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ON NEGATIVE BINOMIAL
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Abstract

The distributions of the run occurrences for a sequence of independent and identically
distributed (i.i.d.) experiments are usually obtained by combinatorial methods (see
Balakrishnan and Koutras (2002, Chapter 5)) and the resulting formulae are often very
tedious, while the distributions for non i.i.d. experiments are generally intractable. It
is therefore of practical interest to find a suitable approximate model with reasonable
approximation accuracy. In this paper we demonstrate that the negative binomial
distribution is the most suitable approximate model for the number of k-runs: it
outperforms the Poisson approximation, the general compound Poisson approximation as
observed in Eichelsbacher and Roos (1999), and the translated Poisson approximation in
Rollin (2005). In particular, its accuracy of approximation in terms of the total variation
distance improves when the number of experiments increases, in the same way as the
normal approximation improves in the Berry—Esseen theorem.
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1. Introduction

Let {n;, 1 <i < n} be a sequence of independent Bernoulli random variables with E(»;) =
pi, 1 <i <n. Ourinterest is to study the distribution £L(W) of W = Z?:_II‘H ]_[l.:];_lnj. The
random variable W is one of the run statistics (Balakrishnan and Koutras (2002, Section 4.1))
and is often termed as k-runs.

The run statistics W were introduced in Mood (1940). The problem is well known in
reliability theory as the m-consecutive-k-out-of-n failure system (Chiang and Niu (1981)),
where the major interest is on the reliability of the system. The system has » items on a line
and each item fails with probability p € (0, 1), independently of the others. The system fails
whenever there are at least k consecutive failing items in the system at the same time, and the
reliability of the system is determined by the probability that the system works. Using our
notation, the reliability of the system is P(W = 0).

Run statistics play a critical role in many areas such as nonparametric statistical testing,
quality control, and reliability theory (see Balakrishnan and Koutras (2002, Chapters 3, 8§,
and 12)). The exact distributions of the run occurrences for a sequence of independent and
identically distributed (i.i.d.) experiments are usually obtained by combinatorial methods and
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generating functions (Balakrishnan and Koutras (2002, Chapter 5)), and the resulting formulae
are often very tedious. For example, Koutras and Alexandrou (1997) (see also Balakrishnan
and Koutras (2002, p. 156)) showed that, if p; = p forall 1 <i <nand g = 1 — p then

n
o n—k(y+1)
PU”==x>==§:q>p"Y<( ; )1u+@+0k4=ﬂ
y=0

min(x—1,y) oo .
, —1 1 _
+ ¥ (—1>’<x . )(yf .)(yl.]>
j=0 i=0

J y—J

8 <n—k(i+j+1)—x)>
y—Jj—1 ’

where 1y, is the indicator function. The formula is useful when n and k are not too large. How-
ever, when n and k are relatively large, the computation of the formula is practically very hard
and the distributions for non i.i.d. sequences are generally intractable. It is therefore of practical
interest to find a suitable approximate distribution for .£(W) with reasonable approximation
accuracy in terms of the total variation distance drv(Qq, Q) = supycz, 1Q1(A) — Qa(A)],
where Q; and Q, are two probability measures on Z4 = {0, 1,2, ...}.

It seems that von Mises (1921) was the first person to work on this front with the Poisson
distribution as the approximate distribution. In the context of reliability theory, Poisson approx-
imation was derived for the consecutive-k-out-of-n failure system in Papastavridis (1987),
Chryssaphinou and Papastavridis (1990), and Koutras and Papastavridis (1993). Barbour et al.
(1992, p. 163) also investigated the same problem with Poisson approximation and obtained the
error estimate O (p). That is, the approximation accuracy does not improve when 7 increases.
This is not surprising since, when k = 1, the lower bound of order p can also be obtained
(Barbour et al. (1992, p. 61)).

By viewing the k-runs as clusters of at least k 1s and considering the clusters as ‘rare events’,
Arratia et al. (1990) suggested approximating £(W) by a compound Poisson and achieved an
error bound of 0(nkp2k (1 — p)). Roos (1994) investigated this approach again, with a careful
selection of parameters in the compound Poisson approximation, and managed to improve the
approximation error to O (kp* log(n p¥)) when p < % Eichelsbacher and Roos (1999) obtained
the bound O (kp*) with respect to the Kolmogorov distance and concluded that a bound in terms
of dyv for large p could be of order O (p~).

