
2 
Relativistic strings 

This chapter is devoted to an introduction to bosonic strings and their 
quantisation. There is no attempt made at performing a rigourous or 
exhaustive derivation of some of the various formulae we will encounter, 
since that would take us well away from the main goal. That goal is to 
understand some of how string theory incorporates some of the familiar 
spacetime physics that we know from low energy field theory, and then 
rapidly proceed to the point where many of the remarkable properties 
which make strings so different from field theory are manifest. That will 
be a good foundation for appreciating just what D-branes really are. The 
careful reader who needs to know more of the details behind some of what 
we will introduce is invited to consult texts devoted to the study of string 
theory. 

2.1 Motion of classical point particles 

Let us start by reminding ourselves about a description of a point particle. 
We already touched on it in section 1.1, but we want to take it a bit further 
now, in preparation for doing the same thing for the analogous formula­
tion for strings. The particle moves in the 'target spacetime' (with coordi­
nates (t == xO,xl, ... ,XD- 1)) sweeping out a 'world-line' (see figure 1.1, 
page 2) parametrised by T. We want to write an action principle which 
yields equations of motion for the allowed paths, XM(T). 

2.1.1 Two actions 

The most obvious action is the total path length swept out in spacetime. 
The infinitesimal path length traversed is: 

dl! = (_ds 2)1/2 = (-dXMdX uTJMU)1/2 = (-dXMdXM)1/2, (2.1) 
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2.1 Motion of classical point particles 25 

and we have assumed that the particle is massive and hence that ds 2 < o. 
The massless case will be discussed below. So the action is 

(2.2) 

where a dot denotes differentiation with respect to T. Let us vary the 
action: 

oSo = m /dT(-XILXIL)-1/2XVOXv = m / dTUvOXv 

= -m / druv oXv , 

where the last step used integration by parts, and 

UV == (-XILXIL )-1/2Xv. 

(2.3) 

(2.4) 

So for oX arbitrary, we get UV = 0, which is Newton's Law of motion: 

d2 XIL 
dT2 = 0, (2.5) 

where we have used dfjdT = (_XILXIL)1/2. There is another action from 
which we can derive the same physics. Consider the action 

S = ~ / dT ('Tl-1XILXIL - 'Tlm2) , (2.6) 

for some independent function 'Tl( T) defined on the world-line. 

N.B. In preparation for the coming treatment of strings, think 
of the function rl as related to the particle's 'world-line metric', 
''/TT) as 'Tl(T) = [-'TT(T)j1/2. The function ,(T) ensures world-line 
reparametrisation invariance: 

This is all a bit redundant in 0 + 1 dimensions, but the structure 
will make more sense when we consider the 1+1 dimensions of the 
string's world-sheet. 

If we vary S with respect to 'Tl: 

oS = ~ / dT [-'Tl- 2 XIL X IL - m2] o'Tl. (2.7) 
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26 2 Relativistic strings 

So for 817 arbitrary, we get an equation of motion 

r,2m2 + x{! X{! = 0, (2.8) 

which we can solve with 17 = m-1 ( -X{! X{!)1/2. Upon substituting this 
into our expression (2.6) defining S, we get: 

showing that the two actions are equivalent. 
Notice, however, that the action S allows for a treatment of the mass­

less, m = 0, case, in contrast to So. Another attractive feature of S is that 
it does not use the awkward square root that So does in order to compute 
the path length. The use of the 'auxiliary' parameter 17 allows us to get 
away from that. 

2.1.2 Symmetries 

There are two notable symmetries of the action . 
• Spacetime Lorentz/Poincare: 

where A is an SO(l, 3) Lorentz matrix and A{! is an arbitrary con­
stant four-vector. This is a trivial global symmetry of S (and also 
So), following from the fact that we wrote them in covariant form . 

• world-line reparametrisations: 

for some parameter ((T). This is a non-trivial local or 'gauge' sym­
metry of S. This large extra symmetry on the world-line (and its 
analogue when we come to study strings) is very useful. We can, for 
example, use it to pick a nice gauge where we set 17 = m-l. This 
gives a nice simple action, resulting in a simple expression for the 
conjugate momentum to X{!: 

a£ . 
II{! = -.- = mX{!. 

aX{! 

We will use this much later. 

(2.10) 
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2.2 Classical bosonic strings 27 

2.2 Classical bosonic strings 

Turning to strings, we parametrise the 'world-sheet' which the string 
sweeps out with coordinates (0"\0"2) = (T,O"). The latter is a spatial coor­
dinate, and for now, we take the string to be an open one, with ° ::; 0" ::; 7T 
running from one end to the other. The string's evolution in spacetime is 
described by the functions Xfl(T, 0"), fL = 0, ... , D - 1, giving the shape 
of the string's world-sheet in target spacetime (see figure 1.4, p. 13). 

2.2.1 Two actions 

As we already discussed in section 1.3, using the induced metric on the 
world-sheet which we recall here: 

(2.11) 

we can measure distances on the world-sheet as an object embedded in 
spacetime, and hence define an action analogous to the one for the particle: 
the total area swept out by the world-sheet (equation (1.25)), which we 
repeat here: 

So = -T J dA = -T J dTdO" (-dethab )1/2 == J dTdO" £(X, X'; 0", T). 

(2.12) 

So ~ -T J dTda [(8:: a::)' -(8::), (8::)'r 
= -T J dTdO" [(X' . X)2 - X ,2 X2] 1/2 , (2.13) 

where X' means ax / aO" and a dot means differentiation with respect to T. 

This is the Nambu-Goto action. 
Varying the action, we have generally: 

(2.14) 

Requiring this to be zero, we get: 

a£ 
aX'fl = ° at 0" = 0,7T, (2.15) 
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28 2 Relativistic strings 

dr 

do 

Fig. 2.1. The infinitesimal momenta on the world sheet. 

which are statements about the conjugate momenta: 

(2.16) 

Here, Pf: is the momentum running along the string (i.e. in the 0' di­
rection) while Pf is the momentum running transverse to it. The total 
spacetime momentum is given by integrating up the infinitesimal (see 
figure 2.1): 

(2.17) 

Actually, we can choose any slice of the world-sheet in order to compute 
this momentum. A most convenient one is a slice T = constant, revealing 
the string in its original paramaterisation: plL = J PfdO' , but any other 
slice will do. 

Similarly, one can define the angular momentum: 

(2.18) 

It is a simple exercise to work out the momenta for our particular 
Lagrangian: 

XIL X/2 - X/IL(X . X') 
plL = T -----;:=======_ 

T V(X.X/)2-X2X/2 

X/IL X2 - XIL(X . X') 
plL = T . 

eY V(X. X/)2 _ X2X/2 
(2.19) 

It is interesting to compute the square of Pf: from this expression, and 
one finds that 

P2 - plLp _ 2T2X· 2 
eY = eY ILeY - - • (2.20) 
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2.2 Classical bosonic strings 29 

This is our first (perhaps) non-intuitive classical result. We noticed that 
PrJ vanishes at the endpoints, in order to prevent momentum from flow­
ing off the ends of the string. The equation we just derived implies that 
X2 = 0 at the endpoints, which is to say that they move at the speed of 
light. 

Just like we did in the point particle case, we can introduce an equiva­
lent action which does not have the square root form that the current one 
has. Once again, we do it by introducing a independent metric, lab((J, T), 
on the world-sheet, and write the 'Polyakov' action: 

S = - 4:0:/ J dTd(J( -1)1/2Iab[)aXM[)bXuTJlw 

= __ 1_ J d2(J (-1)1/2Iabhab' 
41T0:/ 

If we vary I, we get 

(2.21) 

DS = - 4:0:/ J d2(J {-~( -1)1/2Dllabhab + (-1)1/2Dlabhab}' (2.22) 

Using the fact that DI = IlabDlab = -llabDlab, (which we already used 
in higher dimensions, see equation (1.13)) we get 

1 J 2 ( ) 1/2 ab { 1 cd } DS = - 41T0:/ d (J -I DI hab - 21abi hcd . (2.23) 

Therefore we have 
1 cd 

hab - 21abi hcd = 0, (2.24) 

from which we can derive 

(2.25) 

and so substituting into S, we recover (just as in the point-particle case) 
that it reduces to the Nambu-Goto action, So. 

2.2.2 Symmetries 

Let us again study the symmetries of the action . 
• Spacetime Lorentz/Poincare: 

XM ---+ X/M = AM Xu + AM 
U , 

where A is an SO(l, 3) Lorentz matrix and AM is an arbitrary con­
stant four-vector. Just as before this is a trivial global symmetry 
of S (and also So), following from the fact that we wrote them in 
covariant form. 
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30 2 Relativistic strings 

• world-sheet reparametrisations: 

OXfL = (aoaXfL 

o,ab = (coc,ab _ oc(a,cb _ oc(b,ac, (2.26) 

for two parameters (a (T, (/). This is a non-trivial local or 'gauge' 
symmetry of S. This is a large extra symmetry on the world-sheet 
of which we will make great use . 

