry region. In
the y direction, we add a mirrored computational region to accommodate the periodic
boundary conditions.
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In the adjoint model, we apply the adjoint lateral boundary conditions as(
λ1
λ2

)
= cr(xr)

(
λ1
λ2

)
. (2.31)

Therefore, (λ1, λ2) is zero at the two ends of the computational domain to satisfy the
periodic boundary conditions in the x direction. In the y direction, owing to the mirrored
region, the adjoint boundary conditions are also periodic.

2.4. Sufficient measured information
Sections 2.2 and 2.3 introduce the adjoint system developed in this study for finding
the optimal bathymetry β(x, y) to minimise the cost function J. However, a remaining
important question is what measured information should be used to detect β. Fontelos
et al. (2017) theoretically proved the sufficiency of the free-surface elevation η, its first time
derivative ηt, and the surface velocity potential Φs at a single time to uniquely determine
the underlying bathymetry based on the potential flow theory. Vasan & Deconinck
(2013) showed high reconstruction accuracy for one-dimensional bathymetry by using
the information of surface elevation η and its two time derivatives, i.e. ηt and ηtt, at a
single time instant. However, the time derivatives are challenging to measure and can
be easily contaminated by measurement noise in applications. Therefore, in our tests
below, for the test cases that assume measurement without noise, we utilise the surface
elevation and velocity potential at a single time instant and the surface elevation at
the next available measured time instant as the measured information; for test cases of
measurement with noise, we utilise more time instants of observed surface elevation.
Our setting differs from the one-dimensional setting by Vasan & Deconinck (2013) in
that we consider measurements that may be contaminated by noise and use surface
elevation information from only two consecutive time instants for perfect measurements.
In contrast to the five-point finite-difference stencil used by Vasan & Deconinck (2013),
our time derivative calculation relies on less available information, a larger time interval,
and potential measurement inaccuracies, leading to larger numerical errors. As a result,
the error introduced by the time derivative calculation cannot be neglected in our case.
In applications, the surface elevation and velocity potential can be obtained from the
measured radial velocities using marine radar (Nwogu & Lyzenga 2010; Lyzenga et al.
2015).

2.5. Multiscale optimisation
With the gradient information calculated from the adjoint model in (2.28), the L-BFGS
method (Byrd et al. 1995; Zhu et al. 1997) is then used to optimise the control parameters
β(x, y) to reduce the cost function J in (2.27). However, we find that the algorithm tends to
overestimate the reconstructed bathymetry in the high-wavenumber region, as shown in the
supplementary material. To solve this problem, we propose a treatment called multiscale
optimisation. The main point of multiscale optimisation is to imitate the human sketching
strategy to capture the large-scale structure of bathymetry first and then gradually refine
the details. The following results show that our proposed multiscale treatment significantly
improves the bathymetry reconstruction performance. The key step of the multiscale
optimisation is an adaptive low-pass filter

βLP = F−1[γk(θf )F [β]], (2.32)
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Gradient Gradient 

Update filter
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∂β

∂J
∂βLP

∂J

Figure 2. Bathymetry reconstruction algorithm based on the HOS method (brown), its adjoint model (green)
and the multiscale optimisation (blue).

γk(θf ) =
{

1 if |k|/kmax ≤ θf ,

0 if |k|/kmax > θf ,
(2.33)

where kmax is the largest wavenumber available for the computational set-up, θf is
the adjustable cutoff threshold ranging from 0 to 1, and βLP is the low-pass-filtered
bathymetry. As shown in figure 2, the corresponding gradient for this treatment is

∂J
∂β

= F−1
[
γk(θf )F

[
∂J

∂βLP

]]
, (2.34)

where the intermediate gradient ∂J/∂βLP is calculated using (2.28) and the final gradient
∂J/∂β is updated based on (2.34). In the first several optimisation iterations, θf is set to
small values to capture the large-scale structures of β. In later iterations, we gradually
increase θf to 1 to capture the fine details of β. We define θf at the nth iteration as

θf = min{n/1000 + 0.02, 1}, n = 1, 2, 3 . . . . (2.35)

We remark that the adjustable threshold θf is not necessarily 1 when the optimisation
process completes if the change in the cost function in two consecutive iterations is less
than a threshold or the number of optimisation iterations reaches a predefined large value.
The other potential alternative method to improve the performance of the reconstructed
bathymetry is to add the regularisation term to penalise high wavenumber components in
the cost function (e.g. Bewley, Moin & Temam 2001). However, the hyperparameters in
the method are not trivial to tune to obtain the optimal results.

2.6. Bathymetry inversion algorithm
The bathymetry reconstruction problem is widely recognised to be ill-posed, primarily
due to the presence of non-unique bottom solutions. In this context, we have endeavoured
to alleviate these challenges through the careful design of surface observations in § 2.4,
which aims at providing sufficient information to invert the bottom profile. Moreover, in
§ 2.5, we propose a multiscale optimisation scheme that is capable of effectively removing
non-physical high-wavenumber bottom components, further improving the quality of the
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Case Fetch U10 λp Tp h (Lx, Ly) (NX, NY) 
ts 
tM
(km) (m s−1) (m) (s) (m) (m) (s) (s)

Shoal-Mono — — 1.56 1.0 0.45 (45.4, 40) (1024, 640) 0.02 0.1
Shoal-Broad 4.12 1.0 1.56 1.0 0.45 (45.4, 40) (1024, 640) 0.02 0.1
Irreg-Broad 20.3 3.3 10.0 2.5 4 (270, 346) (512, 640) 0.125 0.125

Table 1. Parameters of case set-up. Here, ‘Shoal’ and ‘Irreg’ represent shoal and irregular bathymetry,
respectively; ‘Mono’ and ‘Broad’ represent monochromatic wave and broadband waves, respectively. The
following variables are defined: surface wavelength, λp; wave period, Tp; simulation domain length, Lx and Ly;
number of simulation grid points, NX and NY ; simulation time interval, 
ts; measurement time interval, 
tM .

bottom reconstruction. The key steps to reconstruct and predict the wave field from the
measurement are sketched in figure 2 and summarised below.