Barbour and Xia (1999) used compound Poisson signed measures with two parameters to
approximate the distribution of 2-runs with an approximation error of no more than O (n=1/2).
The problem was also investigated in Rollin (2005) using a translated Poisson approximation
with a bound K //n, where K = K (k, p) is a complicated constant independent of n

Brown and Xia (2001) showed that, as a special case of the compound Poisson distribution,
the negative binomial approximation is sufficiently good for the distribution of 2-runs. The
purpose of this note is to show that a suitably chosen negative binomial distribution is a
sufficiently good approximate for .£(W). The study shows that, amongst these approximating
models, the negative binomial approximation works the best since it gives an explicit error
estimate without unspecified constants, and numerical calculation also confirms its superiority.

The negative binomial distribution with parameters r > 0 and 0 < g < 1 is defined as

re+j)

— a1 —q), i€ Zy.
T (! g (1—-gq) J +

NB(r, ¢){j} =
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It can be considered as a Poisson distribution mixed with a logarithmic distribution (see Johnson
et al. (2005, pp. 212-213 and p. 346).
Let 9, be the mth largest number of (1 — pi_l)zpi (1= pi)pit1 - Pitk—1, 1 <i <n,and

set
4.6

V mmak—1 Om

Theorem 1.1. For independent Bernoulli random variables {n;, 1 <i <n}withP(n; =1) =
pi, 1 < i < n, define I, = ]_[’si]f ns and W* = Y| I;, where nH_m,, lS treated as n;

forl <i<nandm = +1,%£2,. Let A =E(W*) = Zl 1]_[’+ ' ps, 0% = var(W¥),
r=»x1%/(6%>—=1), andq = A/a2.lj‘a > A and n > 4k then

¢:=2A

drv(L(W*), NB(r, q))

n i+k—1 i+2k—2 i+2k—2
<Z > E1<< Z Z)E(1j11)+ > E(IJ)E(11)>

i=1 j=i—k+l1 I=i—=2k+2  I=i+k 1=i—2k+2

n  itk—1 i+2k—2 i+2k—2
T2 2 (( > Z)E(an > E(Iilj)E(Il))

i=1 j=i—k+1 [=i—2k+2 I=i+k I=i—2k+2
J#i I#i
1 (< 2
+ X(Z > E(1i11>) ) (1.1)
i=1 0<|l—i|<k—1
4.5(4k —3)(2k — )¢ <
< - > miEWU), (12)

i=1
where m; = max{ps:i —2k+2<s <i+2k-—2}

Remark 1.1. The approximating negative binomial distribution is chosen so that both the mean
and variance match with those of W*. Bearing in mind that, for a negative binomial, its variance
is always greater than its mean, the condition 0> > A is also necessary to ensure a valid negative
binomial approximation.

If our interest is in L (W), we can use the following proposition and the triangle inequality
to bound the approximation error.

Proposition 1.1. Using the notation given in Theorem 1.1, define W = Z?;IkH I;. Then

2.3 z
dw(wv),oc(vv*))f(m—) > E.

n
V Zom=k42 Om 7 i=n—k+2

Corollary 1.1. Suppose that p; = p forall 1 <i <n. Let

_ n(1—p)p* d o= 1-p
2(p — p*) — @k — Dpk(1 — p) 1—p+2(p—pb—Q2k—1pkl — p)

Ifn > 4k and if

Qk—1Dp*—Ck+DpFT+2>0, (1.3)
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TABLE 1.
k s(k)
2 0.6667
3 0.8633
4 09267
5 0.9545
6 0.9690
7 09776
8 0.9830
9 0.9867
10  0.9893
11 0.9912
12 0.9927
13 0.9938
14 0.9947
15  0.9954
20 0.9974
25  0.9984
30 0.9989
35  0.9992
then
N 2 < 4.6 )
drv(L(W*),NB(r, q)) <4.5(4k —3)2k — Dp“|2 A . (1.4
V= 4k +2)pk(1 = p)3

Proof. Noting that (1.3) is equivalent to the condition that 02 > X in Theorem 1.1, (1.4) is
an immediate consequence of (1.2).