• Weyl invariance: 

/ 2w 
lab ----+ lab = e lab, (2.27) 

specified by a function w( T, (/). This ability to do local rescalings of 
the metric results from the fact that we did not have to choose an 
overall scale when we chose lab to rewrite So in terms of S. This can 
be seen especially if we rewrite the relation (2.25) as (_h)-1/2hab = 

( _,)-1/2,ab' 

N.B. We note here for future use that there are just as many pa­
rameters needed to specify the local symmetries (three) as there are 
independent components of the world-sheet metric. This is very use­
ful, as we shall see. 

2.2.3 String equations of motion 

We can get equations of motion for the string by varying our action (2.21) 
with respect to the XfL: 

which results in the equations of motion: 

with either: 
Open string 

(Neumann b.c.s) 

(2.28) 

(2.29) 

(2.30) 
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or: 

2.2 Classical bosonic strings 

X'IL(T,O) = X'IL(T,'Tr) 
XIL(T, O) = XIL(T,'Tr) } 
lab ( T, 0) = lab ( T, 'Tr) 

Closed string 
(periodic b.c.s) 

31 

(2.31) 

We shall study the equation of motion (2.29) and the accompanying 
boundary conditions a lot later. We are going to look at the standard 
Neumann boundary conditions mostly, and then consider the case of 
Dirichlet conditions later, when we uncover D-branes, using T-duality. 
Notice that we have taken the liberty of introducing closed strings by 
imposing periodicity (see also insert 2.1 (p. 32)). 

2.2.4 Further aspects of the two dimensional perspective 

The action (2.21) may be thought of as a two dimensional model of D 
bosonic fields XIL( T, o} This two dimensional theory has reparameterisa­
tion invariance, as it is constructed using the metric lab (T, (J) in a covariant 
way. It is natural to ask whether there are other terms which we might 
want to add to the theory which have similar properties. 

With some experience from General Relativity two other terms spring 
effortlessly to mind. One is the Einstein-Hilbert action (supplemented 
with a boundary term): 

X = - d2(J (_1)1/2 R + - dsK, 1 j' 1 fr' 
4'Tr M 2'Tr aM 

(2.32) 

where R is the two dimensional Ricci scalar on the world-sheet M and K 
is the trace of the extrinsic curvature tensor on the boundary 3M. This 
latter quantity may be less familiar to some, and we will use it a lot in 
diverse dimensions much later in this book. (There is a discussion of it in 
insert 10.2 (p. 229), and we will not worry about it in detail here lest we 
get sidetracked.) 

The other term is: 

e = _1_ j' d2(J (_1)1/2, 
4'Tro:' M 

(2.33) 

which is the cosmological term. What is the role of these terms here? 
Well, under a Weyl transformation (2.27), it can be seen that (-1)1/2 ----+ 

e2w (_1)1/2 and R ----+ e-2W (R - 2V2w), and so X is invariant, (because R 
changes by a total derivative which is cancelled by the variation of K) 
but e is not. 

So we will include X, but not e in what follows. Let us anticipate some­
thing that we will do later, which is to work with Euclidean signature to 
help make sense of the topological statements to follow: lab with signa­
ture (-+) has been replaced by gab with signature (++). Now, since as 
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Insert 2.1. T is for tension 

As a first non-trivial example (and to learn that T, a mass per unit 
length, really is the string's tension) let us consider a closed string 
lying in the (xl, X2) plane. 

X O = 2Rr , 
Xl = Rsin20" 

X2 = R cos 20". 

We have made it by arranging that the 0" = 0, 7T ends meet, that 
momentum flows across that join. An examination of the equations 
of motion shows that this configuration is not a solution, and there 
are terms which do not vanish corresponding to the fact that the 
string does not want to stay at rest: since the string has tension, it 
is likely to want to shrink its length away if put into this shape. So 
let us think of this as a snapshot of such a situation, ignoring the 
non-vanishing terms which involve time derivative. It is worth taking 
the time to use this to show that one gets 

Pf = T (2R, 0, 0), P!: = T (0, -2Rcos20", 2Rsin20"), 

which is interesting, as a sketch shows. 

There is momentum flowing around the string (which is lying in a 
circle of radius R). The total momentum is 

{7T 
plL = Jo dO" Pf· 

The only non-zero component is the mass-energy: M 
lengthxT. 

27TRT 
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Insert 2.2. A rotating open string 

As a second non-trivial example consider the following open string 
rotating at a constant angular velocity in the (Xl, X2) plane. Such 
a configuration is: 

where it should be checked that the equations of motion fix A = 7(:. 
This is what it looks like (the spinning string is shown in frozen 
snapshots) . 

5 

o 

It is again a worthwhile exercise to compute PM, and also MMV. With 
J == Ml2 and M == pO, some algebra shows that 

IJI 1 , 
------0: M2 - 27fT - . 

This parameter, 0:', is the slope of the celebrated 'Regge' trajectories: 
the straight line plots of J vs. M2 seen in nuclear physics in the 1960s. 
There remains the determination of the intercept of this straight line 
graph with the J-axis. It turns out to be one for the bosonic string 
as we shall see. 
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34 2 Relativistic strings 

we said earlier, the full string action resembles two dimensional gravity 
coupled to D bosonic 'matter' fields XIL, and the equations of motion are, 
of course, 

(2.34) 

The left hand side vanishes identically in two dimensions, and so there 
are no dynamics associated to (2.32). The quantity X depends only on 
the topology of the world-sheet (it is the Euler number) and so will only 
matter when comparing world sheets of different topology. This will arise 
when we compare results from different orders of string perturbation the­
ory and when we consider interactions. 

We can see this in the following. Let us add our new term to the action, 
and consider the string action to be: 

S = -41 
I r d2(J gl/2gabf)aXILf)bXIL 

TIC\: JM 

+).. {~ r d2(J gl/2 R + ~ r dSK} , (2.35) 
4TI JM 2TI JaM 

where).. is - for now - and arbitrary parameter that we have not fixed to 
any particular value. 

N.B. It will turn out that ).. is not a free parameter. In the full 
string theory, it has dynamical meaning, and will be equivalent to 
the expectation value of one of the massless fields - the 'dilaton' -
described by the string. 

So what will ).. do? Recall that it couples to Euler number, so in the 
full path integral defining the string theory: 

(2.36) 

resulting amplitudes will be weighted by a factor e-Ax , where X = 2-2h­
b - c. Here, h, b, c are the numbers of handles, boundaries and crosscaps, 
respectively, on the world sheet. Consider figure 2.2. An emission and 
reabsorption of an open string results in a change Ox = -1, while for 
a closed string it is Ox = -2. Therefore, relative to the tree level open 
string diagram (disc topology), the amplitudes are weighted by eA and 
e2A , respectively. The quantity gs == eA therefore will be called the closed 
string coupling. Note that it is the square of the open string coupling, 
which justifies the labelling we gave of the two three-string diagrams in 
figure 1.3. 
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~ D 8X=-1 

8X=-' 

... ~ ') 
Fig. 2.2. World-sheet topology change due to emission and reabsorption 
of open and closed strings. 

2.2.5 The stress tensor 

Let us also note that we can define a two dimensional energy-momentum 
tensor: 

Notice that 
T a - Tab 0 a = lab =. (2.38) 

This is a consequence of Weyl symmetry. Reparametrisation invariance, 
D'"'(S' = 0, translates here into (see discussion after equation (2.34)) 

(2.39) 

These are the classical properties of the theory we have uncovered so far. 
Later on, we shall attempt to ensure that they are true in the quantum 
theory also, with interesting results. 

2.2.6 Gauge fixing 

Now recall that we have three local or 'gauge' symmetries of the action: 

2D reparametrisations: 0', T ----+ 0'(0', T), +(0', T), 

Weyl: lab ----+ exp(2w(O',T))rab. (2.40) 
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36 2 Relativistic strings 

The two dimensional metric lab is also specified by three independent 
functions, as it is a symmetric 2 x 2 matrix. We may therefore use the 
gauge symmetries (see equations (2.26) and (2.27)) to choose lab to be a 
particular form: 

q; (-1 
lab = TJab e = ° 0) q; 1 e, (2.41) 

i.e. the metric of two dimensional Minkowski, times a positive function 
known as a conformal factor. In this 'conformal' gauge, our X{L equations 
of motion (2.29) become: 

(2.42) 

the two dimensional wave equation. (In fact, the reader should check that 
the conformal factor cancels out entirely of the action in equation (2.21).) 
As the wave equation is arY+arY-X{L = 0, we see that the full solution to 
the equation of motion can be written in the form: 

(2.43) 

where (T± == T ± (T. 

or 

N.B. Write (T± = T ± (T. This gives metric ds 2 = -dT2 + d(T2 ----+ 

-d(T+ d(T-. So we have TJ-+ = TJ+- = -1/2, TJ-+ = TJ+- = -2 and 
TJ++ = TJ-- = TJ++ = TJ-- = 0. Also, aT = a+ + a_ and arY = a+ - a_. 

