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ABSTRACT. The deformation of pack ice is modeled as the discrete motion of rigid
plates. A continuous and differentiable field of large-scale velocity is sampled at the center
point of each plate to determine its uniform translation. Discontinuities in the ice velocity
occur at the cracks separating pairs of adjacent plates. Ice deformation that is character-
1zed by opening, ridging and sliding coefficients is computed directly by integrating the
velocity jumps over the length of each crack, and summing over all cracks in a represen-
tative area. These coefficients depend on the large-scale strain rate and the geometry of
the cracks. The relevant geometric parameters are the orientations of (a) the cracks with
respect to the principal axis of the strain rate, and (b) the cracks with respect to the rela-
tive position vectors between the center points of adjacent plates on either side of the
crack. For all tilings of uniform, equilateral diamonds (including squares) the opening
and ridging are minimized, and the sliding is maximized, when an axis of symmetry of
the plate coincides with the principal axis of the strain rate.

NOTATION 0 Arctangent of ér1/£;
pD  Angle from the z; axis to A

A Area of the region R ¢ Component of velocity jump normal to the ith crack
A®  Area of R® ¢ Vorticity
(a,b) Components of x(™ — x @Pmajor Angle measured from the 1 axis to the major principal
byj Velocity gradient tensor ~ axisof by _
H Heaviside function x'? Component of velocity jump parallel to the ith crack
i Index that denotes an individual crack U, Net rate of opening at the ith crack
k Unit vertical vector U, Total rate of opening at the ¢th crack
1) Length of the ith crack \I/r@ Total rate of ridging at the ¢th crack
') Distance between the centers of plates adjacent to the ¥, Total rate of sliding at the ith crack

ith crack projected on " w(™  Rotation rate of mth plate about its center point
M Number of distinct plates in R
m,n Indices that denote individual plates 1. INTRODUCTION
N Number of distinct cracks in R
72 Unit vector normal to the ith crack Usually pack ice does not exist as a single sheet. Instead, it is
R Region in the sea surface plane the aggregation of many pieces, called plates, that vary in
R"  Quadrilateral region associated with the 7th crack size and shape. If the plates are in contact, pack ice can be
s Distance along a crack viewed as a sheet with many cracks. If they are spaced
t Time widely, the pack resembles a two-phase medium. In this
f@ Unit vector tangent to the ith crack and the following paper (Ukita and Moritz, 2000) we use
u Large-scale velocity vector, u = (ug,ug) = Uu; the term “plate” to designate a rigid element in the field of
b 4 Position vector, X = (21, 22) = x; motion of pack ice, and the term “crack” to designate the
x(™) Position of the center of the mth plate boundary between adjacent distinct plates. These kinemati-
Ol rns Deformation rates normalized by area and strain- cally defined terms are distinguished from the familiar

rate magnitude terms “floe” and “lead” that describe the morphology of the
o Smallest interior angle of diamond-shaped plates pack ice. This convention facilitates precise analysis of the
Av Velocity jump across the ith crack ice kinematics and deformation, without limiting the possi-
€] Strain-rate magnitude ble relationships between kinematics and morphology. In
€1 Divergence real pack ice, the elements identified morphologically as
én Shear floes and leads sometimes coincide with plates and cracks,
7 Angle from A o x(m) — x( and sometimes do not.
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In response to forcing by winds and ocean currents, the
plates exhibit a variety of motions that change on a wide
range of time-scales. By definition, individual plates move
as rigid bodies. The pattern of ice velocity in a large region,
which is called the large-scale ice motion, is defined by the
set of rigid-body motions of all plates within that region. In
this view, cracks are defined as the locus of points on which
the ice velocity changes discontinuously from the rigid-body
motion of one plate to that of another.

In real sea ice, cracks may be elongate regions of small
but finite width along the edges of plates. Within these
regions the ice bends, breaks, piles, slides and separates. We
model these cracks as curves, based on their small area com-
pared to the plates. It is plausible that geometric patterns
associated with cracks affect the large-scale relationships
among velocity, deformation and external forces. Particu-
larly important aspects of ice deformation are the produc-
tion and loss of new open-water area and the production of
ridged ice. Locally these processes depend on the com-
ponent of relative motion of adjacent plates normal to the
cracks. Due to the rapid air—sea transfers of heat, radiation
and moisture over open water and thin ice, knowledge of
opening, closing and ridging processes is essential for under-
standing the surface energy and mass balance. The energy
transformations and horizontal forces associated with
ridging play a fundamental role in theories of large-scale
sea-ice rheology as well. For this latter topic, sliding motions
parallel to cracks may be important too.