(i) Step 1. An initial guess for β is given, and the low-pass-filtered βLP is calculated
using (2.32) for starting the wave simulation.

(ii) Step 2. The HOS method is used for the forward simulation of the wave field from
the initial time t0 to the final time tf .

(iii) Step 3. If the change in the cost function in two consecutive iterations is smaller
than a threshold or the number of optimisation iterations reaches a predefined large
value, the process ends, and βLP is considered the optimal solution. Otherwise, we
continue with Step 4.

(iv) Step 4. The adjoint model is integrated from the final time tf to the initial time t0 to
calculate the intermediate gradient ∂J/∂βLP using (2.28).

(v) Step 5. The final gradient ∂J/∂β is calculated based on the intermediate gradient
∂J/∂βLP using (2.34).

(vi) Step 6. The cost function J is calculated using (2.27). The gradient information and
the cost function are fed into the multiscale optimisation method to optimise the
bathymetry β to reduce the cost function J.

(vii) Step 7. We return to Step 2. A new optimisation iteration starts with the new
bathymetry βLP calculated from the modified bathymetry β and the updated filter
size θf .

3. Performance of bathymetry inversion

In this section, we evaluate the performance of our algorithm for two bathymetry feature
types, shoal and irregular bathymetry, using monochromatic waves or broadband waves as
the incident waves, as shown in table 1.

3.1. Reconstruction with monochromatic waves
We first apply our bathymetry inversion algorithm to a canonical case of the diffraction
of a monochromatic wave over an elliptic shoal. We follow the design in a laboratory
experiment by Berkhoff, Booy & Radder (1982), which has been a benchmark test case
widely used for validating numerical models for nonlinear wave and bottom interactions
(e.g. Smith 1998; Ricchiuto & Filippini 2014; Marche 2020). The bathymetry features are
characterised by a sloping plane, which has an oblique angle of 20◦ with respect to the
y-axis, surrounded by an ellipsoidal shoal (figure 3a). We introduce a coordinate system
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Figure 3. Monochromatic wave propagation over a shoal. (a) Shoal bathymetry −h + β(x, y); (b) surface
elevation η(x, y) at t = 36 s.

(x′, y′) that is rotated by 20◦ from the (x, y) coordinate of the simulation

x′ = x cos 20◦ − y sin 20◦, y′ = x sin 20◦ + y cos 20◦. (3.1a,b)

With the reference water depth h = 0.45 m, the bathymetry spatial variation is defined by
β = zb + zs, where

zb(x′, y′) =
{

0.02(x′ + 5.84) if x′ > −5.84,

0 otherwise,
(3.2)

zs(x′, y′) =

⎧⎪⎨
⎪⎩−0.3 + 0.5

√
1 −

(
x′

3.75

)2

−
(

y′

5

)2

if
(

x′

4

)2

+
(

y′

3

)2

< 1,

0 otherwise.

(3.3)

All lengths here are in metres. The incident waves have a period of 1 s and a wave height of
0.0464 m in the deep-water region. Figure 3(b) shows the surface elevation manifestation
induced by the bottom.

For the simulation, the bathymetry geometry β described in (3.1)–(3.3) is embedded for
x ∈ [−12.4, 15] m and y ∈ [−10, 10] m in the computational domain of 45.4 m × 40 m,
as shown in table 1. A mirrored bathymetry with respect to y = 10 m is given for y ∈
[10, 30] m. The bathymetry is extended to a flat region for x ∈ [−24.4, −12.4] m and a
sloping beach with a depth from 0.35 to 0 m for x ∈ [15, 21] m, similar to what was used in
Smith (1998). As described in § 2.3, two wave absorption zones at x ∈ [−24.4, −18.4] m
and x ∈ [15, 21] m are placed near the inlet and outlet boundaries of the computational
domain, respectively, and a wave generation zone at x ∈ [−18.4, −12.4] m is included
near the left-hand inlet boundary.

We first examine the performance of the HOS method for the forward wave simulation.
As shown in figure 4, we compare the HOS simulation using nonlinear perturbation
orders M = 3 and M = 5 with the measured wave height at eight transects in Berkhoff
et al. (1982). The wave height is defined as the difference between the maximum and
minimum surface elevations. Figure 4 shows that the simulation using the high nonlinear
perturbation order (M = 5) agrees well with the measurement by Berkhoff et al. (1982),
while the results from the low nonlinear perturbation order (M = 3) exhibit deviations
from the measurement. This result is consistent with the previous observation that it is
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Figure 4. Comparison of our HOS simulations using M = 5 or M = 3 with the measurement in Berkhoff et al.
(1982). The wave height is normalised by that of the incident wave, 0.0464 m. The locations of the transects are
(a) x = 1 m; (b) x = 3 m; (c) x = 5 m; (d) x = 7 m; (e) x = 9 m; ( f ) y = −2 m; (g) y = 0 m; (h) y = −2 m.

necessary to have a high nonlinear perturbation order (M > 3) to accurately simulate wave
evolution over complex bathymetry features for nonlinear perturbation-based methods
(Guyenne & Nicholls 2008; Gouin et al. 2016), which indicates the importance of the
high-order terms in the wave–bottom interaction simulations and thus the necessity to
incorporate these terms into the inversion algorithms. Our proposed reconstruction method
has the capability of accommodating a high nonlinear perturbation order. Our tests with
other nonlinear perturbation orders M = 4, 5, 6 show that M = 5 is adequate (results not
shown here for space consideration). In the following sections, we use M = 5 for both the
HOS method and the adjoint equations.