Remark 1.2. Condition (1.3) is equivalent to the condition that 62 > Ain Theorem 1.1. Tt
defines the range of p so that it is possible to determine the negative binomial with the same
mean and variance as W*. For the p outside the range, it seems better to use the binomial
approximation. However, as we will show below, p outside the range tends to be close to 1 and
there is little interest to study the run statistics for big values of p.

To see how restrictive condition (1.3) is, let s(k) € (0, 1) be the solution of the equation
2k — Dp* — 2k + 1)p*~! +2 = 0. Then (1.3) holds if p < s(k). For example, if p < 2,
(1.3) holds for all k > 2 and if p < 0.8633, (1.3) is valid for all £ > 3. In addition, for large k,
the solution s (k) is close to 1. The values of s(k) for some ks are provided in Table 1.

Remark 1.3. When k = 2, the upper bound in (1.4) becomes 310.5p2/1/(n — 6) p2(1 — p)3,
which is about ten times the bound in Theorem 4.2 of Brown and Xia (2001). The sharper bound
in Brown and Xia (2001) is possible because when we apply Stein’s method, it is necessary
to consider how the outcome of a typical pair (1;, n;+1) affects the distribution of the number
of 2-runs in the whole sequence and Brown and Xia (2001) were able to carefully seek more
cancelations of errors among the four possible cases based on the outcomes of the pair. Such
an ad hoc approach is not suitable for general k-runs since, instead of considering a typical pair
(ni, ni+1), we have to work on a typical sequence (;, ..., i+k—1) With 2k possible outcomes,
and the non i.i.d. assumption of the sequence exacerbates the complexity. Our approach in this
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paper is relatively crude in the sense that we use the error bound for the worst situation in the
2% cases to bound all the other cases, resulting in a larger upper bound.

Remark 1.4. When p is small and » is large, the upper bound of the error is approximately of
the order k% p?(1 A 1/4/npk), which goes to 0 as n increases.

Remark 1.5. Eichelsbacher and Roos (1999) improved the upper bound of the compound
Poisson approximation with respect to the Kolmogorov distance with order O (p*). This bound
cannot get better if n increases. Moreover, there are 2k — 1 parameters used in the model fitting.
This is in contrast to the two parameters used in the negative binomial approximation, yet, a
better bound of order O (n~!/?) is achieved. The bound is of the same order as the Berry—Esseen
bound in the normal approximation with respect to the Kolmogorov distance (Petrov (1995,
p- 150)).

Remark 1.6. The bound of the total variation distance in Corollary 1.1 is explicit and concise.
The relationship among &, p, and n is much more obvious than that for the compound Poisson
approximation in Eichelsbacher and Roos (1999) and the translated Poisson approximation in
Rollin (2005). Although there is a restriction for p, it could be negligible in practice when k
is large (see Remark 1.2). Besides, when p is close to 1 and »n is not large, the distribution of
W is not unimodal (see Balakrishnan and Koutras (2002, pp. 157-160)), hence, we should not
expect a good negative binomial approximation in such circumstances.

2. Proofs
Brown and Xia (2001) suggested using the following Stein equation for NB(r, g):
Bga(i) := (a+bi)ga(i + 1) —iga(i) = ljieay — NB(r, ¢)(A), ACZy, (20D

where
a=r(1-¢qg) and b=1-—gq. 2.2)

Theorem 2.10 of Brown and Xia (2001) states that, for Aga (i) := ga(i + 1) — ga (i),

sup |Aga(i)| < - A
ACZ a—+ bi

11
<o, ieZy. 2.3)
1 a

The proof of Theorem 1.1 is similar to that of Theorem 4.2 of Brown and Xia (2001). To
achieve this, it is necessary for us to generalize Lemma 5.1 of Barbour and Xia (1999), as
summarized below.

Lemma 2.1. Let {n;: 1 < i < n+ k — 1} be independent indicator random variables with
P(n; = 1) = pi, and set po = 0 and Wy, = 3 [ nilli1 - - - Ni+k—1. Then, for eachn > k,

by(p1, p2, ..., Pnyk—1) = drv(L(Wy), LW, + 1))
2.3

\/Z?zl(l — pi—1)?pi(1 = p)piy1 - Pitk—1

=C(p1, P2, - s Pnth—1)- 2.4

<1A

Proof. The proof is basically a line-by-line repetition of the proof of Lemma 5.1 of Barbour
and Xia (1999) with some minor modifications when necessary.
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LetW,, = Z;":l NiNi+1 - Ni+k—1,andlet {¢;: 1 <i < n+k — 1} be an independent copy
of {ni:1<i<n+k—1} Setné:Oand,forl <i<n+k-—1,define

77/_ )& itni—) = 77,/'_1 =0,
! n; otherwise.