Large-scale theories for the mass and momentum balance
describe opening, closing and ridging as functions of a con-
tinuous and differentiable velocity field. For example, the
sea-ice thickness distribution theory (Thorndike and others,
1975, henceforthT75) models the rates of opening and ridging
(per unit area) as functions of the divergence and shear of the
large-scale velocity field. These quantities are invariants of
the large-scale strain-rate tensor. The shape of the yield curve
needed to close the large-scale momentum equation may be
determined by the ridging function, based on a hypothesized
relationship between energy transformations caused by me-
chanical redistribution of ice thickness and work done by the
large-scale stress tensor (Parmerter and Coon, 1972;
Rothrock, 1975; Hibler, 1980). Because this hypothesis intro-
duces unknown functions and parameters, it is difficult to test
by comparison with observations. This situation poses im-
portant questions: What is the relationship between the dis-
continuous, piecewise-rigid pattern of motion realized by a
set of plates, and the continuous, differentiable large-scale
velocity field? How do opening, closing, ridging and sliding
depend on the large-scale strain rate, and its small-scale
manifestation as rigid-body motions of plates? Only the dis-
continuous pattern can be observed directly, and it would
seem to depend on the geometric pattern of cracks.

Thorndike (1987) investigated such questions with the
aid of a random-geometry model. Cracks are distributed
isotropically on the plane using a Poisson distribution for
distance from the origin and a uniform distribution for
crack orientation. The normal component of the velocity
difference on a crack is modeled as an independent Gaussian
process.

Observations, especially of gray-tone curvilinear features
on satellite images, suggest that crack patterns in real sea ice
usually exhibit preferred orientations (e.g. Shapiro and Burns,
1975; Marko and Thomson, 1977; Kupetskii, 1984; Vinje and
Finnekasa, 1986). Erlingsson (1988) showed that the existence
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of preferred crack intersection angles is consistent with a con-
stant angle of internal friction in a material that satisfies a
simple Mohr—Coulomb yield criterion. Schulson and Hibler
(1991) suggested that a single mechanism may account for
crack patterns over a wide range of spatial scales. Coon and
others (1998) presented elements of a rheological framework
that recognizes anisotropies associated with frozen leads with-
in a continuum element of pack ice. There is relatively much
less direct information on the geometry of cracks defined as
locations of discontinuities of velocity (Hall and Rothrock,
1981). Overall, satellite data do suggest that a uniform distri-
bution of crack orientations is unrealistic in many cases.

The goal of this presentation is to define the geometric
and kinematic parameters that describe deformation of the
pack ice in such a way that the relationships between the
motion of rigid plates and the deformation can be evaluated.
Toward this goal, we develop a kinematic model whose
inputs are the large-scale strain rate and the geometry of
cracks, and whose output is the discontinuous piecewise-
rigid field of motion of the plates. From the latter field, the
large-scale opening, ridging and sliding rates are computed
directly. Using this model, we investigate the dependence of
ice deformation on the geometry of cracks in a framework
wherein each piecewise-rigid velocity field is well defined,
realizable and self-consistent.

2. BACKGROUND

In'T75, it is argued that isotropic behavior follows from a
uniform distribution of crack orientations, and that this uni-
formity might be realized if the pack is fractured by cracks
that originate through processes independent of the large-
scale stress. Examples of such processes are thermal stresses
and isostatic imbalances. A different view is that the distri-
bution of crack orientations is non-uniform, exhibiting pre-
ferred directions. Crack directionality might be determined
by various factors, such as boundary conditions at a coast,
and spatial gradients of ice thickness, ice concentration and
temperature. Nevertheless, it is plausible to hypothesize that
any crack-orienting factor must manifest itself through the
action of the large-scale stress whose orientation is charac-
terized by the principal direction of the stress tensor (e.g.
Marko and Thomson, 1977; Erlingsson, 1988). For isotropic
materials, the principal axes of stress and strain rate are
aligned (Hill, 1960). In the absence of direct measurements
of large-scale stress, we focus here on relationships between
the crack orientation and the principal axis of strain rate.

Even if cracks exhibit preferred orientations that are
related closely to the principal axis of strain rate, one cannot
rule out the model of pack ice as a material fractured by
small-scale mechanisms such as thermal cracking. A large-
scale stress might simply impose directionality by organiz-
ing pre-existing, uniformly distributed, small-scale fractures
to produce longer, interconnecting lines of velocity discon-
tinuities (1.e. cracks) that leave many of the small-scale frac-
tures inactive. The alternative view is that kinematically
observed cracks represent single fractures of a solid sheet that
occur in response to, and in a direction consistent with, the
large-scale stress tensor acting at the time of failure.

With non-uniform orientations either by pre-existing
cracks or by active cracks, one expects opening and ridging
to depend on geometry because the major principal axis of
the strain-rate tensor defines a particular direction in the
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Fig 1. (a) Uniform square plates and (b) uniform diamond
plates with the smaller interior angle 6. For the square case, |4
measures the orientation of one set of sides. For the diamond
case, 1o measures the orientation of vertices with the smaller
angle. Both angles are defined with respect to the major prin-
cipal axis .

plane. Cracks oriented perpendicular to this direction
might be expected to experience maximum opening and
minimum ridging, and vice versa for cracks oriented paral-
lel to this direction. These considerations suggest that the
relationships between ice deformation and strain rate will
depend on the orientation of the cracks measured relative to
the principal axis of the strain rate. To extend this idea from
intuition to quantitative results, one must take into account
the orientation of cracks relative to the velocity jump across
the crack, and the dependence of these quantities on the
large-scale velocity gradient. This requires, in addition to
the orientation of the crack with respect to the principal dir-
ection of the strain rate, another geometric parameter to
describe the orientation of the crack relative to the vector
between the geometric centers of the rigid plates on opposite
sides of the crack.