For the bathymetry reconstruction, we choose the measurement sampling frequency
as 10 Hz with 
tM = 0.1 s in table 1, which is in the range of the ocean wave radar
measurement sampling frequency (Ewans, Feld & Jonathan 2014). As discussed in § 2.4,
we use wave states η|t0 , Φ|t0 and η|t0+
tM to detect the bathymetry, where t0 can be
an arbitrary time instant. For the presentation of the results, we set t0 = 36 s, where
t = 0 corresponds to the time instant at which our simulation begins. We have tested the
algorithm performance using different choices of t0, and the results obtained are similar.
To provide an overview of the gradient of the cost function with respect to the bathymetry,
figure 5(a) presents ∂J/∂β at the initial guess β = 0 calculated by (2.28). In addition
to the bathymetric characteristics, such as the elliptical shape near (0, 0) and the tilted
sloping plane, the gradients also share similar surface wave characteristics, such as the
sinusoidal shape and the surface distortion pattern. The surface wave-induced sensitivity
introduces high-wavenumber components at the surface wavelength scales, which do not
exist in the true bathymetry. Similar observations of the high-wavenumber oscillation are
also obtained in the reconstructed bathymetry as shown in the supplementary material,
unless our proposed multiscale optimisation treatment is employed (§ 2.5).

To verify the calculation of adjoint gradients, we compare them with the gradients
calculated directly using the finite difference method. The latter is treated as the benchmark
solution of the gradients and is obtained using a finite difference scheme, in which the
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Figure 5. (a) Gradient of the cost function with respect to the bathymetry at the initial guess β = 0;
(b) comparison between the adjoint gradient by the adjoint model in (2.28) and the benchmark gradient
calculated using the finite difference method in (3.4) on 86 grid points along the horizontal line y = 0 m. The
gradient is normalised by the standard deviation of the surface elevation at the initial time instant ση = 0.014 m
and h = 0.45 m.

gradient of the cost function with respect to β at any point (i, j) is calculated as

∂J
∂β(i, j)

∣∣∣∣
Benchmark

= Jβ+δ − Jβ

δ
, (3.4)

where Jβ is calculated by (2.27) with β and where Jβ+δ is calculated by adding a
small perturbation δ to β(i, j). We set the magnitude of δ to be 1.0 × 10−4 m, which
is sufficiently small to reduce the error caused by the finite difference approximation.
Figure 5(b) shows a comparison of the gradients at 86 grid points along the line y = 0 m
near the bump at the initial guess of β = 0. There is good agreement between the adjoint
gradients calculated using (2.28) and the gradients calculated by the finite difference
method using (3.4). We have also compared the gradients at other locations and have
found good agreement.

To illustrate the bathymetry reconstruction performance, we present in figure 6 the
result after the cost function has converged after 400 optimisation iterations. A reference
depth h is required by the HOS method for water wave time evolution, and, as a result,
our algorithm requires an estimate of h beforehand. Similarly, Nicholls & Taber (2009)
also required an estimate of h in the Dirichlet–Neumann operator for their reconstruction
algorithm, while Vasan & Deconinck (2013) only needed a reference depth above the
bathymetry and solved the initial value problem for Laplace’s equation in the vertical
direction to find the bottom location. Our bottom reconstruction algorithm does not
necessarily require an accurate a priori estimate of h and the discrepancy in h can be
rectified by adjusting the bottom profile β as long as the HOS method converges. In
future work with the increase in computer power, more simulations with varying initial
estimates of h can be conducted to quantitatively and systematically evaluate the validity
range and impact of this parameter on bottom reconstruction performance. Figure 6(a)
shows the reconstructed bathymetry, which agrees with the ground truth well as shown
in figure 3(a). For quantitative comparison, figure 6(b,c) shows good agreement between
the reconstructed bathymetry elevation and ground truth along lines x = 0 m and y = 0 m,
respectively.
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Figure 6. (a) Reconstructed bathymetry after 400 optimisation iterations; (b) comparison of reconstructed
bathymetry and ground truth along the line x = 0 m; (c) same as (b) but for the line along y = 0 m.
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Figure 7. Variations of cost function and detection error with the number of optimisation iterations with
multiscale optimisation method for case Shoal-Mono.

To quantitatively assess the reconstruction performance, we define a relative error based
on the L2 norm as

εβ = ‖βd − β‖2

‖β‖2
, (3.5)

where βd denotes the reconstructed bathymetry and β is the ground truth. Because we
use an initial guess of βd = 0 at the beginning of the optimisation, the initial value of the
relative reconstruction error εβ is one. Figure 7 shows the decrease in the cost function
and detection error with iterations, resulting in less than 1 % of their original values at
the end of optimisation. The results confirm the effectiveness of the proposed multiscale
optimisation method, which leads to a 99.6 % reduction in detection error and a 99.75 %
reduction in the cost function compared with the results without using the multiscale
method as shown in the supplementary material.
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3.2. Reconstruction with broadband waves
In this section, we consider a more general problem in the coastal environment for
the reconstruction of bathymetry with multidirectional broadband waves. The incident
wave field is constructed from the directional Joint North Sea Wave Project (JONSWAP)
spectrum (Hasselmann et al. 1973)

S(ω, θ) = αg2

ω5 exp

[
−5

4

(
ω

ωp

)−4
]

γ exp[−(ω−ωp)
2/(2σ 2ω2

p)]D(θ), (3.6)

where α is the Phillips parameter, ω is the wave frequency, ωp is the peak wave frequency,
λp is the peak wavelength, Tp is the peak wave period, γ = 3.3 is the peak-enhancement
parameter, σ = 0.07 for ω ≤ ωp, σ = 0.09 for ω > ωp, and D(θ) = 2 cos2(θ)/π with θ ∈
[−π/2, π/2] is the angular spreading function. The parameter α and wave frequency ωp
are calculated as