Let Wr/n =1+ Z;n:l nl{r/;+1 to 77;+k,1, Dy=—-1,Dy =W, — Wy/n’ and é,;, = Dy, — D1,
for m > 1. Then §,, takes values 0 and £1, and {D,,, | < m < n} is a symmetric random
walk. We observe that, for all m, §,, = 1 if and only if 9,1 =1, =0, 9, = 1,1, =
¢m =0,and g1 = 1, ..., 9pyk—1 = 15 and 8, = —1if and only if n,,—y =7, |, =0,
M =0, 7);/" =¢m=1and g, =1,..., npuyk—1 = 1. Thatis,

(8 0y ={m—1=1p_1 =0, M — | = L, mug1 = 1, ..., D=1 = 1},
Now define g = 0 and, for j > 1,

T; =min{m >Tj—1, 8m 7& O}.

Set Ri = l(5;20y and R = >} R;, so R = r is equivalent to 7, < n < 7,41, i.e. there are r
jumps in {D;, 1 <i < n}. Since P(§; = 1) = P(6; = —1), foreachi > 1,
E(R)) =2P@; = 1)
=2P(mi—1=n_; =0)P(ni = DP&G =0)P(is1 =1)---P(igg—1 = 1)
> 2(1 = pi-1)*pi(l = p)pis1 -+ Pisi—1, 25)
where the inequality is because
P(ni—1 =n;_; =0)
=Pmi-1=n;_;=0|ni2=n_,=0Pmi2=n;_,=0)
+Pi—1 =n;_1 =0 {ni—2 =n;_, = 0})P({ni—2 = nj_, = 0}%)
=P®i—1 = 0)P(gi—1 = 0)P(ni—2 = n;_, = 0) + P(ni—1 = 0)P({ni—2 = n,_, = 0}°)
> P(i-1 =0)P(i—1 =0)
= (- pi-1)

where the superscript ‘c’ denotes the complement of the set. The conditional distribution
eC(Srj | R =r), 1 < j < r,is uniformly distributed on {—1, 1}. Let Z; denote D, given
R=r,1<j<r.Then Z; is a simple random walk with initial state —1, i.e.

P(Z; -2 =1)=P(Z; - Z]

1
j—1 = —1) = 7

Let J = min{j > 1: ij = 0}, and define

/7
W W,, m<rty,
" Wpn, m=>r1y.

Therefore, by the above coupling, L(W,, + 1) = L(W,/) and

drv (LWy), LWy + 1)) = drv(LW,), LIW,)) < P(W, # W,).
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By the reflection principle, we can show that
P(W, # W/ | R:r):P(max Dy, = —1 ‘ R:r)

I<j<r

:P(max Z' < —1)

I<j=r /7
=P(Z € {-2, 1))
= m]?x P(Z, =k)

2

<4 —-
r

Then, for all » > 1 and a constant 0 < « < 1,

P(Wy # W)=Y P(W, # W, | R=r)P(R=r)

r=1

0.8
< Y PR=nN+ Y ——PR=r)
1<r<k E(R) r>k E(R)+1 Kk E(R)
0.8
<P(R—-E(R)| = (1 —«k)E(R)) + W
var R 0.8
< + , 2.6
T (1 -EMR)?  JVKER) 20
by Chebyshev’s inequality. From Lemma 2.2, we have
var R < 3E(R). 2.7

Then, if Y /(1 — pi—1)?pi(1 — pi)pit1 -+ Pitk—1 < 5.29, (2.4) is obvious. So, from now
on, we assume that

n
Y (= pi0)’pi(1 = pi)pit1 -+ pitk—1 > 5.29,
i=1

which implies from (2.5) that

n
E(R) =2 (1= pic1)*pi(1 = pi)pit1 -+ pisk—1 > 10.58.

i=1

Hence, combining (2.6) and (2.7), it follows that

, 3 0.8
P E WD = T 0Em AR
SRR ST
T VER) \(1 —)2/1058 Wk
- 3.222
= JER)
2.3

3

<
I (= 02 = ppist - pisko

where the second inequality is obtained by letting x = 0.2197.
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Lemma 2.2. Using the same notation as in Lemma 2.1, and letting R =Y 7 R, =
Z:'l:l 15,20}, we have

var R < 3E(R).