3. THE KINEMATIC MODEL

3.1. Geometry of cracks and plates

The geometry of the ice cover is determined here by a parti-
tion of a region R of the sea-surface plane into discrete, non-

overlapping plates. Let the area of this region be A. If A is
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Major Principal Axis, X1 .
»

Fig. 2. Definitions of geometric quantities used in the text (a)
Jfor a region defined by two plates and (b) for a quadrilateral
region defined by a crack and two centrods.

sufficiently large, the region contains many ice plates and
we refer to physical quantities averaged over A as large-
scale variables. Each plate is bounded by a closed curve.
The plates are closely packed, with no open water between
them. In other words, the ice concentration is 100% and the
boundary of each plate is everywhere in contact with the
boundaries of adjacent plates. Geometers refer to partitions
of this kind as tilings of the plane. The tiles correspond to
individual plates. For simplicity, this analysis is limited to
tilings of convex plates. It follows that each plate is a polygon,
and the plate boundaries become sets of straight-line segments.
Each distinct line segment is called a crack. Figure 1 shows two
examples of tilings of convex polygons. The patterns of squares
and diamonds are uniform tilings, because all plates are iden-
tical. The regular tilings, a subclass of the uniform tilings dis-
tinguished by reflective symmetry of the tiles, are three in
number: uniform squares, uniform hexagons and uniform
equilateral triangles. A useful property of regular tilings is that
each crack is perpendicular to the line segment joining the
centers of the two plates adjacent to the crack.

If the large-scale area A, the total number of distinct
plates M and the total number of distinct cracks IV are fi-
nite, then each plate may be identified by an index m = 1,
M, and each crack may be identified by an index % =1, N.
Because the plates are convex polygons, there is a one-to-
one correspondence between pairs of plates indices (m,n)
and the crack index @ : (m,n) < (i). Let x = (1, 22) =
be the position vector of a point in the plane, where boldface
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type denotes a two-dimensional vector, subscripts denote the
components of a vector, and the tensor subscript 7 may take
on the values 1 and 2. On a given crack (Fig 2), let x(s) be
the position of a point parameterized by its distance s from
the end of the crack. The length of the ith crack is
1) = | [ds|. Here and henceforth, superscripts in paren-
theses denote individual cracks or plates. Let A® and E(Z)
be unit vectors normal and tangent to the crack. So defined,
1 and £ are determined up to a rotation by 7 To deter-
mine these vectors uniquely, let x™ and x be the posi-
tions of the geometric center points of the mth and nth
plates whose mutual boundary is the ith crack. The relative
position vector x™ — x(™ plays an important role in the
analysis of opening, sliding and(r)idging on the ¢th crack.
1

the interior of the plate m whose position x(™) appears first

Define the unit normal vector ' so that it points lowards
in the expression for the relative position vector, and let t '
point 90° to the left of A% It follows that the normal com-
ponent of the relative position vector 1is positive:
I = (x(m — x) . 4 > 0. Referring again to Figure 2,
we see that a unique region RY of area A% = [07'0) /2
may be identified with each crack. This region corresponds
to a pair of triangles sharing a common base whose length is
1), The vertices of the triangles are the ends of the ith crack
and the respective geometric centers of the adjacent plates.
By this construction, the set R(i), it =1, N is a dual of the
original tiling of plates, and therefore constitutes another
tiling of the plane. This fact is useful in defining large-scale
variables that are normalized to unit arca A% /A. The
weighting factor associated with each crack is the normal-
ized area which sums to unity, and can be identified with
the probability of the given crack.

The geometry of each crack may be specified by its
length 1) and two angles for tilings of convex plates. Let
x(m —x(" = (a,b) and 2% = (cos u@ sin p?) (Fig. 2).
19 is thus the angle measured from the z; axis to the vector
normal to the ith crack. Let ') be the angle measured from
7to x(™ — x(), Tt follows that

a = |x™ —x(">|cos(,u<i> +n(i>)7 (1)
b=|x"™ —x]|sin (/L(i) —+ n(i))7 (2)
and
10 = |xtm) — x| cos(n(”). (3)
Because A'”) points toward x(m) | /0 i positive.

3.2. Large-scale motion

The large-scale motion of the pack ice is defined by a
velocity field u(x) that is differentiable in space. We may
think of this field as the velocity pattern determined by
smooth fields of surface winds and ocean currents, acting
on an ice cover whose properties are specified statistically
so that they too vary smoothly in space. The large-scale
velocity vector is denoted u = (u1, u2) = u;. The relative
motion of points sufficiently close to an arbitrary origin var-
ies linearly with position

ui(xj) = bi]mj + u; (O), (4)

where the velocity gradient at the origin is a second-order
tensor
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8ui
bij = 9, (5)

and summation is implied over repeated subscripts. The
angle,

o= ltarf1 <M) modulo T, (6)
2 b1 — bao

measured from an arbitrary z; axis, defines two directions

in the plane, the major and minor principal axes of the

velocity gradient. If we choose coordinates such that the

axis coincides with the major principal axis of b;; then

®Pmajor = 0 and we have

) _|é|{<cos0 0 >+(sm9 0 >}+g<o —1)
KD 0 cosf 0 —sinf 2\1 0

(7)

where
0 0
g = 8—21 + a—zz = divergence, (8)
Ou;  Ou
€ = a—xi - a—xz = shear, (9)
1
€] = (¢f + éf;)*= strain-rate magnitude (10)
Gztan_l(g) (11)
€1
and
0 0
= 8—u2 - 8—u1 = vorticity. (12)
L1 L2

