VOL. I (1969), 357-361.

Sums of finite-dimensional spaces

B. R. Wenner

Analogues are developed to the sum theorems in the dimension theory of metric spaces. It is shown that, within the class of metric spaces, any locally countable, σ -locally finite, or closure-preserving sum of finite-dimensional sets is countable-dimensional. Similar results are obtained under the more general hypothesis of countable-dimensional rather than finite-dimensional sets.

The Sum Theorem in dimension theory can be stated as follows (all spaces in this paper are metric, and by dimension we mean Lebesque covering dimension):

SUM THEOREM. If X is the union of a locally countable collection of n-dimensional closed subsets, then X is n-dimensional [cf. 2, Theorem II.1].

One might ask what could be concluded about X if the words "n-dimensional closed subsets" in the hypothesis were replaced by the words "finite-dimensional subsets". A similar question might also be raised: what would we know about X if the same words were replaced by "countable-dimensional subsets" (a countable-dimensional space is defined to be a union of countably many finite-dimensional spaces [1]). It will be shown below in Theorem 2 that the answer to both questions is the same; namely, X must be countable-dimensional.

The following Lemma is the key to the succeeding work.

LEMMA. X is countable-dimensional iff X is the union of a locally finite collection of countable-dimensional subsets.

Proof. If X is the union of a locally finite collection

Received 23 June 1969.

358 B.R. Wenner

 $\mathsf{A} = \{A_\lambda \ : \ \lambda \in \Lambda\} \quad \text{of countable-dimensional subsets, then for each} \quad \lambda \in \Lambda$ we can write

$$A_{\lambda} = \bigcup_{i=1}^{\infty} A_{\lambda,i} ,$$

where $A_{\lambda, i}$ is finite-dimensional for all i = 1,2,... Now for each i = 1,2,... we define

$$P_{i} = \{A_{\lambda, i} : \lambda \in \Lambda\},$$

and

$$P_i = U P_i$$
.

Since A is locally finite and for all $\lambda \in \Lambda$, $A_{\lambda,i} \subset A_{\lambda}$, it is clear that P_i is a locally finite cover of P_i consisting of finite-dimensional sets. For every point $p \in P_i$ we define N(p) to be a P_i -open set which contains p and meets at most finitely many members of P_i ; then $N = \{N(p) : p \in P_i\}$ is a relatively open cover of P_i . By the paracompactness of P_i there exists a locally finite P_i -closed refinement Q of N which covers P_i . For any $Q \in Q$, there exists $N(p) \in N$ such that $Q \subseteq N(p) \subseteq P_i$; N(p) is covered by a finite union of members of P_i , each of which is finite-dimensional, so N(p) is finite-dimensional [2], Corollary to Theorem II.4], and Q is therefore itself finite-dimensional by the Monotone Theorem [2], Theorem II.3].

Now for all $n = 1, 2, \ldots$ we define

$$R_{i,n} = U \{Q \in Q : \dim Q \leq n\}$$
.

By the Sum Theorem each $R_{i,n}$ has dimension $\leq n$ (as Q is a locally finite closed collection in P_i), and

$$P_{i} = \bigcup_{n=1}^{\infty} R_{i,n}$$

since Q is a cover of P_i consisting of finite-dimensional subsets, so

$$X = \underset{\lambda \in \Lambda}{\cup} A_{\lambda} = \underset{\lambda \in \Lambda}{\cup} \left(\underset{i=1}{\overset{\infty}{\cup}} A_{\lambda,i} \right) = \underset{i=1}{\overset{\infty}{\cup}} \left(\underset{\lambda \in \Lambda}{\cup} A_{\lambda,i} \right) = \underset{i=1}{\overset{\infty}{\cup}} P_{i} = \underset{i=1}{\overset{\infty}{\cup}} \underset{n=1}{\overset{\infty}{\cup}} R_{i,n} ,$$

which proves that X is countable-dimensional.

THEOREM 1. X is countable-dimensional iff each point of X has a countable-dimensional neighborhood.

Proof. For each $p \in X$ let N(p) be a countable-dimensional neighborhood of p. Then $N = \{N(p) : p \in X\}$ has a locally finite refinement P which covers X, and each member of P is countable-dimensional, hence X is itself countable-dimensional by the Lemma.