Proof. We have

varR =Y ER;(1 —E(R)) +2) (E(RiR;j) — E(R) E(R)))

i=1 i<j

<E(R)+2) . > (E(RiR)) —ER)E(R)), 2.8)

i=1 j=it+k+1
since R; R; is always O unless j —i > k + 1. Also,

E(R,-Rj) =P(R; =1, R; = 1)
=PR;=1|n-1=n_;=0,[n —n|l=1,
Ni+1=1,....nipk—1 = DP(R; = 1)
=PR; =1|nigphk—1=n44_ = DPR =1)
=E(R; | nitk—1 =11 = DER).

Noting that

E(Rj | Nitk—1 = Ny = D) = ER;j | Nigh—1 =0, njyy =1
=E(Rj | nitk—1 =1, iy = 0),

we have, forall j —i > k+ 1,

|E(RiR;) —E(R)ER))| = |ER; | nik—1 =0y =1 —ER)IER)
<ER)IER; | nigk—1=n 41 =1
—ERj | nigk—1 = Ny = 0. (2.9)

Let U = min{r > i + k: n, = ¢-}. Then U is independent of »; and n; with

PU=j)=P& #n:itk=<r=<j—-1
i1
= l_[ P(n, #é‘r)
r=i+k
i1

=[] @r-t=pm)

r=i+k
< 2-U=i=k) forj>i+k+1.

Note that, when U =1, i + k <[ < j — 1, it is always true that n; = {;, which implies that
m = n;. However, given n; = n;, {(n,, n,): r > 1} is specified by {(n,, {-): r > I}, which is
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independent of (1;+x—1, n;+k—1)' So we have, fori +k <[l <j—1,

Ly, U;)rzl | U =1 nitk—1 = 7);+k,1 =1
=L 1)z | U =1 nigp—1 =nj44_1 =0). (2.10)

On the other hand,

ERj | Nigk—1 =141 =1

o0
=Y EBRj1U=L i1 =ny=DPU=1]nip1=ny =1
I=i+k
o0
= Y EBWR; | U=1L nigx1=nj_ =DPU=1).
I=i+k
Similarly,
o
E(R;j | nisk—1 = Njjpy = 0) = Z ER; |U =1, niyr—1 =nj44_ =0PWU =1).
I=i+k

Thus, by (2.10),

|E(Rj | Mitk—1 = Mjpg_1 = 1) —E(R; | nigr—1 = nj 14—y = 0)]

o0

= Z |E(R; | U =1, niyi—1 =nj44_1 =1)
I=i+k
—ER; | U =1, Nijk—1 =04y = O|PU =1)

<) PWU=D
I=j

=PWU = )). (2.11)

Therefore, it follows from (2.8), (2.9), and (2.11) that

n n
varR <E(R)+2) Y ER)PU = j)
i=1 j=i+k+1

n n j—i—k
<E(R)+2) ER) Y (%)
i=1 j=itk+1
<E(R) +2E(R)
=3E(R).

As we mentioned in Remark 1.3, to implement Stein’s method, we need to consider how the
outcome of a typical sequence (;, . .., n;j+r—1) affects the distribution of W*. By taking away
the elements in W* which are dependent on (»;, ..., n;+x—1) in various levels, we define, from
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nowon, fori =1,2,...,nandi —k < j <i +k,
W = W* — I, U=W"— > I,
ls—i|<k—1
Vi=Wr— Y L Xi=Wr— YL
li—s|<2k—2 li—s|<3k—3
j J
> I V= 2 I
s=i—k+1 s=i—k+1
SFl

Then U; is independent of [;, V; is independent of {I: |s —i| < k — 1}, and X; is independent
of {I;: |s —i| <2k —2}.
2.1. Proof of Theorem 1.1

By (2.1), it suffices to show that, for every A C Zy, |E Bga(W*)| is bounded by the
right-hand side of (1.1). To this end, we fix A C Z and write g for g4. Then