α = 0.076

(
U2

10
Fg

)0.22

, ωp = 22
(

g2

U10F

)1/3

, (3.7a,b)

where g corresponds to gravity acceleration with a value of 9.8 m s−2, U10 is the wind
speed 10 m above the mean water surface, and F is the fetch. As shown in table 1, we
choose U10 of 1 m s−1 and F of 4.12 km such that the peak wavelength and the peak
wave period are the same for those in the monochromatic wave case with λp = 1.56 m
and Tp = 1 s. We first perform an auxiliary simulation where the initial wave field evolves
for a sufficiently long time over a constant water depth h = 0.45 m (kph = 1.81) and then
input the simulated broadband waves as the incident waves in the wave generation zone
of x ∈ [−18.4, −12.4] m. Compared with the long waves, the short waves barely interact
with the bathymetry and can be seen as a type of noise in bathymetry reconstruction. In
this study, the short waves are present because of the high resolution used in our forward
simulations. The bathymetry reconstruction does not rely on these short waves, and thus
we expect our algorithm to perform well for data with a coarser resolution. However, the
existence of these short waves is still meaningful because they demonstrate the robustness
of our algorithm against noise.

Figure 8(a) shows an instantaneous surface elevation field for broadband wave
propagation over the shoal. Contrary to the strong surface manifestation induced by
bathymetry variations on the monochromatic wave shown in figure 3(b), the bathymetry
does not introduce a prominent surface pattern for broadband waves. Figure 8(b) shows
the gradient ∂J/∂β at the initial guess β = 0. We can observe that the gradient contains
both the characteristics of the bathymetry variation and the surface waves; for example,
the almost-zero values for x < 0 m are consistent with the flat regions of β and the surface
pattern of broadband waves for x > 5 m. However, these characteristics are less distinct
compared with those of the monochromatic wave shown in figure 5(a).

We utilise the surface elevation and velocity potential at t = 50 s and another snapshot
of surface elevation at t = 50.1 s to test the bathymetry inversion algorithm performance.
Figure 9(a) plots the reconstructed bathymetry for broadband waves after 400 iterations.
We also show a comparison between the reconstruction results and the ground truth
along the two lines x = 0 m and y = 0 m in figure 9(b,c), respectively. The reconstructed
bathymetry recovers the ground truth well for most of the locations except for some
oscillations near the left-hand inlet, x = −12.4 m. This is because of the numerical
treatment of the inlet boundary conditions described in § 2.3. We nudge the simulated
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Figure 8. Broadband waves propagating over the shoal. (a) Surface elevation at t = 50 s; (b) gradient of
cost function with respect to the bathymetry at the initial guess β = 0. In (b), the results are normalised by
ση = 0.0095 m and h = 0.45 m.
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Figure 9. The legend is the same as in figure 6. The results for the Shoal-Broad case are plotted.

waves to the prescribed incident wave conditions in the wave generation zone x ∈
[−18.4, −12.4] m, and thus the bathymetry variation in the wave generation zone has less
impact on the surface waves, which results in a higher reconstruction error. Figure 10
plots the variations of the normalised cost function and detection error with optimisation
iterations. The normalised cost function decreases continuously with iterations, reaching
a value close to 0.1 %. In contrast, the detection error first decreases to less than 1 %
with iterations and then exhibits a slight increase, which may indicate an overfitting
phenomenon.

3.3. Detection of field-scale irregular bathymetry
In this section, we apply our method to the reconstruction of irregular bathymetry in
a field case. We use the bathymetry data extracted from a field experiment in Duck,
North Carolina, USA reported by Moulton et al. (2017). As shown in figure 11(a),
the bathymetry variation is characterised by an irregular slope and a concave channel.
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Figure 10. Variations of cost function and detection error with the number of optimisation iterations with
multiscale optimisation method for case Shoal-Broad.
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Figure 11. Broadband waves propagating over field-scale irregular bathymetry. Plotted are contours of the
(a) bathymetry −h + β(x, y) and (b) surface elevation η(x, y) at t = 100 s.

The field conditions in Moulton et al. (2017) are incorporated into our computational
domain of size 150 m × 346 m, as shown in table 1. The bathymetry features extend
to a flat region for x < 0 m and a sloping plane for 150 m < x < 190 m. Two wave
absorption zones of width L = 40 m are placed near the inlet and outlet boundaries of
the computational domain, and a wave generation zone of width L = 40 m is added near
x = 0 m. Owing to the requirement for wave simulations of −h + β < η from (2.1), we set
the water depth h = 4 m to ensure that the bathymetry is always underwater (because the
run-up of waves on beaches is beyond the scope of this study), but the spatial variation β

is kept the same. The domain is mirrored with respect to y = 173 m to satisfy the periodic
boundary conditions in the y direction.

As shown in table 1, the broadband waves are constructed from the JONSWAP
spectrum with U10 = 3.3 m s−1 and F = 20.3 km, which results in a wave field with
a peak wavelength λp of 10 m and a peak wave period Tp of 2.5 s. The wave field
in the generation zone is produced from an auxiliary simulation, similar to § 3.2. The
wave evolution is simulated using the HOS method with M = 5. Figure 11(b) plots a
snapshot of the broadband waves over the irregular bathymetry. Similarly, as shown
in figure 8(a), it is not easy for the naked eye to see how the spatial variations
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Figure 12. (a) Reconstructed bathymetry after 400 optimisation iterations for case Irreg-Broad;
(b) comparison of reconstructed bathymetry and the ground truth along the line x = 100 m; (c) same as
(b) but for the line along y = 70 m.
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Figure 13. Variations of cost function and detection error with the number of optimisation iterations with
multiscale optimisation method for case Irreg-Broad.

in the bathymetry induce manifestations in the surface waves. Figure 12(a) plots the
reconstructed irregular bathymetry using our inversion algorithm after 400 iterations,
and figure 12(b,c) shows a comparison between the reconstructed bathymetry data and
the ground truth for two cross-sections at the concave channel. Figure 12 shows that the
reconstructed bathymetry agrees well with the ground truth. Owing to the page limit, the
evolution of the reconstructed bathymetry with optimisation iterations is depicted in the
supplementary movie. Figure 13 depicts the variations of the normalised cost function
and detection error with optimisation iterations. Both the normalised cost function and
detection error decrease continuously with iterations, achieving values less than 10 % and
1 %, respectively.