The respective terms on the righthand side of Equation (7)
describe an isotropic (non-deviatoric) expansion or con-
traction, a stretching along x; with an equal compression
along x2 and a uniform rotation. Because the uniform trans-
lation u;(0) and the rotation (/2 do not change the distance
between any two points on the ice, we assume that they do
not contribute to the instantaneous rates of opening, ridging
and sliding, and henceforth we set ;(0) =0 and ¢ = 0.
Together the remaining quantities define the strain rate
whose invariants are called divergence é = |é|cosf and
shear €1 = |€| sin §, and whose major principal axis is in the
x1 direction. |¢| measures the magnitude of the strain rate
and # measures the ratio of shear to divergence. The values
0 =0,7/4,7/2,3m/4, 7 correspond to pure divergence, uni-
axial stretching, pure shear, uniaxial contraction and pure
convergence, respectively.

To summarize, the portions of the large-scale velocity
field relevant to the instantaneous rate of ice deformation
at any point X may be written as

B _ |él {cos O +sin6 0 T
ux) = (Vu)x = 2 0 cosl —sinf) \ zy )’

(13)
where x = (x1,22) correspond to the principal axes of the
velocity gradient.

3.3. Deformation on a single crack

The deformation of the ice cover is determined here by the
relative motion of adjacent plates. On each crack we evalu-
ate the rates of opening, ridging and sliding. Opening is
defined as the rate of change of the area of open water,
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expressed as a fraction of the total area. Similarly, ridging 1s
defined as the fractional rate of change of the area of over-
lapping ice, produced by the normal component of relative
motion at the crack. Finally, sliding is defined as the absolute
value of the tangential component of velocity difference
across a crack, integrated over the length of the crack.

Let v(x) denote the piecewise-rigid velocity of the ice at
position X on a given plate. At each point s along the ¢th
crack, the velocity jump across the crack is Av((s)
= v(™(s) — v(")(s), where superscripts m and n distin-
guish the two sides of the crack. Now resolve the velocity dif-
ference into components normal,

£9(s) = AvO(s) - 2 (s), (14)
and parallel,

X (s) = Av(s) -t (s), (15)
to the crack at s. The normal component makes a contribu-
tion £ (s)ds to the rate of change of open-water area or
overlapping ice area over a small increment ds. The contri-
bution is opening when positive, and ridging when negative.

Therefore, in dimensional form we may express the total
opening as the line integral over the length of the ith crack:

>—/H )(s) ds, (16)

the total ridging as

= [1me?

the net opening as

)] — 130 (s) ds, (17)

/§ )ds = ¥, — ¢, 0) (18)
and the total sliding as
o) = /|X(i) |ds, (19a)

where H(z) is the Heaviside function. According to Equation
(19a), sliding occurs on any crack where there is tangential
motion. If the definition of sliding is limited to cracks that
are not opening, then

7,0 = / {1 - HED () x® ds

By definition, ¥, W,

InT75 the large-scale deformation is described by the non-
dimensional coefficients «, for opening and o, for ridging. The
quantities defined above, which may be denoted collectively by

(19b)

() and ¥, are non-negative.

\IJOMI7S(¢), refer to a single crack 7, and have dimensions area
per unit time. For consistency with the notation of T75 we
define corresponding non-dimensional coefficients for the ith
crack as follows:

L Q0 ,I,0, S<Z)
Olo,r,n,s(l) | | (2())

Summing over all cracks in a large-scale element of the pack
ice, the large-scale coefficients of deformation become

1 o 1Y ,
Qormns = Z Z ao,r,n,s(l)A(l) = m Z \I/o,r,n,s(z)- (21)
i=1 i=1

3.4. Velocity jump on a single crack

'To develop formulae for each coefficient of deformation that
depends on 6, on the rotation rate of individual plates w(™
and on the geometric properties of the cracks in R, we need
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the velocity difference across the cracks Av(®(s). To this
end, we introduce a simple model that determines the
rigid-body velocity v on individual plates as a function of
the positions of the plate centers, the large-scale velocity
gradient Vu and the rigid-body rotation of each plate.