E(Bg(W")) = aE(g(W* + 1)) + bE(W*g(W* + 1)) — E(W*g(W™))

=aE(@@W*+1)+b ZE(Iig(W,- +2)) — ZE(Iig(Wi +1)). (2.12)
i=1 i=1
Set a = (1 — b)A. Then (2.12) becomes

E(8g(W*) = (1 -b) ZE(L') E(g(W*+1) — g(Ui + 1))
i=1

—(1=b) Y EUig(W; + 1) = Lig(U; + 1) + b > E(; Ag(W; + 1))

i=1 i=1
n i+k—1
=(1-b)Y > EBEU)EUAgUi+Yij1+1)
i=1 j=i—k+1
n i+k—1
—(1=b)Y > EGLAU+Y];  +1)
i=1 j=i—k+1
J#i
n
+bY E(;Ag(W; + ). (2.13)
i=1
Now, let
n i+k—1 n i+k—1
1—b)z Z E(])E(I)—i—bZE(l)—(l—b)Z Z E(I;1;) =0.
i=1 j=i—k+1 i=1 j=i—k+1
J#
AsE(l;) = E(Il.2), the above equation is equivalent to
n i+k—1 n i+k—1
bY > (EWI)-EUNEU)N-Y . Y (EULI)—EU)EU; ))+Z(E<1))2—0
i=1 j=i—k+1 i=1 j=i—k+1
J#i
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namely, .
X Y cov Ui, 1) = Y (BUD? 02—

b

i+k—1 P
> le=i—k+1 cov(/j, Ij) 4

Hence, with a = (1 — b)A, the above yields a = Az/az, and the values of r and ¢ can be
obtained by solving the equations in (2.2). With the chosen values of a and b above, it follows
from (2.13) that

E(Bg(W*))
n i+k—1
=(1=b)Y" > ELEUIAgWUi +Yij-1+ 1) —EU)EU)E(Ag(W* + 1))
i=1 j=i—k+1
n i+k—1
—(=b)Y " Y (EBWUIAgU; +Y/;  + 1) —EULI)E(Ag(W* + 1))
i=1 ]=};1§+1
+b Y (B Ag(W; + 1)) — E(I) E(Ag(W* + 1)). (2.14)
i=1

To further our proof, we need to work on the three terms on the right-hand side of (2.14) and
assess the extent to which the impact of the k-runs at certain locations is on the distribution
of W*. For ease of reading, we collect the estimates in the next lemma and will continue the
proof of Theorem 1.1 after the lemma.

Lemma2.3. Forn > 4k, 1 <i <n,andi —k+1 < j <i+k— 1, for any bounded
function h,

|E([jh(U; + Yi j—1)) — E(I;) E(h(W™))]
' i+2k—2 i+2k—2

j—1
5¢>Ilhll(( > o+ Z)E(Ijlz)-l- > E(I,-)Em)), (2.15)

1=i—-2k+2  I=i+k I=i—2k+2

|E(1ih(wi>)—E(h)E(h(W*ms¢||h||( > EUi+ ) E(h)E(zz)),

0<|l—i|<k—1 l1—i|<k—1
(2.16)
|E(L: [jh(U; + Y/ ;1)) — E(Li1;) E(l(W™))|
j-1 i+2k—2 i+2k—2
< ¢||h||< > B+ Y EGLI+ Y EWI) E(11)>, (2.17)
1=i—2k+2 I=i+k I=i—2k+2
1#i
where (2.17) is valid for j # i.
Proof. Since V; is independent of /;, we have
E(/;h(U; +Yi j-1)) — EUI)) E(h(W™))
=E;h(U; + Yi j—1) — L;h(V)) + EU)) E(h(V;) — R(W™)). (2.18)
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For the first term of (2.18), we obtain