Our constraints on the stress tensor become: 

__ 1.{L'_ 
TTrY - TrYT = - X Xu - ° ex/ t" 

T - T - 1 (X· {LX· X/{LX/) - ° 
rYrY - TT - 2ex' {L + {L - , (2.44) 

(2.45) 

and T_+ and T+_ are identically zero. 
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2.2 Classical bosonic strings 37 

2.2.7 The mode decomposition 

Our equations of motion (2.43), with our boundary conditions (2.30) and 
(2.31) have the simple solutions: 

XM( T, CJ) = xM + 2a/pMT + i(2a/)1/2 L ~a~e-inT cos rw, 
n:r'O n 

for the open string and 

XM( T, CJ) = X~(CJ-) + xt(CJ+) 

1 (a/)1/2 1 ._ 
X~(CJ-) = -xM + a/pMCJ- + i - L _a~e-2m(J 

2 2 n:r'O n 

1 (a/)1/2 1 . xt(CJ+) = -xM + a/pMCJ+ + i - L _a~e-2m(J+, 
2 2 n#O n 

(2.46) 

(2.47) 

for the closed string, where, to ensure a real solution we impose a~n = 

(a~)* and a~n = (a~)*. Note that x M and pM are the centre of mass 
position and momentum, respectively. In each case, we can identify pM 
with the zero mode of the expansion: 

open string: 

closed string: 

",/1 -'-"0 -

",/1 -<'<0 - (2.48) 

N.B. Notice that the mode expansion for the closed string (2.47) is 
simply that of a pair of independent left and right moving travelling 
waves going around the string in opposite directions. The open string 
expansion (2.46) on the other hand, has a standing wave for its solu­
tion, representing the left and right moving sector reflected into one 
another by the Neumann boundary condition (2.30). 

2.2.8 Conformal invariance as a residual symmetry 

Actually, we have not gauged away all of the local symmetry by choosing 
the gauge (2.41). We can do a left-right decoupled change of variables: 

(2.49 ) 

Then, as 

(2.50) 
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38 2 Relativistic strings 

we have 

(2.51) 

However, we can undo this with a Weyl transformation of the form 

(2.52) 

if exp(-2wL(0-+)) = 3+1(0-+) and exp(-2wR(0--)) = 3_9(0--). So we 
still have a residual 'conformal' symmetry. As 1 and g are independent 
arbitrary functions on the left and right, we have an infinite number of 
conserved quantities on the left and right. This is because the conserva­
tion equation Va Tab = 0, together with the result T +_ = T _+ = 0, turns 
into: 

3_T++ = ° and 3+T __ = 0, 

but since 3-1 = ° = 3+9, we have 

(2.53) 

(2.54) 

resulting in an infinite number of conserved quantities. The fact that we 
have this infinite dimensional conformal symmetry is the basis of some 
of the most powerful tools in the subject, for computing in perturbative 
string theory. We will return to it not too far ahead. 

2.2.9 Some Hamiltonian dynamics 

Our Lagrangian density is 

from which we can derive that the conjugate momentum to Xfl is 

So we have the equal time Poisson brackets: 

[Xfl(o-), Ir'(o-')]P.B. = TJflV 8(0- - 0-'), 
[llfl (0-), IIv (0-')] P.B. = 0, 

with the following results on the oscillator modes: 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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We can form the Hamiltonian density 

(2.60) 

from which we can construct the Hamiltonian H by integrating along the 
length of the string. This results in: 

j 'TI 1 00 

H = dcrH(cr) = - LCLn ' an 
a 2 

-00 

(open) (2.61) 

( closed). 

(We have used the notation an . an == a~anw) The constraints T++ 
o = T __ on our energy-momentum tensor can be expressed usefully in 
this language. We impose them mode by mode in a Fourier expansion, 
defining: 

(2.62) 

and similarly for L m , using T++. Using the Poisson brackets (2.59), these 
can be shown to satisfy the 'Virasoro' algebra: 

[Lm, Ln]p.B. = i(m - n)Lm+n; 

[Lm, Ln]p.B. = O. 

[Lm' Lnjp.B. = i(m - n)Lm+n; 

(2.63) 

Notice that there is a nice relation between the zero modes of our expan­
sion and the Hamiltonian: 

H=Lo (open); H = La + La ( closed). (2.64) 

So to impose our constraints, we can do it mode by mode and ask that 
Lm = 0 and Lm = 0, for all m. Looking at the zeroth constraint results 
in something interesting. Note that 

1100 
La = -a6 + 2 x - L a-n · an 

2 2 n=l 
00 

= a'pMpM + L a-n · an 
n=l 

00 
= -a'M2 + L a-n · an· 

n=l 
(2.65) 
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Requiring Lo to be zero - diffeomorphism invariance - results in a (space­
time) mass relation: 

(open), (2.66) 

where we have used the zero mode relation (2.48) for the open string. A 
similar exercise produces the mass relation for the closed string: 

( closed). (2.67) 

These formulae (2.66) and (2.67) give us the result for the mass of a state 
in terms of how many oscillators are excited on the string. The masses 
are set by the string tension T = (27TO:') -1, as they should be. Let us not 
dwell for too long on these formulae however, as they are significantly 
modified when we quantise the theory, since we have to understand the 
infinite constant which we ignored. 

2.3 Quantised bosonic strings 

For our purposes, the simplest route to quantisation will be to promote 
everything we met previously to operator statements, replacing Poisson 
Brackets by commutators in the usual fashion: [ , jP.B. ----+ -i [ , j. 
This gives: 

(2.68) 

N.B. One of the first things that we ought to notice here is that 
VmO:~m are like creation and annihilation operators for the harmonic 
oscillator. There are actually D independent families of them - one 
for each spacetime dimension - labelled by f-L. 

In the usual fashion, we will define our Fock space such that 10; k) 
is an eigenstate of pM with centre of mass momentum k M. This state is 
annihilated by o:~. 

What about our operators, the Lm? Well, with the usual 'normal or­
dering' prescription that all annihilators are to the right, the Lm are all 
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fine when promoted to operators, except the Hamiltonian, Lo. It needs 
more careful definition, since CY~ and CY~n do not commute. Indeed, as an 
operator, we have that 

1 00 

Lo = "2 CY6 + L CY-n . CYn + constant, (2.69) 
n=l 

where the apparently infinite constant is composed of the infinite sum 
(1/2) L~=l n for each of the D families of oscillators. As is of course 
to be anticipated, this infinite constant can be regulated to give a finite 
answer, corresponding to the total zero point energy of all of the harmonic 
oscillators in the system. 

2.3.1 The constraints and physical states 

For now, let us not worry about the value of the constant, and simply 
impose our constraints on a state I¢) as*: 

(Lo - a)I¢) = 0; Lml¢) = 0 for m > 0, 

(Lo - a)I¢) = 0; Lml¢) = 0 for m > 0, (2.70) 

where our regulated constant is set by a, which is to be computed. There 
is a reason why we have not also imposed this constraint for the L-ms. 
This is because the Virasoro algebra (2.63) in the quantum case is: 

D 3 
[Lm, Lnl (m - n)Lm+n + 12 (m - m)8m+n; [Lm' Lnl = 0; 

- D 3 
[Lm, Lnl (m - n)Lm+n + 12 (m - m)8m+n. (2.71) 

There is a central term in the algebra, which produces a non-zero constant 
when m = n. Therefore, imposing both Lm and L_m would produce an 
inconsistency. Note now that the first of our constraints (2.70) produces 
a modification to the mass formulae: 

(f CY-n . CYn - a) 
n=l 

(open) (2.72) 

( closed). 

* This assumes that the constant a on each side are equal. At this stage, we have no 
other choice. We have isomorphic copies of the same string modes on the left and the 
right, for which the values of a are by definition the same. When we have more than 
one consistent conformal field theory to choose from, then we have the freedom to 
consider having non-isomorphic sectors on the left and right. This is how the heterotic 
string is made, for example, as we shall see later. 
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Notice that we can denote the (weighted) number of oscillators excited as 
N = LCLn · an (= LnNn) on the left and N = La-n · an (= LnNn) 
on the right. N n and Nn are the true count, on the left and right, of the 
number of copies of the oscillator labelled by n is present. 

There is an extra condition in the closed string case. While La + La gen­
erates time translations on the world sheet (being the Hamiltonian), the 
combination La - La generates translations in 0'. As there is no physical 
significance to where on the string we are, the physics should be invari­
ant under translations in 0', and we should impose this as an operator 
condition on our physical states: 

(La - Lo)I¢; = 0, (2.73) 

which results in the 'level-matching' condition N = N, equating the num­
ber of oscillators excited on the left and the right. This is indeed the 
difference between the two equations in (2.70). 

In summary then, we have two copies of the open string on the left and 
the right, in order to construct the closed string. The only extra subtlety 
is that we should use the correct zero mode relation (2.48) and match 
the number of oscillators on each side according to the level matching 
condition (2.73). 

2.3.2 The intercept and critical dimensions 

Let us consider the spectrum of states level by level, and uncover some 
of the features, focusing on the open string sector. Our first and simplest 
state is at level 0, i.e. no oscillators excited at all. There is just some 
centre of mass momentum that it can have, which we shall denote as klL. 
Let us write this state as 10; k;. The first of our constraints (2.70) leads 
to an expression for the mass: 

(La - a)IO; k; = ° so (2.74) 

This state is a tachyonic state, having negative mass-squared (assuming 
a> 0. 