4. Effects of the sampling frequency and measurement noise

In § 3, we show that noise-free surface wave measurements at a sampling frequency
of ∼10 Hz are sufficient for our inversion algorithm to obtain satisfactory bathymetry
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Figure 14. Relative reconstruction error εβ for different sampling frequencies for the Shoal-Mono and
Shoal-Broad cases.

reconstruction results for both monochromatic and broadband incident waves with peak
wave frequencies of ∼1 Hz. In this section, we further examine the algorithm performance
in a more realistic situation involving the effects of limited sampling frequency and
measurement noise.

4.1. Effect of the sampling frequency
To investigate the effect of the sampling frequency, we choose the measurement η|t0+
tM
at different measurement time intervals 
tM = 0.02, 0.1, 0.2, 0.4, 0.6, 0.8 s for the
Shoal-Mono and Shoal-Broad cases for bathymetry reconstruction while keeping the other
parameters the same as those in table 1. Figure 14 presents the reconstruction errors with
different sampling frequencies for the Shoal-Mono and Shoal-Broad cases. The algorithm
performance is robust, with reconstruction errors less than 1.5 % for all different choices
of measurement time intervals in the range of 
tM/Tp ≤ 0.8, where Tp = 1 s for both
monochromatic and broadband waves. We remark that the seemingly counter-intuitive
good bathymetry detection performance under large measurement time intervals is related
to the usage of the entire wave state at the first time instant. Given the wave state
(including the surface elevation and surface velocity potential) at the earliest time instant,
the observed wave state at the later time instants can be a good indicator of the bathymetry
even though the time interval is large. Moreover, we focus on the effect of the sampling
frequency by neglecting the measurement noise effect in this section, and we anticipate
that the reconstruction error increases as the measurement time interval increases if the
measurement noise is taken into account. The reconstruction errors in the broadband wave
cases are slightly larger than those in the monochromatic wave cases, which is consistent
with the less prominent surface manifestation and more irregular gradient ∂J/∂β present
in broadband waves, as shown in figure 8. Nevertheless, the bathymetry can still be
reconstructed with satisfactory accuracy (∼1.4 % error) with multidirectional broadband
waves.
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Figure 15. (a) Cost function J and (b) relative reconstruction error εβ as functions of the optimisation iteration
numbers for measurement with noise. In (a), the cost function J is normalised by J0, its initial value before the
optimisation process.

4.2. Effect of measurement noise
In this section, we consider the effect of measurement noise on the bathymetry
reconstruction performance. We generate synthetic surface wave data with random noise
added to the true surface elevation as

ηM(x, y, t) = η(x, y, t) + μ(x, y, t), (4.1)

where the noise μ(x, y, t) satisfies the Gaussian distribution with standard deviation σnoise.
To exclude the effect of inaccurate initial conditions on the inverse problem, we prescribe
the wave state at t = t0 using the accurate solution and perturb the surface elevation at
later time instants with random noise. In this case, the perturbed surface elevation at a
single time instant is insufficient to accurately recover the bathymetry. To reduce the effect
caused by the noise, we choose snapshots of the perturbed surface elevation at five time
instants to recover the bathymetry in the following discussion.

Figure 15 illustrates how the cost function and relative reconstruction error vary with
the optimisation iteration for broadband waves over the shoal described in § 3.2. We set
up three more cases with different levels of noise, of which the standard deviations are
σnoise/ση = 10 %, 20 % and 30 %. We choose the cutoff iteration at 400, at which the
cost function J has converged. The normalised cost function (figure 15a) decreases with
additional optimisation iteration, and the converged normalised cost function increases
from 0.15 % to 20 % with an increasing noise level σnoise/ση from 0 to 30 %. In contrast,
the reconstruction error (figure 15b) first decreases with additional optimisation iteration
and then increases, which suggests an overfitting phenomenon in all cases. With the
increase in noise levels, the smallest reconstruction errors increase, and the critical
iteration number, at which the smallest error occurs, decreases. This qualitative feature
is related to the surface wave-induced high-wavenumber components in the gradient
∂J/∂β. For large numbers of iterations, the obtained optimal β overfits the noisy wave
observations by containing spurious high-wavenumber components that do not exist in
the ground truth bathymetry data. Consequently, the error increases with an increasing
noise level because there is more energy in the high-wavenumber modes induced by the
measurement noise; therefore, the overfitting becomes more severe.

In figure 16, we plot representative β obtained during early iterations, near the critical
iteration, and at the final iteration for the case with the highest noise level at σnoise/ση =
30 %. We find that the reconstructed bathymetry can capture the main characteristics,
such as the slope and bump, after 20 iterations, which addresses approximately 4 % of
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Figure 16. Reconstructed bathymetry for the Shoal-Broad case with σnoise/ση = 30 % after (a) 20 iterations;
(b) 90 iterations; (c) 400 iterations.

the degrees of freedom in the physical space of the original bathymetry data. Next, after
90 iterations, the bathymetry can be refined with a reconstruction error of approximately
2 %. When the number of iterations further increases to 400, the reconstructed bathymetry
geometrically fits the ground truth. However, abundant oscillations exist on the bathymetry
obtained. Note that the surface wave dynamics are not affected by these bottom variations
of short length scales. The cost function remains nearly the same between 90 iterations
and 400 iterations, as shown in figure 15(a). To mitigate the overfitting with noisy
data, some empirical knowledge or an approximate estimate of the length scales of the
bathymetry data β would be beneficial to determine the cutoff θf in (2.33), such that the
high-wavenumber components in figure 16(c) can be avoided.