The velocity of the mth plate, moving as a rigid body in
the plane, may be specified as the sum of the translational
velocity v(™ at the geometric center x™ of the plate and a
uniform rotation w™ about the center point. Note that w(™
1s a property of the motion of a plate, which is distinct from
the vorticity ¢ of the large-scale field of motion, making the
total rate of rotation (/2 + w™). Then for any point x on the
mth plate,

v(x) = v (3 ol )k x (x=x"),(22)

where k is a unit vertical vector. The velocity difference across
the ith crack between the mth and nth plates becomes

Av(i)(s) _ [V(m)_v(n)] _’_{w(m)l; % [X(S) _ X(m)]
Wk x [x(s) — x™]}. (23)

The simplest relationship between the translational motion
of plates, the geometry of the cracks bounding the plates
and the large-scale strain rate is realized by setting the
velocity of the plate center equal to the large-scale velocity
evaluated at the geometric center of the plate:

(m) _(vu) (m) (24)

To find the translational part of the velocity difference, we
substitute the position difference between plates m and n
on either side of the ith crack to obtain

v — v = (Vu)[x™ — x")], (25)

Because the large-scale velocity gradient provides no infor-
mation about spatial differences in angular velocity, the sim-
plest model of plate rotation is to specify a uniform rotation
ratew = w™ = w™ forall plates. In nature, the rotation of
individual plates probably depends in a complicated way on
the geometry of the plate and the motion of adjacent plates,
but this complication is beyond the scope of the present
analysis. With uniform plate rotation, the terms involving
x(s) cancel in Equation (23), leaving

Av = [(Vu) — kwx][x™ — x®@)], (26)

With polygonal and uniformly rotating plates, the inte-
grands in Equations (16—19) are constant along the entire
length of each crack, and we have [(-?(s)ds = (-@)I¥), so
that we may write

1 QH(g(i))g@')

T H(£Ne ) — 2SS
where we have used Equations (16), (20) and A®) = [('0) /2,

Similar expressions hold for the ridging, net opening and slid-
ing on the ith crack. The expressions for Oéo,r,n,s@ all involve

ay ) =

(27)

the quantity

[(Vu) — kwx][x™ — x™)]
2w
. 0+ sinf -
_ |é|l’(7’) cost + sin el
-2
2 \le cosf —sin

< cos ) — sin p¥ tan n® > (28)

sin @ + cos p@ tan n(®
making use of Equations (1-3). Taking the dot product of
317
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this expression with the unit vectors i@ and E(l), and sim-

plifying the trigonometric terms, we obtain

£l = R
2

. . 19 .
: {cos 0+ sin 6 {cos 20 — sin 24" tan 17(1)} + |—u|) tan nm}
€

(29)

G _ e

X 2

. , . 19
. {cos 0 tan M(Z) — sin f|sin 2/1(2) + cos 2,u(l) tan n(”} — |—u|)},
€

(30)

respectively.
3.5. Large-scale deformation

To obtain large-scale deformation coefficients, we simply
multiply by the crack length ) sum over all cracks and
normalize with the area and the strain-rate magnitude in
accordance with Equations (20) and (21). For opening we
have

o, = cos Z 1

H® Nii

+ sin Z

=1

N AG) ()
~{cos?u(i> —sin 2p® tann } Z tann(”,
=1
(31)
and for sliding
N
Al , )
s = 0t (”—'9{'2@
1o% ; | cosftann sin 6| sin2p
) tan @] — 2%
+ cos2u'" tann ]—— , (32)

where H = HO(£9), The expression for the ridging
coefficient @, is obtained by substituting H) — 1 for H®"
in Equation (31).

Several features of Equations (31) and (32) are worth
noting. The large-scale coefficients of deformation have
been formulated explicitly in terms of 6,w/|€|, and the
geometry of cracks. The coefficients of cos 6,sin § and
w/|€| are sums of trigonometric functions of the angles ("
and 7' associated with the orientation of cracks and with
the vectors between the centers of adjacent plates. The sums
are taken over all cracks in the large-scale region R. The
contribution of each crack is proportional to the fractional
area A% /A, which depends on the length of the crack and
on the normal component of the relative position vector
connecting the centers of adjacent plates. The Heaviside
functions assure that only those cracks that are opening con-
tribute to the opening coefficient a,, and vice versa for the
ridging coefficient a,. Because the argument & of the Heavi-
side function depends on 6, the coefficients of cos § and sin §
are functions of 6.

In this kinematic model the angles 1 and ") may be
specified independently. 7' is determined purely by the
geometric pattern of cracks, whereas 1) depends on how
these cracks are oriented with respect to the principal axis
of the strain rate. The magnitude of the term tann¥) grows
without bound as 7' — +7/2, corresponding to a crack
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oriented parallel to the vector x™) — x(™ between the centers
of adjacent plates. In this limit, the horizontal extent of indivi-
dual plates is unbounded, and we no longer have a tiling of the
plane. Tor tilings of the plane that produce bounded plates
with very large aspect ratio (i.e. long, thin plates), the
tan 7! terms are large but finite. In this case, these terms con-
tribute large amounts of opening and ridging (1) if the plates
are rotating (w #0), and (2) if the large-scale motion is shear-
ing (sinf# 0) in a direction that is neither parallel
(1 = 7/2) nor perpendicular () =0) to the cracks.