The next simplest state is that with momentum kIL, and one oscillator 
excited. We are also free to specify a polarisation vector (IL. We denote 
this state as I(,k; == ((. a-l)IO;k;; it starts out the discussion with D 
independent states. The first thing to observe is the norm of this state: 

((;kll(;k'; = (O;kl(* ·al(-a-lIO;k/; 

= (~(v(O; klara~lIO; k'; 
= (. ((0; klO; k'; = (. ((2'IT)DOD(k - k'), (2.75) 
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where we have used the commutator (2.68) for the oscillators. From this 
we see that the timelike (s will produce a state with negative norm. Such 
states cannot be made sense of in a unitary theory, and are often calledt 

'ghosts'. 
Let us study the first constraint: 

(Lo - a)I(; k) = ° =? a'k2 + 1 = a, (2.76) 

The next constraint gives: 

=?, k· (= 0. (2.77) 

Actually, at level one, we can also make a special state of interest: 
I'lj;) == L-IIO; k). This state has the special property that it is orthogonal 
to any physical state, since (¢I'lj;) = ('lj;I¢)* = (0; kIL11¢) = 0. It also has 
L11'lj;) = 2Lo10; k) = a'k2 10; k). This state is called a 'spurious' state. 

So we note that there are three interesting cases for the level one 
physical state we have been considering. 

1. a < 1 =? M2 > ° : 
• momentum k is timelike, 

• we can choose a frame where it is (k, 0, 0, ... ), 

• spurious state is not physical, since k2 i- 0, 

• k· ( = ° removes the timelike polarisation; D - 1 states left. 

2. a > 1 =? M2 < ° : 
• momentum k is spacelike, 

• we can choose a frame where it is (0, kl' k2 , .. . ), 

• spurious state is not physical, since k2 i- 0, 

• k . ( = ° removes a spacelike polarisation; D - 1 tachyonic 
states left, one which is including ghosts. 

3. a = 1 =? M2 = ° : 
• momentum k is null, 

• we can choose a frame where it is (k, k, 0, ... ), 

• spurious state is physical and null, since k 2 = 0, 

t These are not to be confused with the ghosts of the friendly variety - Faddeev-Popov 
ghosts. These negative norm states are problematic and need to be removed. 
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• k . ( = 0 and k 2 = 0 remove two polarisations; D - 2 states 
left. 

So if we choose case (3), we end up with the special situation that we 
have a massless vector in the D dimensional target spacetime. It even has 
an associated gauge invariance: since the spurious state is physical and 
null, and therefore we can add it to our physical state with no physical 
consequences, defining an equivalence relation: 

I¢) ;v I¢) + AI?/!) (2.78) 

Case (1), while interesting, corresponds to a massive vector, where the 
extra state plays the role of a longitudinal component. Case (2) seems 
bad. We shall choose case (3), where a = 1. 

It is interesting to proceed to level two to construct physical and spu­
rious states, although we shall not do it here. The physical states are 
massive string states. If we insert our level one choice a = 1 and see what 
the condition is for the spurious states to be both physical and null, we 
find that there is a condition on the spacetime dimension+: D = 26. 

In summary, we see that a = 1, D = 26 for the open bosonic string 
gives a family of extra null states, giving something analogous to a point 
of 'enhanced gauge symmetry' in the space of possible string theories. 
This is called a 'critical' string theory, for many reasons. We have the 24 
states of a massless vector we shall loosely called the photon, AM' since it 
has a U(l) gauge invariance (2.78). There is a tachyon of M2 = -1/0:' in 
the spectrum, which will not trouble us unduly. We will actually remove 
it in going to the superstring case. Tachyons will reappear from time 
to time, representing situations where we have an unstable configuration 
(as happens in field theory frequently). Generally, it seems that we should 
think of tachyons in the spectrum as pointing us towards an instability, 
and in many cases, the source of the instability is manifest. 

Our analysis here extends to the closed string, since we can take two 
copies of our result, use the appropriate zero mode relation (2.48), and 
level matching. At level zero we get the closed string tachyon which has 
M2 = -4/0:'. At level zero we get a tachyon with mass given by M2 = 

-4/0:', and at level 1 we get 242 massless states from 0:':10:~110; k). The 
traceless symmetric part is the graviton, GMU and the antisymmetric part, 
EMU' is sometimes called the Kalb-Ramond field, and the trace is the 
dilaton, <I>. 

t We get a condition on the spacetime dimension here because level two is the first 
time it can enter our formulae for the norms of states, via the central term in the 
Virasoro algebra (2.71). 
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2.3.3 A glance at more sophisticated techniques 

Later we shall do a more careful treatment of our gauge fixing procedure 
(2.41) by introducing Faddeev-Popov ghosts (b, c) to ensure that we stay 
on our chosen gauge slice in the full theory. Our resulting two dimensional 
conformal field theory will have an extra sector coming from the (b, c) 
ghosts. 

The central term in the Virasoro algebra (2.71) represents an anomaly 
in the transformation properties of the stress tensor, spoiling its properties 
as a tensor under general coordinate transformations. Generally: 

where here c is a number, the central charge which depends upon the con­
tent of the theory. In our case, we have D bosons, which each contribute 
1 to c, for a total anomaly of D. 

The ghosts do two crucial things: They contribute to the anomaly the 
amount -26, and therefore we can retain all our favourite symmetries for 
the dimension D = 26. They also cancel the contributions to the vacuum 
energy coming from the oscillators in the /L = 0,1 sector, leaving D - 2 
transverse oscillators' contribution. 

The regulated value of -a is the vacuum or 'zero point' energy (z.p.e.) 
of the transverse modes of the theory. This zero point energy is simply the 
Casimir energy arising from the fact that the two dimensional field theory 
is in a box. The box is the infinite strip, for the case of an open string, or 
the infinite cylinder, for the case of the closed string (see figure 2.3). 

A periodic (integer moded) boson such as the types we have here, XIL, 
each contribute -1/24 to the vacuum energy (see insert 2.3 (p. 46) on a 
quick way to compute this). So we see that in 26 dimensions, with only 

'IT 

Fig. 2.3. String world-sheets as boxes upon which lives two dimensional 
conformal field theory. 
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Insert 2.3. Zero point energy from the exponential map 

After doing the transformation to the z-plane, it is interesting to note 
that the Fourier expansions we have been working with to define the 
modes of the stress tensor become Laurent expansions on the complex 
plane, e.g. 

00 Lm 
zm+2· 

rn=-oo 

One of the most straightforward exercises is to compute the zero point 
energy of the cylinder or strip (for a field of central charge c) by 
starting with the fact that the plane has no Casimir energy. One 
simply plugs the exponential change of coordinates z = eW into the 
anomalous transformation for the energy momentum tensor and com­
pute the contribution to Tww starting with Tzz : 

2 C 
Tww = -z Tzz - 24' 

which results in the Fourier expansion on the cylinder, in terms of 
the modes: 

24 contributions to count (see previous paragraph), we get that -a = 

24 x (-1/24) = -1. (Notice that from equation (2.69), this implies that 
L:~=1 n = -1/12, which is in fact true (!) in (-function regularisation.) 

Later, we shall have world-sheet fermions ?j;fl as well, in the supersym­
metric theory. They each contribute 1/2 to the anomaly. World sheet 
superghosts will cancel the contributions from ?j;0, ?j;1. Each anti-periodic 
fermion will give a z.p.e. contribution of -1/48. 

Generally, taking into account the possibility of both periodicities for 
either bosons or fermions: 

z.p.e. = 

w= 

1 
-w for boson; 
2 

~ - ~(2e - 1)2 
24 8 

1 
--w 

2 

{~ o 
1 
"2 

for fermion (2.80) 

(integer modes) 
(half-integer modes). 

This is a formula that we shall use many times in what is to come. 
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2.4 The sphere, the plane and the vertex operator 

The ability to choose the conformal gauge, as first discussed in 
section 2.2.6, gives us a remarkable amount of freedom, which we can 
put to good use. The diagrams in figure 2.3 represent free strings coming 
in from T = -00 and going out to T = +00. Let us first focus on the 
closed string, the cylinder diagram. Working with Euclidean signature by 
taking T -----+ -iT, the metric on it is 

ds2 = dT2 + dcr2, -00 < T < +00 0 < cr ::; 27T. 

We can do the change of variables 

(2.81) 

with the result that the metric changes to 

ds2 = dT2 + dcr2 ----+ Izl- 2dzdz. 

This is conformal to the metric of the complex plane: d!32 = dzdz, and so 
we can use this as our metric on the world-sheet, since a conformal factor 
e¢ = Izl-2 drops out of the action, as we already noticed. 

The string from the infinite past T = -00 is mapped to the origin while 
the string in the infinite future T = +00 is mapped to the 'point' at infin­
ity. Intermediate strings are circles of constant radius Izl. See figure 2.4. 
The more forward-thinking reader who prefers to have the T = +00 string 
at the origin can use the complex coordinate i = 1/ z instead. 

One can even ask that both strings be placed at finite distance in z. 
Then we need a conformal factor which goes like Izl-2 at z = 0 as before, 
but like Izl2 at z = 00. There is an infinite set of functions which do that, 
but one particularly nice choice leaves the metric: 

2 4R2dzdz 
ds = (R2 + IzI2)2' (2.82) 

ooX 

xo 

0< a <, 2rc 

Fig. 2.4. The cylinder diagram is conformal to the complex plane and the 
sphere. 

https://doi.org/10.1017/9781009401371.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.003


48 2 Relativistic strings 

which is the familiar expression for the metric on a round 52 with radius 
R, resulting from adding the point at infinity to the plane. See figure 2.4. 
The reader should check that the precise analogue of this process will 
relate the strip of the open string to the upper half plane, or to the disc. 
The open strings are mapped to points on the real axis, which is equivalent 
to the boundary of the disc. See figure 2.5. 