5. Effects of small bottom variations and limited measurements

In this section, we evaluate the performance of our algorithm in the scenario of small
bottom variations and a limited number of measurements.

5.1. Algorithm performance with small bottom variations
To evaluate the performance of our algorithm with small bottom variations, we apply it to a
canonical case of a monochromatic wave propagating over a Gaussian bump. This scenario
was investigated by Nicholls & Taber (2009) and Khan & Kevlahan (2021) previously. The
prescribed bottom profile is given by

β(x) = b sech(2x), (5.1)

where the bottom variation amplitude is b = 0.02 m and the water depth h is set to 0.2 m,
resulting in a small bottom variation ratio b/h = 0.1. A monochromatic wave with a wave
period 1 s and wave height 0.0464 m propagates from the −x to +x direction. To facilitate
the simulation of the incident wave condition, as discussed in § 2.3, we introduce zones
for wave generation and absorption, each has 6 m in length, extending the computational
domain from 10 m to a total of 28 m. The other computational parameters can be found in
table 2.

For the bathymetry reconstruction, we employ a measurement sampling interval of

tM = 0.1 s (table 2). To evaluate the performance of the bathymetry inversion algorithm,
we utilise the surface elevation and velocity potential data at t = 30 s, along with the
subsequent observed snapshot of surface elevation at t = 30.1 s. Figure 17(a) presents
the results of the optimisation process, showcasing the decreases in the cost function
and detection error with iterations. At the end of the optimisation, the cost function
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Case λp (m) Tp (s) h (m) Lx (m) NX 
ts (s) 
tM (s) 
xM/
xs (Te − Ts)/
tM

Gauss-S1T1 1.56 1.0 0.2 28 512 0.02 0.1 1 1
Gauss-S5T1 1.56 1.0 0.2 28 512 0.02 0.1 5 1
Gauss-S5T5 1.56 1.0 0.2 28 512 0.02 0.1 5 5
Gauss-S10T1 1.56 1.0 0.2 28 512 0.02 0.1 10 1
Gauss-S10T10 1.56 1.0 0.2 28 512 0.02 0.1 10 10

Table 2. Parameters of the case set-up for bathymetry inversion in the scenario of a monochromatic wave
over a Gaussian bump. The following variables are defined: simulation grid length, 
xs; measurement grid
length, 
xM ; measurement starting time instant, Ts; measurement ending time instant, Te.
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Figure 17. (a) Variations of the cost function and detection error with the number of optimisation iterations.
(b) Comparison of the reconstructed bathymetry and ground truth. Results are plotted for case Gauss-S1T1.

and detection error decrease to approximately 10−4 and 10−2 of their original values,
respectively. The phenomenon that the cost function remains nearly constant and the
bathymetry is not updated much before 100 iterations can be attributed to the small
bottom variations in the problem configuration. As discussed in § 2.5, our multiscale
optimisation method prioritises capturing the large-scale structures in the early stage of
optimisation. For the local variations, the minimisation process takes effect primarily in
the optimisation iterations later. In figure 17(b), we depict the comparison between the
detected bathymetry and the ground truth, further confirming the algorithm’s satisfactory
performance in addressing the scenario of small bottom variations.

5.2. Algorithm performance with limited measurements
In this section, we analyse the performance of the algorithm when there are only a limited
number of measurements. We design three test cases with different degrees of sparsity in
the observations, which is characterised by the parameter 
xM/
xs ranging from 1 to 10,
where 
xM represents the spatial distance between the observation points and 
xs refers
to the grid length in the simulation (see cases Gauss-S1T1, Gauss-S5T1 and Gauss-S10T1
in table 2). It is important to note that, as discussed in § 2.4, sparse observations at a
single time instant are insufficient to uniquely determine the bathymetry. To address the
challenges arising from sparse observations, we investigate two additional cases with an
increased number of observation time instances, calculated as (Te − Ts)/
tM , based on
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Figure 18. Legends are the same as in figure 17. Results are plotted for cases Gauss-S5T1 and Gauss-S5T5.

different sparsity levels. These cases are denoted as Gauss-S5T5 and Gauss-S10T10 in
table 2.

Figure 18(a) presents a comparison between two cases, Gauss-S5T1 and Gauss-S5T5,
regarding their cost function and detection error. Gauss-S5T1 utilises observations from
a single time instant, while Gauss-S5T5 benefits from observations spanning five time
instants, both with a data sparsity level of 
xM/
x = 5. Throughout the optimisation
iterations, the two cases exhibit a similar trend of decreasing cost function and detection
error. By the end of the optimisation process, the cost function and detection error
saturate at similar values as case Gauss-S1T1 shown in figure 17. For further insight,
in figure 18(b), we provide a comparison of the detected bottom with the ground truth
for cases Gauss-S5T1 and Gauss-S5T5. Both cases demonstrate that the reconstructed
bathymetry agrees well with the ground truth, indicating the robustness and effectiveness
of our algorithm when handling data that are 80 % less.

In figure 19, we present the performance of our algorithm for cases Gauss-S10T1 and
Gauss-S10T10. Figure 19(a) shows that, by the end of the optimisation iteration, the
detection error for case Gauss-S10T1 becomes evident, saturating at 10 %, primarily due
to the scarcity of observation data, which is reduced by 90 %. However, a noticeable
improvement is observed with an increase in the number of observation snapshots,
resulting in a reduced detection error of 2 % for Gauss-S10T10. Moreover, as shown
in figure 19(b), there is a noticeable difference between the ground truth and the
result obtained solely from a single time instant in case Gauss-S10T1. In contrast,
the reconstructed bathymetry in case Gauss-S10T10 agrees well with the ground truth,
demonstrating the effectiveness of incorporating more measurement snapshots and the
robustness of our algorithm in the challenging scenario of increasing data sparsity.