We are now in a position to prove the main result of this communication.

THEOREM 2. X is countable-dimensional iff X is the union of a locally countable collection of countable-dimensional subsets.

Proof. For any $p \in X$ there exists a neighborhood N(p) which is covered by a countable collection $\{A_i: i=1,2,\ldots\}$ of countable-dimensional sets. For each $i=1,2,\ldots$, A_i is the union of a countable collection $\{A_{i,j}: j=1,2,\ldots\}$ of finite-dimensional sets. Hence

$$N(p) \subset \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_{i,j},$$

so N(p) is countable-dimensional. Thus every point of X has a countable-dimensional neighborhood, and X is countable-dimensional by Theorem 1.

Theorem 2 answers the second question from the introductory paragraph, and the first question now can be answered in the following, since every finite-dimensional space is countable-dimensional.

COROLLARY 3. X is countable-dimensional iff X is the union of a locally countable collection of finite-dimensional subsets.

A similar question can be asked about another sum theorem [2, Corollary to Theorem II.1], and the answer appears below in Theorem 5. The following result will be needed.

360 B.R. Wenner

THEOREM 4. X is countable-dimensional iff X is the union of a σ -locally finite collection of countable-dimensional subsets.

Proof. Let $A = \bigcup_{i=1}^{\infty} A_i$ be a cover of X, where A_i is a locally finite collection of countable-dimensional sets of all $i = 1, 2, \ldots$. By the Lemma, $\bigcup A_i$ is the union of a countable collection $\{B_{i,j} : j = 1, 2, \ldots\}$ of finite-dimensional sets, so

$$X = UA = \bigcup_{i=1}^{\infty} UA_i = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} B_{i,j}$$
,

which implies that X is countable-dimensional.

THEOREM 5. X is countable-dimensional iff $X = \bigcup_{\lambda < \tau} A_{\lambda}$, where for all $\lambda < \tau$, A_{λ} is countable-dimensional and $\bigcup_{u < \lambda} A_{u}$ is closed.

Proof. For all $\lambda < \tau$ and all i = 1,2,... we define

$$B_{\lambda,i} = A_{\lambda} - S_{1/i} \left(\bigcup_{\mu < \lambda} A_{\mu} \right) .$$

Let

$$\mathcal{B}_{i} = \{B_{\lambda,i} : \lambda < \tau\}$$

for all $i=1,2,\ldots$: we now show that each B_i is locally finite. For any $p\in X$, there exists a first $\lambda<\tau$ such that $p\in A_\lambda$. By hypothesis $\bigcup_{u<\lambda}A_u$ is closed, so

$$N = S_{1/i}(p) - \bigcup_{\mu < \lambda} A_{\mu}$$

is a neighborhood of p . If $\nu < \lambda$, then

$$N \cap B_{v,i} \subset N \cap A_v \subset N \cap \left(\bigcup_{\mu < v} A_{\mu}\right) = \emptyset$$
;

on the other hand, if $\nu > \lambda$, then

$$N \cap B_{\vee,i} \subset S_{1/i}(p) \cap \left(X - S_{1/i} \left(\bigcup_{\mu \leq \vee} A_{\mu}\right)\right) \subset S_{1/i}(p) \cap \left(X - S_{1/i}(A_{\lambda})\right) = \emptyset$$

as $p \in A_{\lambda}$. Thus N is a neighborhood of p which meets at most the one element $B_{\lambda,i}$ of B_i , so B_i is locally finite.

Since the family

$$B = \bigcup_{i=1}^{\infty} B_i$$

is a σ -locally finite collection of countable-dimensional sets, the Theorem will follow from Theorem 4 if B is a cover. But for any $p \in X$ there exists a first $\lambda < \tau$ such that $p \in A_{\lambda}$, and an integer i such that

$$d(p, \bigcup_{u \le \lambda} A_u) \ge 1/i$$
,

in which case $p \in \mathcal{B}_{\lambda,i}$ and the proof is complete.

References

- [1] J. Nagata, "On the countable sum of zero-dimensional spaces", Fund. Math. 48 (1960), 1-14.
- [2] Jun-iti Nagata, Modern dimension theory (John Wiley, New York, 1965).

University of Missouri-Kansas City, Kansas City, Missouri.