We can go even further and consider the interaction with three or more 
strings. Again, a clever choice of function in the conformal factor can be 
made to map any tubes or strips corresponding to incoming strings to a 
point on the interior of the plane, or on the surface of a sphere (for the 
closed string) or the real axis of the upper half-plane of the boundary of 
the disc (for the open string). See figure 2.6. 

2.4.1 States and operators 

There is one thing which we might worry about. Have we lost any infor­
mation about the state that the string was in by performing this reduction 
of an entire string to a point? Should we not have some sort of marker 
with which we label each point with the properties of the string it came 
from? The answer is in the affirmative, and the object which should be 
inserted at these points is called a 'vertex operator'. Let us see where it 
comes from. 

As we learned in the previous subsection, we can work on the complex 
plane with coordinate z. In these coordinates, our mode expansions (2.46) 
and (2.47) become: 

( ')1/2 (')1/2 1 XM(z, z) = xM - i ~ 0:6 in zz + i ~ L -0:~ (z-n + Z-n) , 
2 2 n:r'O n 

(2.83) 

o ------ 'IT a 

Fig. 2.5. The strip diagram is conformal to the upper half of the complex 
plane and the disc. 
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(XJ Xl 
XO 

~ 

Fig. 2.6. Mapping any number of external string states to the sphere or 
disc using conformal transformations. 

for the open string, and for the closed: 

1 (ex') 1/2 (ex/) 1/2 1 
XM (z) = -xM - i-aM In z + i - """"' -aM z-n 

R 2 2 0 2 ~n n , 
n#O 

(2.84) 

where we have used the zero mode relations (2.48). In fact, notice that: 

(2.85) 

and that we can invert these to get (for the closed string) 

which are non-zero for n 2: O. This is suggestive: equations (2.85) define 
left-moving (holomorphic) and right-moving (anti-holomorphic) fields. 
We previously employed the objects on the left in (2.86) in making states 
by acting, e.g. ex~110; k). The form of the right hand side suggests that 
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this is equivalent to performing a contour integral around an insertion of a 
pointlike operator at the point z in the complex plane (see figure 2.7). For 
example, a~l is related to the residue ozXIL(O), while the a~m correspond 
to higher derivatives 0;: XIL(O). This is course makes sense, as higher lev­
els correspond to more oscillators excited on the string, and hence higher 
frequency components, as measured by the higher derivatives. The state 
with no oscillators excited (the tachyon), but with some momentum k, 
simply corresponds in this dictionary to the insertion of 

10; k) (2.87) 

We have integrated over the insertions' position on the sphere since the 
result should not depend upon our parameterisation. This is reasonable, 
as it is the simplest form that allows the right behaviour under transla­
tions: A translation by a constant vector, XIL ---+ XIL + AIL, results in a 
multiplication of the operator (and hence the state) by a phase eikA . The 
normal ordering signs :: are there to remind us that the expression means 
to expand and keep all creation operators to the left, when expanding in 
terms of the a±mS. 

The closed string level one vertex operator corresponds to the emission 
or absorption of GILV , E ILv and <1>: 

(2.88) 

where the symmetric part of (ILV is the graviton and the antisymmetric 
part is the antisymmetric tensor. 

t 
~!lVa~l a~lIO;k) 

Fig. 2.7. The correspondence between states and operator insertions. A 
closed string (graviton) state (ILVa~l 0:~110; k) is set up on the closed string 
at T = -00 and it propagates in. This is equivalent to inserting a graviton 
vertex operator VILV(z) =: (ILVozXIL8:zXveik.X : at z = O. 
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For the open string, the story is similar, but we get two copies of the 
relations (2.86) for the single set of modes O:~n (recall that there are 
no as). This results in, for example the relation for the photon: 

(2.89) 

where the integration is over the position of the insertion along the 
real axis. Also, at means the derivative tangential to the boundary. The 
tachyon is simply the boundary insertion of the momentum: eik.X : alone. 

2.5 Chan-Paton factors 

Let us endow the string endpoints with a slightly more interesting prop­
erty. We can add non-dynamical degrees of freedom to the ends of the 
string without spoiling spacetime Poincare invariance or world-sheet con­
formal invariance. These are called 'Chan-Paton' degrees of freedom22 

and by declaring that their Hamiltonian is zero, we guarantee that they 
stay in the state that we put them into. In addition to the usual Fock 
space labels we have been using for the state of the string, we ask that 
each end be in a state i or j for i, j from 1 to N (see figure 2.8). We use 
a family of N x N matrices, Aij' as a basis into which to decompose a 
string wavefunction 

N 

Ik; a) = L Ik, ij)Aij · (2.90) 
i,j=l 

These wavefunctions are called 'Chan-Paton factors'. Similarly, all open 
string vertex operators carry such factors. For example, consider the tree­
level (disc) diagram for the interaction of four oriented open strings in 
figure 2.9. As the Chan-Paton degrees of freedom are non-dynamical, the 
right end of string number 1 must be in the same state as the left end of 
string number 2, etc., as we go around the edge of the disc. After summing 
over all the possible states involved in tying up the ends, we are left with 
a trace of the product of Chan-Paton factors, 

(2.91) 

j 

Fig. 2.8. An open string with Chan-Paton degrees of freedom. 
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2 

4 

Fig. 2.9. A four-point scattering of open strings, and its conformally re­
lated disc amplitude. 

All open string amplitudes will have a trace like this and are invariant 
under a global (on the world-sheet) U(N): 

(2.92) 

under which the endpoints transform as Nand N. 
Notice that the massless vector vertex operator vaIL = A'ij 3t XIL exp X 

(ik· X) transforms as the adjoint under the U(N) symmetry. This means 
that the global symmetry of the world-sheet theory is promoted to a gauge 
symmetry in spacetime. It is a gauge symmetry because we can make a 
different U(N) rotation at separate points XIL((J, T) in spacetime. 

2.6 Unoriented strings 

2.6.1 Unoriented open strings 

There is an operation of world-sheet parity 0 which takes (J -----+ 'IT - (J, on 
the open string, and acts on z = eT - iCT as z +--+ -z. In terms of the mode 
expansion (2.83), XIL(z, z) -----+ XIL( -z, -z) yields 

XIL -----+ xIL 

pIL -----+ pIL 

o:~ -----+ (-1 )mo:~. (2.93) 

This is a global symmetry of the open string theory and so we can, if we 
wish, also consider the theory that results when it is gauged, by which we 
mean that only O-invariant states are left in the spectrum. We must also 
consider the case of taking a string around a closed loop. It is allowed to 
come back to itself only up to an over all action of 0, which is to swap 
the ends. This means that we must include unoriented world-sheets in 
our analysis. For open strings, the case of the Mobius strip is a useful 
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example to keep in mind. It is on the same footing as the cylinder when 
we consider gauging O. The string theories which result from gauging 0 
are understandably called 'unoriented string theories'. 

Let us see what becomes of the string spectrum when we perform this 
projection. The open string tachyon is even under 0 and so survives the 
projection. However, the photon, which has only one oscillator acting, 
does not: 

Olk) = +Ik) 

OO:~llk) = -O:~llk). (2.94) 

We have implicitly made a choice about the sign of 0 as it acts on the vac­
uum. The choice we have made in writing equation (2.94) corresponds to 
the symmetry of the vertex operators (2.89): the resulting minus sign 
comes from the orientation reversal on the tangent derivative at (see 
figure 2.10). 

Fortunately, we have endowed the string's ends with Chan-Paton fac­
tors, and so there is some additional structure which can save the photon. 
While 0 reverses the Chan-Paton factors on the two ends of the string, 
it can have some additional action: 

(2.95) 

This form of the action on the Chan-Paton factor follows from the re­
quirement that it be a symmetry of the amplitudes which have factors 
like those in equation (2.91). 

If we act twice with 0, this should square to the identity on the fields, 
and leave only the action on the Chan-Paton degrees of freedom. States 
should therefore be invariant under: 

(2.96) 

Fig. 2.10. The action of 0 on the photon vertex operator can be deduced 
from seeing how exchanging the ends of the string changes the sign of the 
tangent derivative, at. 
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Now it should be clear that the A must span a complete set of N x N 
matrices: If strings with ends labelled ik and jl are in the spectrum for 
any values of k and l, then so is the state ij. This is because jl implies lj 
by CPT, and a splitting-joining interaction in the middle gives ik + lj ----+ 

ij + lk. 
Now equation (2.96) and Schur's lemma require M M-T to be propor­

tional to the identity, so M is either symmetric or antisymmetric. This 
gives two distinct cases, modulo a choice of basis24. Denoting the n x n 
unit matrix as In, we have the symmetric case: 

(2.97) 

In order for the photon Aija~llk, ij) to be even under 0 and thus survive 
the projection, A must be antisymmetric to cancel the minus sign from 
the transformation of the oscillator state. So A = -AT, giving the gauge 
group SO(N). For the antisymmetric case, we have: 

M = _MT = i [ 0 IN/2]. 
-IN / 2 0 

(2.98) 

For the photon to survive, A = -MAT M, which is the definition of the 
gauge group USp(N). Here, we use the notation that USp(2) == SU(2). 
Elsewhere in the literature this group is often denoted Sp(N/2). 