6. Summary and discussion

In this study, we propose an adjoint-based variational data assimilation method for
inferring coastal bathymetry from surface wave data. In our approach, we utilise the HOS
method to simulate nonlinear wave propagation over variable bathymetry. We derive the
recursion-formed adjoint HOS equations with the capability of accommodating any given
nonlinear perturbation order, based on which we obtain the gradient expression of the cost
function with respect to the bathymetry. We further propose a multiscale optimisation
method that combines the L-BFGS optimiser with a size-adjustable low-pass filter to
obtain satisfactory bathymetric reconstruction results.
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Figure 19. Legends are the same as in figure 17. Results are plotted for cases Gauss-S10T1 and
Gauss-S10T10.

To evaluate the algorithm performance, we conduct test cases considering different
bathymetry feature types, surface waves, measurement sampling frequencies and
measurement noise. We first consider a benchmark case of wave diffraction over a shoal
on an oblique sloping beach. We find that it is necessary to utilise a high nonlinear
perturbation order (M = 5) to accurately predict the nonlinear wave evolution over
the bathymetry features. This result indicates the importance of nonlinear terms in
wave–bottom interactions, for which our method has the advantage of accommodating
an arbitrarily high nonlinear perturbation order. The gradients of the cost function with
respect to the bathymetry calculated using the adjoint model are validated against the
values obtained from a finite difference method. We find that the gradient distribution
exhibits the characteristics of both the bathymetry and the surface waves, which are at
different length scales. With the multiscale optimisation method, excellent reconstruction
results are obtained for monochromatic incident waves, broadband waves, laboratory-scale
shoals on an oblique sloping beach and field-scale irregular bathymetry data extracted
from field measurements. We also tested the algorithm performance for different
measurement sampling frequencies. We find that the algorithm can produce good
reconstruction results with errors less than 1.5 % for a wide range of wave observation
sampling time intervals. It is also found that the algorithm can still produce good results
when the measurement is contaminated by noise. However, a priori knowledge or an
empirical estimate of the length scales in the bathymetry data β would be beneficial
to mitigate the overfitting that arises with noisy data. Additionally, we demonstrate the
robustness of our algorithm in the scenarios of small bottom variations and a limited
number of measurements.

We note that the performance of the proposed algorithm is tested using the surface wave
information η|t0 , Φs|t0 and η|t0+
tM , which can be obtained from the measured radial
velocities from marine radars (Nwogu & Lyzenga 2010; Lyzenga et al. 2015). Moreover,
the algorithm can also accommodate other measurement types with straightforward
modifications, although it remains an open question whether the exact bathymetry can
be recovered owing to the unknown sufficiency of the measurement provided (Fontelos
et al. 2017).

While our bottom reconstruction algorithm shows promising results for both laboratory
and field-scale bathymetry under monochromatic and broadband wave scenarios, we
emphasise that there is a need, with the increase in computer power to enable
more extensive computations, for studies to further test the limits of its performance.
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Specifically, we plan to conduct simulations to assess the accuracy and robustness of our
method under extreme cases where the reconstruction error is likely to be large, such as
small relative amplitude of irregular bathymetry, limited number of measurements, and
measurement location outside the support of bathymetry. We believe that such analyses
will provide insight into the useful range of applications of our method and identify
areas for potential improvement. Additionally, we will conduct simulations to evaluate the
algorithm’s accuracy and robustness for a range of sparse observation configurations, with
different relative amplitudes of irregular bathymetry. With that, we can further directly
compare with the results reported by Khan & Kevlahan (2021, 2022) who considered
similar scenarios and demonstrated the effectiveness of their method using the variational
data assimilation technique. Finally, we emphasise that the present study focuses on the
mathematical formulation, algorithm development and numerical tests with synthetic wave
data. More studies in the future are needed to further test our model with real wave data,
for which laboratory and field measurement studies are necessary.

Supplementary material and movie. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.733.
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Appendix A. Derivation of the adjoint model and gradients

Let M(q) = 0 denote the nonlinear wave model, where q = [η, Φs, W]T with the
superscript T denoting the transpose. Specifically, M(q) = 0 can be interpreted as
reorganising (2.10)–(2.12) by moving all the terms to the left-hand side of the equations. A
small perturbation δβ to the bathymetry β result in a perturbation δq = [δη, δΦs, δW]T.
Let M′(δq) = 0 denote the linearised wave model that governs the evolution of
perturbation δq resulting from given perturbation δβ. Specifically, M′(δq) = 0 includes
three parts, namely, δηt, δΦs

t and δW, as

δηt + ∇δΦs · ∇η + ∇Φs · ∇δη − (1 + ∇η · ∇η)δW − 2(∇δη · ∇η)W = 0, (A1)

δΦs
t + ∇δΦs · ∇Φs + gδη − (1 + ∇η · ∇η)WδW − (∇δη · ∇η)W2 = 0, (A2)

δW = δη

M∑
m=1

M−m∑
l=1

ηl−1

(l − 1)!
∂ l+1

∂zl+1 Φ(m)(x, 0, t) +
M∑

m=1

M−m∑
l=0

ηl

l!
∂ l+1

∂zl+1 δΦ(m)(x, 0, t). (A3)

Based on (2.6)–(2.9), δΦ(m)(x, 0, t) and δΦ
(m)
z (x, −h, t) can be written as

δΦ(1)(x, 0, t) = δΦs, (A4)
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δΦ(m)(x, 0, t) = −δη

m−1∑
l=1

ηl−1

(l − 1)!
∂ l

∂zl Φ
(m−l)(x, 0, t)