E(;h(U; +Yi ;1) — I;h(V}))

j—1 -1
= ) E(IjIIAh(V,-+ > Is))
I=i—2k+2 s=i—2k+2
i+2k—2 j—1 -1
+ > E<IjIlAh(X/i+ YL+ Y 4))
I=i+k s=i—2k+2 s=i+k
j—1 I-1 i+3k—3
— Z E(IJ-I,)E<Ah<x,-Jr Z I + Z IS) 1,:1,:1)
I=i—2k+2 s=i—3k+3 s=i+2k—1
i+2k—2
+ > EU;I)
I=i+k
i+3k-3
xE(Ah(X + Z I + Z I + Z )‘1 _1,_1>
s=i—3k+3 s=i+k s=i+2k—1
(2.19)
For a sec%uence of independent Bernoulli random variables &1, . . ., &, wewriter (&1, ..., &,) =
Yo it51g, and define
1,:=1,...,1.
——

Then direct verification gives

i+3k—3
<X + Z L+ Y I|Ij=I= 1)
s=i—3k+3 s=i+2k—1
= £(r(ﬁi+2k—1, e M N e Ni=15 1g—1)),
i+3k—3
(X—i— Z I—i—Zl—i— Yoo Ij:b:l)
s=i—3k+3 s=i+k s=i+2k—1

=LA, jvidks - =1 L1, 0, i1, Wity o5 My M1y o M1, Lim1)),s

where here and in the sequel, 1; is interpreted as an empty set if s < 0. Applying Lemma 2.1
yields

(e 805 0) e

s=i—3k+3 s=i+2k—1
= |E(QARGr(it2k—1s -+ s M M1s -+ 5 Mi—15 Lk—1)))]
< 2[lhlldrv (LG Mit2k=15 -5 M N> - -+ Mi=15 1k—1)),
LT Mit2k=15 s Mn> Ny - Ni—15 Lg=1) + 1))

S 2|AIC(Pivak—1s---s Pns Pls---s PI—1, k1)
< olAal, (2.20)
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and, likewise, fori—k+1<j<i+k—1

’(Ah(X—i— Z 1+21+1+§:3 )

s=i—3k+3 s=i+k s=i+2k—1

<2||A|l
X CAji, pjvitk> > Pi—1, =1, 0, Lj—j 1, Piakes o+ Prs P1y -+ s Dj—15 Li1)
< ¢llhll. (2.21)
Combining (2.19), (2.20), and (2.21) gives
i+2k—2

|E<Ijh<U,~+Y,-,,-_1>—1jh<v,->)|s¢>||h||( Z 3 )Eu,-m. 222)

1=i—2k+2 I=i+k
On the other hand,

|E(h(V;) — h(W¥))]
-1

L)

I=i—2k+2 s=i—2k+2

i+2k—2 -1
= ) E1,E<Ah(w+ > IS)

I = 1)‘
[=i—2k+2 s=i—2k+2
i+2k—2

=| Y EUDEARCA1 ikt Mvltk—1)tks - D T - =1 1 1))
I=i—2k+2
i+2k—2
<¢lnl Y. EUD. (2.23)
I=i—2k+2
Thus, (2.15) is obtained from (2.18) and the estimates in (2.22) and (2.23).
Apropos of (2.16), because of the independence between I; and U;, using arguments similar
to (2.20), we have
|E(Jih(W;)) — E(1;) E(h(W™))|
= |E(Iin(W;) — Lih(U;)) + EI) E(h(U;) — h(WH))|

i+k—1 i+k—1
< Y IELLARU + Y, D))+ D IEI)EWARU; + Yi-1))|
I=i—k+1 I=i—k+1
i
i+k—1 -1 i+2k—2
= Z E(L 1) ( <V+ Z I, + Z Is)‘li=11=1>'
I=i—k+1 s=i—2k+2 s=i+k
10 S
i+k—1 -1 i+2k—2
+ Z EI,-EI,E(Ah(Vi—i- Z Iy + Z IS> =1>‘
I=i—k+1 s=i—2k+2 s=i+k
i—1 i+k—1 i+k—1
§¢|lhll( > EWiIy+ Y EGLI+ Y E(Ii)E(Iz)>-
l=i—k+1 I=i+1 l=i—k+1
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Finally, for (2.17), because (/;, I;) is independent of V;, it follows that

E(;Ijh(U; +Y ij— D) — E(I-I')Eh(W*)
=EW1j(h(U; + Y] ;) — h(V;)) + E( 1)) E(h(Vi) — h(W™))
j—1 -1