2.6.2 Unoriented closed strings 

Turning to the closed string sector. For closed strings, we see that the 
mode expansion (2.84) for XM(z, z) = Xi(z) + X~(z) is invariant under 
a world-sheet parity symmetry (J" ----+ -(J", which is z ----+ -z. (We should 
note that this is a little different from the choice of 0 we took for the 
open strings, but more natural for this case. The two choices are related 
to each other by a shift of 'IT.) This natural action of 0 simply reverses 
the left- and right-moving oscillators: 

0: (2.99) 

Let us again gauge this symmetry, projecting out the states which are 
odd under it. Once again, since the tachyon contains no oscillators, it is 
even and is in the projected spectrum. For the level one excitations: 

(2.100) 

and therefore it is only those states which are symmetric under fL ----+ 1/ - the 
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graviton and dilaton - which survive the projection. The antisymmetric 
tensor is projected out of the theory. 

2.6.3 Warld-sheet diagrams 

As stated before, once we have gauged D, we must allow for unoriented 
world-sheets, and this gives us rather more types of string world-sheet 
than we have studied so far. Figure 2.11 depicts the two types of one-loop 
diagram we must consider when computing amplitudes for the open string. 
The annulus (or cylinder) is on the left, and can be taken to represent an 
open string going around in a loop. The Mobius strip on the right is an 
open string going around a loop, but returning with the ends reversed. 
The two surfaces are constructed by identifying a pair of opposite edges 
on a rectangle, one with and the other without a twist. 

Figure 2.12 shows an example of two types of closed string one-loop 
diagram we must consider. On the left is a torus, while on the right is a 
Klein bottle, which is constructed in a similar way to a torus save for a 
twist introduced when identifying a pair of edges. 

In both the open and closed string cases, the two diagrams can be 
thought of as descending from the oriented case after the insertion of the 
normalised projection operator ~Tr(l + D) into one-loop amplitudes. 

Similarly, the unoriented one-loop open string amplitude comes from 
the annulus and Mobius strip. We will discuss these amplitudes in more 
detail later. 

The lowest order unoriented amplitude is the projective plane ffiJp'2, 
which is a disk with opposite points identified (see figure 2.13). Shrinking 

II \ II 

(a) (h) 

Fig. 2.11. (a) Constructing a cylinder or annulus by identifying a pair of 
opposite edges of a rectangle. (b) Constructing a Mobius strip by identi­
fying after a twist. 
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I' 

Ca) (h) 

Fig. 2.12. (a) Constructing a torus by identifying opposite edges of a 
rectangle. ( b) Constructing a Klein bottle by identifying after a twist. 

Fig. 2.13. Constructing the projective plane ffiJp'2 by identifying opposite 
points on the disk. This is equivalent to a sphere with a crosscap insertion. 

the identified hole down, we recover the fact that lRP2 may be thought of 
as a sphere with a crosscap inserted, where the crosscap is the result of 
shrinking the identified hole. Actually, a Mobius strip can be thought of as 
a disc with a crosscap inserted, and a Klein bottle is a sphere with two 
crosscaps. Since a sphere with a hole (one boundary) is the same as a disc, 
and a sphere with one handle is a torus, we can classify all world-sheet 
diagrams in terms of the number of handles, boundaries and crosscaps that 
they have. Insert 2.4 (p.57) summaries all the world-sheet perturbation 
theory diagrams up to one loop. 

2.7 Strings in curved backgrounds 

So far, we have studied strings propagating in the (uncompactified) 
target spacetime with metric rJ/Lv. While this alone is interesting, it is 
curved backgrounds of one sort or another which will occupy much of 
this book, and so we ought to see how they fit into the framework 
so far. 
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Insert 2.4. World-sheet perturbation theory diagrams 

It is worthwhile summarising all of the string theory diagrams up to 
one-loop in a table. Recall that each diagram is weighted by a factor 
g~ = g;h-2+b+c where h, b, c are the numbers of handles, boundaries 
and crosscaps, respectively. 

gs-"L gs-l g~ 

sphere S2 torus T2 

closed 
(plane) 

0 0 oriented 

disc D2 cylinder C2 
(half-plane) (annulus) 

open 

0 0 oriented 

projective 
plane ffiJp'2 Klein bottle KB 

closed 

0 0 unoriented 

Mobius strip MS 

open 

0 unoriented 

57 
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58 2 Relativistic strings 

A natural generalisation of our action is simply to study the 'o--model' 
action: 

(2.101) 

Comparing this to what we had before (2.21), we see that from the two 
dimensional point of view this still looks like a model of D bosonic fields 
XJ-L, but with field dependent couplings given by the non-trivial spacetime 
metric GJ-Lv(X). This is an interesting action to study. 

A first objection to this is that we seem to have cheated somewhat: 
strings are supposed to generate the graviton (and ultimately any curved 
backgrounds) dynamically. Have we cheated by putting in such a back­
ground by hand? Or a more careful, less confrontational question might 
be: is it consistent with the way strings generate the graviton to introduce 
curved backgrounds in this way? 

Well, let us see. Imagine, to start off, that the background metric is 
only locally a small deviation from fiat space: GJ-Lv(X) = rJJ-LV + hJ-Lv(X) , 
where h is small. 

Then, in conformal gauge, we can write in the Euclidean path integral 
(2.36): 

e-S ", = e-s (1 + 4:0:/ J d2zhJ-Lv(X)8zXJ-L8zXV + ... ) , (2.102) 

and we see that if hJ-Lv(X) ex: gS(J-LV exp( ik . X), where ( is a symmetric 
polarisation matrix, we are simply inserting a graviton emission vertex 
operator. So we are indeed consistent with that which we have already 
learned about how the graviton arises in string theory. Furthermore, the 
insertion of the full GJ-Lv(X) is equivalent in this language to inserting 
an exponential of the graviton vertex operator, which is another way of 
saying that a curved background is a 'coherent state' of gravitons. 

It is clear that we should generalise our success, by including o--model 
couplings which correspond to introducing background fields for the an­
tisymmetric tensor and the dilaton: 

SIJ = 4:0:/ J d2o- gl/2 {(gabGJ-Lv(X) + iEab EJ-LV (X)) 8aXJ-L8bXV + o:'if>R} , 

(2.103) 

where EJ-Lv is the background antisymmetric tensor field and if> is the 
background value of the dilaton. The coupling for EJ-Lv is a rather straight­
forward generalisation of the case for the metric. The power of 0:/ is there 
to counter the scaling of the dimension one fields XJ-L, and the antisym­
metric tensor accommodates the antisymmetry of E. For the dilaton, a 
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coupling to the two dimensional Ricci scalar is the simplest way of writing 
a reparametrisation invariant coupling when there is no index structure. 
Correspondingly, there is no power of ex' in this coupling, as it is already 
dimensionless. 

N.B. It is worth noting that 0' is rather like n. for this two dimensional 
theory, since the action is very large if 0' ----+ 0, and so this is a good 
limit to expand around. In this sense, the dilaton coupling is a one­
loop term. Another thing to notice is that the 0' ----+ 0 limit is also like 
a 'large spacetime radius' limit. This can be seen by scaling lengths 
by G jJ.V ----+ r2G jJ.V' which results in an expansion in 0' / r2. Large radius 
is equivalent to small 0'. 

The next step is to do a full analysis of this new action and ensure that 
in the quantum theory, one has Weyl invariance, which amounts to the 
tracelessness of the two dimensional stress tensor. Calculations (which we 
will not discuss here) reveal that: 

(2.104) 

(if V = 0' (RjJ.v+2\7jJ.\7v<I>-lHjJ./W"Hv",rJ) +0(0'2), 

{3ffv = 0' ( -~ \7K HKjJ.v + \7K<I> HKjJ.// ) + 0(0'2), (2.105) 

{3 iP = 0' (D - 26 _ ~\72<I> + \7 <I>\7 K<I> _ ~H HKjJ.//) + 0(0'2) 
60' 2 K 24 KjJ.// , 

with HjJ.VK == 8jJ.B//K + 8//BKjJ. + 8KBjJ.//. For Weyl invariance, we ask that 
each of these {3-functions for the cr-model couplings actually vanish. (See 
insert 3.1 for further explanation of this.) The remarkable thing is that 
these resemble spacetime field equations for the background fields. These 
field equations can be derived from the following spacetime action: 

S = - dD X(_G)1/2e- 2iP R + 4\7 <I>\7jJ.<I> - -H HjJ.//A 1 j. [ 1 
21\;6 jJ. 12 jJ.//A 

_ 2(D - 26) + 0(0')] . ( ) 30' 2.106 
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N.B. Now we note something marvellous: 1> is a background field 
which appears in the closed string theory cr-model multiplied by the 
Euler density. So comparing to equation (2.35) (and discussion fol­
lowing), we recover the remarkable fact that the string coupling gs is 
not fixed, but is in fact given by the value of one of the background 
fields in the theory: gs = e(iP). So the only free parameter in the 
theory is the string tension. 