The net opening o, = o, — o 1s found by substituting 1
for H®) in Equation (31):

N
A

Q, = CoS 9+Z
—~ A

. . . 2 _
. {sin 0 [cos 20 — sin 24 tan 17@} + r: tan n'” }

(33)
By construction, a;, 1s the normalized time rate of change of
the total area A of the region R that contains the IV cracks.
That 1s,
(34)

Elay = ——.
elow = 7 a
Because the large-scale velocity is a continuous, differenti-
able field, the corresponding large-scale rate of area change
associated with the large-scale velocity field is:

1dA4 .
ZE— |€|COS 0. (35)
Equality of these would imply that
ay, = cos b, (36)

placing a constraint on the geometric quantities

N i

A 2 .

1 { [cos 2,u< ) — sin 2M( 9 tann< ) —i——_Ttann(”)} =0
€

i=1
(37)
that would hold for any pattern of cracks. Because the

geometry is specified independently of |é| and w, we may
set w = 0 to obtain

N AG)
A

i=1

[cos 2u® —sin2u tang®] =0 (38)

and |é| = 0 to obtain

N0
A .
Z " tann® = 0. (39)

i=1

Mathematical proofs of constraints equivalent to Equa-
tions (38) and (39) are given in Miles (1964), for the expected
value of the trigonometric functions, evaluated over an
ensemble of random tilings with isotropic statistics. We
know of no proofs that Equations (38) and (39) are satisfied
for an arbitrary tiling of the plane, with finite or infinite NV.
In section 4, we show that these constraints hold for some
uniform tilings that may be analyzed directly. We have
explored whether additional geometric constraints are
imposed by the expression for sliding, but thus far we have
not been able to derive any such constraints by relating the
known properties of the large-scale velocity to the rates of
change of area or length in our discontinuous model.
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4. TILINGS OF UNIFORM PLATES

We are now in a position to evaluate the dependence of the
coefficients of deformation on the geometry of cracks, by
using Equations (31-33) with specific values of u® and 7
that correspond to particular geometry of the plates. The sim-
plest problems are formulated with uniform tilings in which
every plate has the same size, shape and orientation.

4.1. Uniform square plates

For a tiling of uniform squares of side L (Fig. la), there are
only two distinct values of o), corresponding to any two
adjacent sides of the square. By symmetry, we can derive
results valid for the complete tiling by studying only these
two sides. On the two distinct cracks we have: cos2pu(!)
— —cos 2M(2>> 77<i> =0,1'0 =10 =71, AV4A® = A =12
and A¥) /A =1/2,i =1,2 Thus Equations (31-33) become

HleW @) HIeM1 — HI£®@)
(S EHIE g B HE) ),
(40)
aszl{ sin9sin2u(1>+2—,w‘—|— sin9sin2u(1)—2—,w },
2 €] €]
(41)
oy = cosf. (42)

By symmetry, only the range 0 < (") < /4 needs to be
considered. Direct substitution shows that Equations (38) and
(39) are satisfied, and thus we compute the ridging coefficient
as ay = @, — cos . The ridging coefficients shown in Figure
3a are independent of plate rotation w. In general, if u(Y is
given, there are three distinct intervals for opening and
ridging on 0 < @ < 7. In the first interval 0 < 6 < 6;, both
Heaviside functions are equal to one, i.e. both cracks are
opening. In the second interval, §; < 6 < 65, H(f(z)) =0, so
the first crack is opening and the second crack is closing. In
the third interval, 0y < 6 <7, both Heaviside functions
vanish and the opening is zero. Thus we have

cos ,0<0 <0y,
a,(0) = %[cos@+sin000s2u(1>] ,01 <0 < 0,
0 00 <0<,
(43)
0 ,0<6 <6,
o (0) = —%[COSO—SiDGCOSZu(l)] ,01 <6< 6y,
—cosf ,02 <0 <,
(44)
where the intervals are determined by
cosf1 — sinf; cos2p = 0 and (45)
cos By + sin B, cos 2 = 0. (46)

Note that the maximum of (cos §, 0) and the maximum of
(—cosf, 0) are the opening and ridging due solely to the
divergence, respectively. Therefore, for all 6, the opening
and ridging coefficients a,and oy equal or exceed the portion
associated with divergence. The additional opening and
ridging arise from the velocity shear, which appears only on
the middle interval 6y < 6 < 0. Therefore, the additional
ridging is at its minimum when the angle p(!) is chosen such
that 6; = #5. This minimum occurs with um = /4. The
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Fig. 3. (a) Theridging coefficients as a function of the shear-
to-divergence ratio, 0, for different values of 11, 0° ( solid line ),
15° (dotted line), 30° (dash-dotted line), and 45° (dashed
line) under the uniform square geometry. Note that at p =
45°the contribution from the shear part is minimized, whereas
wismaximized at pp = 0°. (b) The ridging coefficients that
have been proposed in the past. T75 (solid line), R75 ( dotted
line) and H79 (dash-dotted line) correspond to the circular
( Thorndike and others, 1975), the teardrop ( Rothrock, 1975)
and the elliptical ( Hibler, 1979) yield-curve shapes.

maximum opening and ridging occur with ") = 0. Between
these extremes, there is a family of opening and ridging
curves corresponding to different choices of u!) (Fig. 3a).
For comparison, the ridging curves presented by T75,
Rothrock (1975) and Hibler (1979) are shown in Figure 3b.