−
m−1∑
l=1

ηl

l!
∂ l

∂zl δΦ
(m−l)(x, 0, t), m = 2, 3, . . . , M, (A5)

δΦ(1)
z (x, −h, t) = 0, (A6)

δΦ(m)
z (x, −h, t) =

m−1∑
l=1

∇ · β l−1δβ

(l − 1)!
∂ l−1

∂zl−1 ∇Φ(m−l)(x, −h, t)

+
m−1∑
l=1

∇ · β l

l!
∂ l−1

∂zl−1 ∇δΦ(m−l)(x, −h, t), m = 2, 3, . . . , M. (A7)

With the operators defined in (2.18)–(2.21), the vertical derivative of δΦ(m)(x, 0, t) and
δΦ(m)(x, −h, t) can be written as

∂ l

∂zl δΦ
(m)(x, 0, t) = a(l)[δΦ(m)(x, 0, t)] + b(l)[δΦ(m)

z (x, −h, t)], (A8)

∂ l

∂zl δΦ
(m)(x, −h, t) = c(l)[δΦ(m)(x, 0, t)] + d(l)[δΦ(m)

z (x, −h, t)]. (A9)

Incorporating (A8) and (A9) into (A3), (A5) and (A7), we obtain

δW = δη

M∑
m=1

M−m∑
l=1

ηl−1

(l − 1)!
∂ l+1

∂zl+1 Φ(m)(x, 0, t)

+
M∑

m=1

M−m∑
l=0

ηl

l!
(a(l+1)[δΦ(m)(x, 0, t)] + b(l+1)[δΦ(m)

z (x, −h, t)]), (A10)

δΦ(m)(x, 0, t) = −δη

m−1∑
l=1

ηl−1

(l − 1)!
∂ l

∂zl Φ
(m−l)(x, 0, t)

−
m−1∑
l=1

ηl

l!
(a(l)[δΦ(m−l)(x, 0, t)] + b(l)[δΦ(m−l)

z (x, −h, t)]), (A11)

δΦ(m)
z (x, 0, t) =

m−1∑
l=1

∇ · β l−1δβ

(l − 1)!
∂ l−1

∂zl−1 ∇Φ(m−l)(x, −h, t)

+
m−1∑
l=1

∇ · β l

l!
∇(c(l−1)[δΦ(m−l)(x, 0, t)] + d(l−1)[δΦ(m−l)

z (x, −h, t)]).

(A12)

As a result, we obtain the mathematical formula of the linearised wave model M′ to obtain
δΦs and δη at t = t0 + 
t from δΦs, δη and δβ at t = t0.
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We define an inner product

〈f , g〉 =
∫

t

∫
y

∫
x

f (x, y, t)g∗(x, y, t) dx dy dt, (A13)

where g∗ is the complex conjugate of function g. The cost function can be written as

J = 1
2

∫
t

∫
y

∫
x
(η − ηM)2 dx dy dt = 1

2
〈η − ηM, η − ηM〉. (A14)

We define a Lagrangian as

L = J + 〈M(q), λ〉

+
M∑

m=2

〈M(Φ(m)(x, 0, t)), α(m)
1 〉 + 〈−Φ(1)(x, 0, t) + Φs, α

(1)
1 〉

+
M∑

m=2

〈M(Φ(m)
z (x, −h, t)), α(m)

2 〉 + 〈−Φ(1)
z (x, −h, t), α(1)

2 〉, (A15)

where λ = [λ1, λ2, γ ]T, α1 and α2 are the Lagrangian variables and M(Φ(m)(x, 0, t)) and
M(Φ

(m)
z (x, −h, t)) can be interpreted as reorganising (2.7) and (2.9) by moving all the

terms to the left-hand side of the equations. Because all other terms on the right-hand side
of (A15) except for J equal zero at every instant, L equals J.

Introducing a small perturbation δβ to the bathymetry β induces a small perturbation in
the Lagrangian as

δL = 〈δη, η − ηM〉 + 〈M′(δq), λ〉

+
M∑

m=2

〈M′(δΦ(m)(x, 0, t)), α(m)
1 〉 + 〈−δΦ(1)(x, 0, t) + δΦs, α

(1)
1 〉

+
M∑

m=2

〈M′(δΦ(m)
z (x, −h, t)), α(m)

2 〉 + 〈−δΦ(1)
z (x, −h, t), α(1)

2 〉, (A16)

where M′(δΦ(m)(x, 0, t)) and M′(δΦ(m)
z (x, −h, t)) can be interpreted as reorganising

(A5) and (A7) by moving all the terms to the right-hand side of the equations. Note that
operators a(l), b(l), c(l), and d(l) are self-adjoint operators. Using integration by parts, we
apply the operators on the state variables to the adjoint variables and finally obtain

δL =
〈
δβ, −

M∑
m=2

m−1∑
l=1

(
β l−1

(l − 1)!
∇α

(m)
2

)
·
(

∇ ∂ l−1

∂zl−1 Φ(m−l)(x, −h, t)
)〉

, (A17)

with the adjoint variables λ1, λ2, γ , α
(m)
1 and α

(m)
2 satisfying the adjoint equations shown

in § 2.2 and the boundary conditions shown in § 2.3. The detailed derivation steps are
cumbersome and we provide them in the supplementary material.
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Note that

δJ = δL =
∫

x

∫
y

∂J
∂β

(x, y)δβ(x, y) dx dy. (A18)

Based on (A17), we can obtain the gradient in the discrete time advancement form as

∂J
∂β

= −
NT∑

n=1

M∑
m=2

m−1∑
l=1

(
β l−1

(l − 1)!
∇α

(m)
2

)
·
(

∇ ∂ l−1

∂zl−1 Φ(m−l)(x, −h, tn)
)

. (A19)
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