Turning to the open string sector, we may also write the effective action 
which summarises the leading order (in a/) open string physics at tree 
level: 

(2.107) 

with C a dimensionful constant which we will fix later. It is of course of 
the form of the Yang-Mills action, where FI-LV = 3J-tAv - 3vAw The field 
AJ-t is coupled in cr-model fashion to the boundary of the world sheet by 
the boundary action: 

r dT AJ-t3t X J-t, 
JaM 

mimicking the form of the vertex operator (2.89). 

(2.108) 

One should note the powers of eiP in the above actions. Recall that the 
expectation value of eiP sets the value of gs. We see that the appearance 
of 1> in the actions are consistent with this, as we have e-2iP in front of 
all of the closed string parts, representing the sphere (g;2) and e- iP for 
the open string, representing the disc (g; 1 ). 

Notice that if we make the following redefinition of the background 
fields: 

GJ-tv(X) = e2r2(X)GJ-tv = e4 (iPo-iP)/(D-2)GJ-tv, (2.109) 

and use the fact that the new Ricci scalar can be derived using: 

(2.110) 

the action (2.106) becomes: 

S = - d X(-G) R - --\7 1>\7J-t1> 1 j' D - 1/2 [ - 4 --
2",,2 D - 2 J-t 

(2.111) 

_ ~e-8<I>/(D-2) H HJ-tl/A _ 2(D - 26) e4<I>/(D-2) + o(a/)] 
12 J-tl/A 3a' ' 
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with <1> = <1> - <1>0. Looking at the part involving the Ricci scalar, we see 
that we have the form of the standard Einstein-Hilbert action (i.e. we 
have removed the factor involving the dilaton <1», with Newton's constant 
set by 

(2.112) 

The standard terminology to note here is that the action (2.106) written 
in terms of the original fields is called the 'string frame action', while the 
action (2.111) is referred to as the 'Einstein frame action'. It is in the 
latter frame that one gives meaning to measuring quantities like gravita­
tional mass-energy. It is important to note the means, equation (2.109), 
to transform from the fields of one to another, depending upon dimension. 

2.8 A quick look at geometry 

Now that we are firmly in curved spacetime, it is probably a good idea 
to gather some concepts, language and tools which will be useful to us in 
many places later on. We have already reminded ourselves in chapter 1 of 
aspects of the classical differential geometry that is used to formulate the 
dynamics of gravity, introducing the metric, affine connection, Riemann 
tensors, etc. We will have reason to use another very pleasant way of 
writing of the various geometrical objects which appear in dynamical 
gravity, so we will quickly review it now, visiting a few other useful objects 
like differential forms along the way. 

2. 8.1 Working with the local tangent frames 

We can introduce 'vielbeins' which locally diagonalise the metric§: 

gMU(x) = 'Tlabe~(x)e~(x). 

The vielbeins form a basis for the tangent space at the point x, and 
orthonormality gives 

a ( ) Mb( ) _ ab eM x e x - rl . 

These are interesting objects, connecting curved and tangent space, 
and transforming appropriately under the natural groups of each (see 
figure 2.14). It is a covariant vector under general coordinate transforma­
tions x ---+ x': 

a 'a 3xu a 
eM ---+ eM = 3x'M eu, 

§ 'Vielbein' means 'many legs', adapted from the German. In D = 4 it is called a 'vier­
bein'. We shall offend the purists henceforth and not capitalise nouns taken from the 
German language into physics, such as 'ansatz', 'bremsstrahlung' and 'gedankenex­
periment'. 

https://doi.org/10.1017/9781009401371.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.003


62 2 Relativistic strings 

xA) 
e~ 

Fig. 2.14. The local tangent frame to curved spacetime is a copy of 
Minkowski space, upon which the Lorentz group acts naturally. 

and a contravariant vector under local Lorentz: 

e~(x) --+ e~(x) = Aab(x)e~(x), 

where Aab(x)Ac d(X)T/ac = T/bd defines A as being in the Lorentz group 
50(1, D-1). 

So we have the expected freedom to define our vielbein up to a local 
Lorentz transformation in the tangent frame. In fact the condition A is 
a Lorentz transformation guarantees that the metric is invariant under 
local Lorentz: ,a ,b ( ) 

9/1,1/ = rlabe J-ie v' 2.113 

Notice that we can naturally define a family of inverse vielbiens as well, 
by raising and lowering indices in the obvious way, e~ = rlabgJ-iv e~. (We 
use the same symbol for the vielbien, but the index structure will make 
it clear what we mean.) Clearly, 

(2.114) 

In fact, the vielbien may be thought of as simply the matrix of coeffi­
cients of the transformation (discussed in insert 1.2) which finds a locally 
inertial frame ~a(x) from the general coordinates xJ-i at the point x = Xo: 

which, by construction, has the transformation properties ascribed to it 
above. 
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As a not-unrelated aside, note that the prototype contravariant vector 
in curved spacetime is in fact the object whose components are the in­
finitessimal coordinate displacements, dxIL , since by the elementary chain 
rule, under x ----+ Xl: 

axllL 
d IL d IlL 'd v x ----+ x =-- x 

axv 
(2.115) 

They are often thought of as the coordinate basis elements, {dxIL }, for 
the 'cotangent' space at the point x, and are a natural dual coordinate 
basis to that of the tangent space, the objects {a/axIL}, via the perhaps 
obvious relation: 

a d v xV 
axIL' x = Uw (2.116) 

Of course, the {a/axIL} are the prototype covariant vectors: 

a a axv a 
-- ----+ -- = ----
axIL axllL ax IlL axv ' 

(2.117) 

The things we usually think of as vectors in curved spacetime have a 
natural expansion in terms of these bases: 

V=VIL~ 
axIL' 

where the latter is sometimes called a 'covector', and is also m fact a 
one-form. 

2.8.2 Differential forms 

Since we've seen some one-forms appearing, let's pause to introduce them 
properly, if briefly. As might be apparent, it is the dxIL which are useful 
for constructing p-forms, objects whose components are rank p tensors 
which are totally antisymmetric'lf. 

As already stated, the dxIL are themselves the basis for one-forms. Any 
one-form A has components AIL and is expanded A = AILdxIL . To make 
higher rank forms, we need the idea of the wedge product /\. The basis 
for two-forms for example, is made by the antisymmetric tensor product 

dXIL /\ dxv == dxIL Q9 dxv - dxv Q9 dxIL = -dxv /\ dxIL , 

and we may then define a two-form F to have totally antisymmetric com­
ponents FILv , so that F = (FlLv/2)dxIL /\ dxv. After noting paranthetically 

'\I We will not give an exhaustive account of these objects here, but enough detail to 
get an intuitive feel for what we need. We shall uncover more features as we need 
them. 
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and for completeness that ordinary functions are zero-forms, the gener­
alisation to higher rank forms is obvious: we make a basis for a p-form 
by making a totally antisymmetric combination of tensor multiplications 
of the one-forms, by adding together the results of taking products in all 
possible permutations, including a result with a minus sign if the permu­
tation is odd, and a plus sign if it is even, giving us for example: 

dX/L 1 /\ d X/L 2 /\ d X/L3 

== dxiLl Q9 d X/L2 Q9 d X/L3 + d x 1L2 Q9 d X /L3 Q9 dxiLl + d X/L3 Q9 dxiLl Q9 d x 1L2 

-dX/L1 Q9 d X /L3 Q9 d X /L2 - d X/L3 Q9 d X/L2 Q9 dX/L 1 - d X /L2 Q9 dX/L 1 Q9 d X/L3 . 

So in general we have, for rank p: 

dx/L 1 /\ d x /L2 /\ ... /\ dx/Lp , 

with which we can define a p-form G(p) with totally antisymmetric com­
ponents G/Ll/L2"'/Lp. We have: 

1 
G - -G dX/L 1 /\ d X /L2 /\ ... /\ dx/Lp (p) - , iLl/L2"'/Lp" , . 

p. 

It is natural to define the 'exterior derivative' which makes a (p + 1)­
form from a p-form: 

dG - ~ ~ (G ) d 1/ /\ d iLl /\ d /L2 /\ ••• /\ d /Lp (p) - p! oxl/ /Ll/L2"'/Lp x X X X . 

Notice that d2 always gives zero, since (as the reader should check) this 
would give a symmetric combination of partial derivatives, which is being 
summed with the antisymmetric basis, which can't help but give zero. 

A form G which can be written everywhere as the result of having acted 
with d on a form of lower rank is said to be 'exact'. A form H for which 
dH = 0 is 'closed'. Exact forms are trivially closed, since d2 = 0, and so 
the interesting exercise is to find the closed forms on a space which are 
not exact. This is a problem of cohomology, and we shall have some more 
to say about this matter in chapter 9. 