The total sliding depends on both strain rate and plate
rotation, as follows:

2
|sin @sin 2u(V|, |sin@sin2uM| > ‘_w‘
é

g = . (47)
2w

€

2w

€

) | sin @sin 2uV| <

If shear dominates over plate rotation, then the rotation
adds to the sliding on one crack and subtracts from the slid-
ing on the other crack, so the net contribution of rotation is
zero. If rotation dominates over shear, then the shear makes
no contribution for the same reason. Sliding coefficients for
uniform squares with shear dominating are plotted in Fig-
ure 4a. Sliding increases with the shearing strain rate sin
to a maximum at 6 = 7/2. For all values of §, the minimum
and maximum sliding are realized with crack angles u(") =
0 and uM) = 45°, respectively. These crack angles corres-
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Fig. 4. (a) The sliding coefficients as a function of the shear-
to-divergence ratio, 0, for different values of 11, 0° ( solid line),
15° (dotted line ), 30° (dash-dotted line), and 45° (dashed
line ) under the uniform square geometry. In this case, all crack
segments are sampled, corresponding to Equation (19a). (b)
The same except based on only closing segments, corresponding
to Equation (19b ). Note that for both cases it 1s minimized at
w=0°.

pond to extrema of the opposite sense in ridging: crack or-
ientations that maximize sliding minimize ridging and vice
versa. The effect of plate rotation is to introduce two inter-
vals along the 6 axis on which the sliding has a constant,
non-zero value. If sliding is assumed to occur only on closing
cracks (Equation 19b) we find the curves shown by the vari-
ous kinds of dashed lines in Figure 4b. For each orientation
1, a portion of the curve coincides with the solid curves, but
discontinuities occur at values of § where one of the cracks
changes from opening to closing.

To summarize, the regular tiling of squares illustrates
how the general model embodied in Equations (31-33) can
be applied to address the relationship between ice geometry
and deformation. For all values of (Y, the resulting coeffi-
cients produce less ridging than those employed by T75. The
value p!) = 7/4 minimizes the opening and ridging, and
the value x") = 0 minimizes the sliding. The opening and
ridging coefficients satisfy the area conservation constraint
(Equation (36)).

4.2. Uniform diamond-shaped plates

The uniform square tiling studied above was chosen primar-
ily for its simplicity and illustrative purposes. Observations of
lead and crack patterns in sea ice show that although real
plates do not constitute such a tiling, repetitive patterns of
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Fig. 5. The ridging coefficients (a) and the sliding coeffi-
cients (b) as functions of the shear-to-divergence ratio, 9, for
different values of o under the uniform diamond geometry
(30° as the smaller interior angle). For (a), po = 0° ( dashed
line), 15° (dash-dotted line), 30° (dotted line), and 45°
(solid line ), whereas for (b), o = 0° (dashed line), 50°
(dotted line), 45° (solid line), 60° (dash-dotted line), 90°
(dashed line with small breaks). Note that for the ridging
there is a symmetry with respect to jo at 45°, but not for the
sliding.

cracks do occur. For example, Marko and Thomson (1977)
and Erlingsson (1988) found a preponderance of diamond-
shaped plates in their analyses of satellite images, and sug-
gested that the smaller of the interior angles at the apex of
the diamonds tends to be approximately 30°. Based on simple
rheological models, these authors argue that the principal
axis of stress must bisect one of the interior angles of the dia-
mond at failure. Therefore, if the pattern of cracks results
from stresses that satisfy an isotropic rheology, the diamonds
must align symmetrically with the principal axes of strain
rate at failure.

A tiling of uniform, equilateral diamonds (Fig. 1b)
requires an additional parameter that specifies the shape of
the plate, taken here to be 6, the smaller of the two interior
angles. There are two distinct cracks associated with the dia-
mond, whose orientations are i, + 6/2, respectively, where
Lo defines the orientation of vertices with the smaller
interior angles with respect to the major principal axis.
Then on the basis of the symmetric argument, we have for
i= 12 AD/A=12 pN = py+6/2, pP=p, —6/2,
) = 7/2 — § and n® = —7/2 + 6. Note that for uniform
diamonds, 7'is generally non-zero unless § = 7/2 (the
uniform square case). Also the coefficients of the terms
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involving w are not necessarily equal and opposite because
of the Heaviside functions. Here for simplicity we set w = 0.
Figure 5a shows the ridging coefficients for the dia-
monds with § = 30° for a range of the vertex orientations,
1o = 0,15, 30, 45 degrees. When an axis of symmetry of the
diamonds (either with larger or with smaller interior an-
gles) forms a 45° angle with respect to the principal axis of
the strain rate, p, = 45, the ridging coefficients are maxi-
mized (solid line in Fig. 5a). This is consistent with the
square geometry case as it is a special case with p, =45
and 6 = 90. Likewise the ridging coeflicients are minimized
when an axis of symmetry of the diamonds is parallel to the
principal axis of the strain rate. The ridging coefficients take
the same value for p, = 7/4 £ d with 0 < d < /4, imply-
ing the symmetry at f, = 45. The range of 0 < p, < 7/4
thus covers all cases for the ridging coefficients. This is in
contrast with the wider interval, 0 < p, < 7/2, that is neces-
sary to cover all possible sliding coefficients (see Fig. 5b).
These curves, together with Figures 3 and 4 (6 = 90°),
illustrate how the geometry of the plates and cracks affects
the deformation coefficients. For diamond-shaped plates,
the ridging coefficient has a unique minimum for all 6,
given by
0 ,0<0<7/2
o (0) = . (48)
—cos ,m/2<0<m

And 1n each case, the minimum ridging is achieved when p
1s such that a vertex of the diamond is aligned with the prin-
cipal axis of the strain rate.