= > E(I,'I‘/IlAh<V,~+ > 1s>>
s=i—2k+2

=i —2k+2
I#i s#i
i+2k—2 j—1 =1
+ Z E(IinI[Ah<V,-+ Z Iy + Z 1S>>
I=i+k s=i—2k+2 s=i+k
SF#L
i+2k—2 -1
- > E(Iilj)E(IlAh<X/i+ > A))
1=i—2k+2 s=i—2k+2
Jj—1 -1 i+3k—3
= > E<1i1j11>E<Ah<x,-+ o L+ Y. Is) ,=1,=1,=1>
1=i—2k+2 s=i—3k+3 s=i+2k—1
I#i s;éi
i+2k—2
+ Y Bl 11)E<Ah(x + Z Iy + Z I
I=i+k s=i—3k+3 s=i+k
SFEI
i+3k-3
+ Y 1s>‘1i=1j=1,=1)
s=i+2k—1
i+2k—2 -1 i+3k—3
- > E(1i1j>E<Iz)E(Ah<x,»+ o L+ ) Is) 11=1>.
1=i—2k+2 s=i—3k+3 s=i+2k—1

(2.24)
Using Lemma 2.1 and arguing as for (2.20), we obtain (2.17) from (2.24).

We now continue the proof of Theorem 1.1. Applying Lemma 2.3 to (2.14) with k(-) =
Ag(- + 1), we obtain, from (2.3),

|E(Bg(WH)|

n i+k—1 i+2k—2 i+2k—2
Z > E(I)(( Z Z)E(wm > E(I,)E(Iz))

i=1 j=i—k+1 I=i—=2k+2  I=i+k I=i—2k+2

n i+k—1 i+2k—2 i+2k—2
SONDY (( > Z)E(M;IM > E(M,-)E(m)

i=1 j=i—k+1 I=i—2k+2  I=i+k I=i—2k+2
J# I#i
d) b n
+ o ( Z E(L; 1) + Z E(Ii)E(n)),
i=1 “0<|l—i|<k—1 [I—il<k—1
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which implies (1.1) since

b n
5. ( Z E(L 1)) + Z E(mE(n))
i=1 0<|l—i|<k—1 [l—i|<k—1
1 n 2 n 2
=X<(Z Z E(1i1,>) —(Z Z E(Ii)E(11)> )
i=1 O<|l—i|<k—1 i=1 |l—i|<k—1

Concerning (1.2), we combine (1.1) with the following estimates:

i+k—1 j—1 i+2k—2 i+k—1
> ( o+ ) )E(Ijll) < @4k —3) > EU)) < (4 —3)2k — hHm],
j=i—k+1 N=i—2k+2  I=i+k j=i—k+1

i+k—1 i+2k—2
> > EU)EU) < @k —3)(2k — hm],
j=i—k+1 1=i—2k+2
i+k—1 i+2k—2

Jj—1
3 ( o+ Y )E(Iil,-ms(4k—3>(2k—1>m?E(1,~),
Jj=i—k+1 MN=i—-2k+2 l=i+k
J#i #i
i+k—1 i+2k—2
> Y EWINEW) < (4k — 3)(2k — Dm} E(I)),
Jj=i—k+1 I=i—2k+2
J#i

and, by Cauchy—Bunyakovskii’s inequality,

n 2 n 2
(Z > E(Iilz)) = (Z Y. B L= 1)E(11->>
i=1 O<|l—i|<k—1 i=1 0<|l—i|<k—1
< (Z Y. EU| L= 1)2E<1,~)) >, >, EW
i=1 0<|l—i|<k—1 i=1 0<|j—i|<k—1

< (2k—2)*2)_ m]E().

i=1
This completes the proof.
2.2. Proof of Proposition 1.1
For each f: Z+ — [0, 1],

n i—1

IEf(W)—Ef(W*)|=)E > 1,-Af<w+ 3 1,)

i=n—k+2 j=n—k+2

i—1
E(Af(W+ > 1‘,~>

j=n—k+2

n

< > E)

i=n—k+2

o)
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n
= Y EUDIEALC itk—1-n Nitk—ns - Ni—1> Le1))]
i=n—k+2
n
< Y EBUNCUigk—1-n, Pitk—ny---» pi-1, lo1)  (see (2.4)
i=n—k+2
- 2.3
< ) E(Ii)<1A+>,
n
o

i=n—k+2

Zm:k+2

which implies Proposition 1.1.
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