Forms are extremely natural objects to integrate over some manifold, M. 
In fact, a manifold of dimension p has a natural form defined on it, of rank 
p, which is simply the volume form, w = dx 1 /\ . .. /\ dxp . All p-forms on M 
are made by taking this object and multiplying it by some function. So 
the meaning of integrating a p-form on a manifold of dimension p is simply 
the standard multiple integration of the function: 

1M F(p) == j~ :! F/Ll"'/Lpdx/Ll /\ ... /\ dx/Lp 

= j~ Fl ... pdx1 /\ ... /\ dxP = j~ F1"'pdPx, 
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where the reader should notice that this required no metric on the mani­
fold to be defined at all. Putting this observation together with the state­
ments about cohomology, it should be apparent that forms give tools for 
computing topological properties of manifolds, since they can be inte­
grated on various submanifolds to give numbers, and we never have to 
specify a metric. 

The wedge or exterior product between a p-form and a q-form, which 
gives a (p + q) form, is straightforward to define. On components, the 
result is: 

(p + q)! 
(A(p) 1\ B(q))I-'ULp+q = p!q! A[l-'l"'l-'pBl-'p+1"'h+q]' 

It is worth noting that 

A(p) 1\ B(q) = (-1 )pq B(q) 1\ A(p). 

More subtle is the observation that the space of independent p-forms 
on a D-dimensional spacetime is in fact of the same dimension as that of 
the D - p-forms. There is a map which takes one into the other, called 
'Hodge duality', which takes any p-form and gives back a (D - p)-form. 
On the basis it is: 

* (dxl-'l 1\ dXl-'2 1\ . . . 1\ dxl-'p) = 

( ) 1/2 
-g EI-'11-'2"'l-'p dXl-'p+1 1\ dXl-'p+2 1\ ... 1\ dXI-'D (D _ p)! I-'p+1l-'p+2"'I-'D " . , 

from which its action on components of any form gives: 

*G _ (_g)1/2 Vl'''VpG 
1-'1'''I-'D-p - ,El-'l'''I-'D_p Vl'''Vp' p. 

Notice that it is the totally antisymmetric tensor (normalised to unity 
for its non-zero components) which appears in this definition, and indices 
are raised and lowered with the metric. 

A most useful object is the 'inner product' between two p-forms, A(p) 

and B(p), which yields a number. It is defined as: 

(A B ) =/A I\*B - '/(- )1/2A BI-'l1-'2'''d 11\ ... d D (p), (p) - M (p) (p) - p. M 9 1-'11-'2'" X X . 

2.8.3 Coordinate vs. orthonormal bases 

Yet another way of thinking of the vielbiens is as a means of converting 
that coordinate basis into a basis for the tangent space which is orthonor­
mal, via {ea = e~ (x )dxl-'}. We see that we have defined a natural family of 
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Insert 2.5. Yang-Mills theory with forms 

Just in case differential forms which we are briefly introducing have 
not been encountered before, let us familiarise ourselves with how 
they work using Yang-Mills theory as an example. The gauge po­
tential, which is valued in the Lie algebra of some gauge group G 
can be written as a matrix-valued one-form: A = ta A~dx/L, where 
the ta are generators of the Lie algebra. (The index a here is a label 
of generators in the adjoint representation of the Yang-Mills gauge 
group G.) Recall also that the generators of the Lie algebra satisfy 

where the jabc are the 'structure constants'. We shall discuss some Lie 
algebra and group theory more carefully in section 4.6.1. 
We write the Yang-Mills field strength as a matrix-valued 2-form: 

1 
F = dA + A /\ A = Fata = 2ta F:vdx/L /\ dxv, 

where F:v = 8/LA~ - 8vA~ + irbcAtA~. 

Note that we'll sometimes suppress the /\ and write F = dA + A2 for 
short. 
A gauge transformation is 

or infinitessimally, writing L: = e-A , it is: 

DA = dA+ [A,A]. 

The field strength transforms under this as 

F ---+ L:FL:-1 . , or DF = [F,A]. 

The action for the theory is 

where by Tr(F2) we mean F:vFb/LVTr(tatb) and the trace is on the 
gauge indices. Here g?M is the Yang-Mills coupling. 
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one-forms. Similarly, using the inverse vielbiens, we can make an orthonor­
mal basis for the dual tangent space via ea = e~a / axl". 

As an example, for the two-sphere, S2, of radius R, the metric in stan­
dard polar coordinates (B, rp) is ds2 = R2 (dB2 + sin 2 Bdrp2) and so we have: 

e~ = R, e~ = RsinB, i.e. e1 = RdB, e2 = RsinBdrp. (2.118) 

The things we think of as vectors, familiar from flat space, now have 
two natural settings. In the local frame, there is the usual vector prop­
erty, under which the vector has Lorentz contravariant components Va(x). 
But we can now relate this component to another object which has an in­
dex which is contravariant under general coordinate transformations, VI". 
These objects are related by our handy vielbiens: Va(x) = e~(x)VI". 

2.8.4 The Lorentz group as a gauge group 

The standard covariant derivative which we defined earlier in equation 
(1.9), e.g. on a contravariant vector VI", has a counterpart for va = e~VI": 

Dv VI" = av VI" + r~1i: Vii: ::::} Dv Va = av Va + Wabv Vb, 

where Wabv is the spin connection, which we can write as a I-form in either 
basis: 

a a d I" a I" Cd v a C W b = W bl" X = W bl"ec ev X = W bce . 

We can think of the two Minkowski indices (a, b) from the space tangent 
structure as labelling components of W as an SO(D-l, 1) matrix in the 
fundamental representation. So in the analogy with Yang-Mills theory, 
(see insert 2.5), wI" is rather like a gauge potential and the gauge group 
is the Lorentz group. 

Actually, the most natural appearance of the spin connection is in the 
structure equations of Cartan. One defines the torsion T a , and the curva­
ture Rab, both two-forms, as follows: 

(2.119) 

Now consider a Lorentz transformation ea ---+ e1a = Aabeb. It is amusing 
to work out how the torsion changes. Writing the result as T'a = A abTb, 
the reader might like to check that this implies that the spin connection 
must transform as (treating everything as SO(I, D - 1) matrices): 

W ---+ AwA -1 - dA . A-I, i.e. wI" ---+ AWI"A -1 - al"A . A-I, (2.120) 

https://doi.org/10.1017/9781009401371.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.003


68 2 Relativistic strings 

or infinitessimally we can write A = e-8 , and it is: 

Ow = d8 + [w, 8]. (2.121) 

A further check shows that the curvature two-form does 

R ----+ R' = ARA -1, or oR = [R,8], (2.122) 

which is awfully nice. This shows that the curvature two-form is the ana­
logue of the Yang-Mills field strength two-form in insert 2.5. The following 
rewriting makes it even more suggestive: 

2.8.5 Fermions in curved spacetime 

Another great thing about this formalism is that it allows us to discuss 
fermions in curved spacetime. Recall first of all that we can represent the 
Lorentz group with the r-matrices as follows. The group's algebra is: 

(2.123) 

with Jab = -Jba, and we can define via the Clifford algebra: 

(2.124) 

where the curved space r-matrices are related to the familiar flat (tan­
gent) spacetime ones as r a = e~(x)rM(x), giving {rM, rU} = 2gMU . With 
the Lorentz generators defined in this way, it is now natural to couple a 
fermion 'IjJ to spacetime. We write a covariant derivative as 

(2.125) 

and since the curved space r-matrices are now covariantly constant, we 
can write a sensible Dirac equation using this: r M DM'I/J = O. 

2.8.6 Comparison to differential geometry 

Let us make the connection to the usual curved spacetime formalism now, 
and fix what w is in terms of the vielbiens (and hence the metric). Asking 
that the torsion vanishes is equivalent to saying that the vielbeins are 
covariantly constant, so that DMee = O. This gives DM va = eau DM Vu , 
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allowing the two definitions of covariant derivatives to be simply related 
by using the vielbeins to convert the indices. 

The fact that the metric is covariantly constant in terms of curved 
spacetime indices relates the affine connection to the metric connection, 
and in this language makes wab antisymmetric in its indices. Finally, we 
get that 

a an 1/ a(3 1/ rl/ "') w b{l = el/ v {leb = el/ {leb + {l",eb . 

We can now write covariant derivatives for objects with mixed indices 
(appropriately generalising the rule for terms to add depending upon the 
index structure), for example, on a vielbien: 

(2.126) 

Revisiting our two-sphere example, with bases given in equation (2.118), 
we can see that 

o = del + W 12 /\ e2 = 0 + W 12 /\ e2, 

o = de2 + W 21 /\ e1 = Rcosede /\ d¢; + W 21 /\ el, 

from which we see that W 12 = -cos e d¢;. The curvature is: 

R 1 d 1 . ede d-+. 1 1 2 R1 1 2 2 = W 2 = SIn /\ <p = R2 e /\ e = 212e /\ e . 

(2.127) 

(2.128) 

Notice that we can recover our friend the usual Riemann tensor if we 
pulled back the tangent space indices (a, b) on Rab{ll/ to curved space 
indices using the vielbiens e~. 

One last thing to note is the usefulness of forms for writing volume 
elements for integration: 

Commonly, we will take the totally antisymmetric symbol E and make 
a tensor out of it by multiplying by (-g) 1/2, defining: 

and the reader should check that this is a tensor, noting that the factor of 
the tensor density (_g)1/2 will produce just the right non-tensorial parts 
to cancel those of the permutation symbol. 

We can write the Einstein-Hilbert Lagrangian as: 

I: rv eR, (2.129) 

where R is the Ricci scalar, with dea+wea = 0 as an additional condition. 
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