The tiling of uniform diamonds demonstrates that dif-
ferent combinations of plate shape and orientation can pro-
duce the same opening and ridging. For example, let p be
the orientation of one side of a tiling of uniform squares,
and g = po £ 8/2 be the orientation of one side of a tiling
of uniform diamonds with interior angle 6. Then in the
middle interval of 6 where shear motion contributes to
ridging, using Equations (31), (43) and (44), we obtain iden-
tical opening and ridging coefficients for diamonds and
squares by choosing ¢ such that

sin 2pq

tand = (49)

CoS 241 — cos 2pq

By contrast, the sliding functions for different diamond-
shaped plates are distinct, due to the dependence on cos 6
(see Equation (32)), which introduces an asymmetry on the
0 axis. Therefore, although our model produces a unique set
of deformation coefficients for any given crack geometry, the
inverse does not hold: different geometries may correspond to
the same deformation coefficients. To address this issue with
observations, we need to estimate the crack orientation from
satellite imagery, simultaneous with the estimates of strain
rate, opening and ridging for testing the present model.

4.3. Ensemble of uniform squares with different
orientations

The simple geometry of uniform square plates may be used to
investigate the isotropic geometry case by considering an
ensemble of realizations. In each realization, the plates are
uniform squares with an orientation £, In the ensemble of
all realizations, p) is distributed uniformly on (0, 7/4), thus
making this an isotropic representation. The deformation
coefficients are computed by averaging over all realizations.
The cracks in the ensemble have no preferred orientation.
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Averaging the ridging coefficient over this ensemble produces
the curve shown in Figure 6a. This curve illustrates two
points. First, with a continuous (uniform) distribution of
crack angles p, the resulting ridging coefficient is not of the
form ¢ cos @ + ¢ sin 6 on subintervals of 6. To see this, com-
pare Figures 6a and 3a. Second, this explicit calculation with
1sotropic cracks again produces opening and ridging coeffi-
cients significantly smaller than those employed by T75, and
of a shape more nearly like that of Rothrock (1975), Hibler
(1979) and Stern and others (1995). Figure 6b shows the corres-
ponding sliding function for two cases, one with the closing
constraint (lower dashed line calculated by Equation (19b))
and one without the constraint (upper solid line by Equation
(19a)). Note that the former is symmetric about § = 90 and
the latter is not.

5. CONCLUDING REMARKS

We have developed a kinematic model on the basis of a
piecewise-rigid motion field comprising plates and cracks.
This model, though idealized, provides a means to investigate
the relationships between the ice geometry, the large-scale
opening, ridging and sliding coefficients and the large-scale
strain rate. Simple geometries composed of square and
diamond-shaped plates were used to show that the geometry
of plates and cracks affects these relationships. From these
cases, we found that the geometry of the plates and cracks

08¢
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O v v 1

0 60 120 180
8 (degrees)
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Fug. 6. The ridging coefficients (a) and the sliding coefficients
(b)as functions of the shear-to-divergence ratio, 0, under the
uniform square geometry, averaged for uniformly distributed
w € [0,7/4). For the sliding coefficients, the dashed and solid
lines correspond to the cases with and without the closing con-
straint, Equations (19b) and (19a), respectively.
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affects these relationships. Specifically, the orientation of the
cracks with respect to the direction of the principal axis of the
strain-rate tensor controls the contribution to the coefficients
by the shear motion. We also found that the calculated open-
ing and ridging coefficients both with those simple geom-
etries and with the ensemble of uniform squares with
uniformly distributed cracks are similar to those hypothe-
sized by dynamical theories such as Rothrock (1975), Hibler
(1979) and Bratchie (1984), and one estimated from satellite
observations (Stern and others, 1995).

The model presented here is specified by quantities that
are, in principle, observable. Perhaps, the most difficult task
is to directly observe a piecewise-rigid-body motion by indi-
vidual plates with sizes in the range 1-100 km. An indication
by satellite images seems to support the conceptual model of
rigid plates (see the presence of “blocks” in the ice motion in
Stern and others (1995)). Nevertheless, more observational
studies are necessary to elucidate the role played by the crack
and plate geometry in the ice deformation. Certainly, add-
itional information about either the geometry of existing
cracks or the actively opening cracks, simultaneous with that
on the large-scale deformation, can be used to test the present
model. A potential weakness of the present development lies
in the simplicity of the geometries considered, the square and
diamond-shaped plates. In the companion paper (Ukita and
Moritz, 2000), this limitation is to a large extent eliminated
by considering the random geometry that simulates fields of
pack-ice motion with prescribed statistical properties.
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