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A SELECTION THEOREM AND ITS APPLICATIONS

XiE PinG DiNg, WoN Kyu KiM AND Kok-KEONG TAN

In this paper, we first prove an improved version of the selection theorem of
Yannelis-Prabhakar and next prove a fixed point theorem in a non-compact prod-
uct space. As applications, an intersection theorem and two equilibrium existence
theorems for a non-compact abstract economy are given.

1. INTRODUCTION

In convex analysis, the Fan-Browder fixed point theorem [2] is an essential tool in
proving existence theorems of numerous nonlinear problems (for example see [2, 7, 13,
15]). Actually, the Fan-Browder fixed point theorem can be proved by constructing a
continuous selection.

In [15], Yannelis-Prabhakar proved a continuous selection theorem and obtained a
fixed point theorem in paracompact convex sets. Using this fixed point theorem, they
obtained an equilibrium existence theorem for a compact abstract economy.

In this paper, we first give an improved version of the selection theorem of Yannelis-
Prabhakar [15]. By applying this result, we prove a fixed point theorem in non-compact
product spaces. As an application of our fixed point theorem, we first prove an inter-
section theorem which is closely related to a non-compact generalisation of Fan’s in-
tersection theorem [6] due to Shih-Tan [12]. Next, two equilibrium existence theorems
are obtained which are either closely related to or generalisations of those results of
Borglin-Keiding [1], Shafer-Sonnenschein [11], Tarafdar [14] and Yannelis-Prabhakar
[15].

We shall need the following notations and definitions. Let A be a non-empty set.
We shall denote by 24 the family of all subsets of A. If A is a non-empty subset of a
topological space X, we shall denote by clx A the closure of A in X . If A is a subset
of a vector space, co A denotes the convex hull of A. Let X,Y be topological spaces
and ¢: X — 2Y be a correspondence.

(i) If A C X, we shall denote the restriction of ¢ to A by ¢|4, that is,

$la : A — 2Y is the correspondence defined by ¢|a(z) = ¢(z) for all
z€EA.
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(i1) ¢ is said to be upper semicontinuous if for each open subset V of Y, the
set {z€ X :¢(z) CV} isopenin X.

(iii) f:X — Y is a continuous selection of ¢ if f is continuous and f(z) €
¢(z) forall z € X.

(iv) X Y is a vector space, the correspondence co¢ : X — 2¥ is defined by
(cod)(z) =cog(z) for all z € X .

2. SELECTION AND FIXED POINT THEOREMS

We shall first generalise a selection theorem of Yannelis-Prabhakar [15, Theorem
3.1] as follows :

THEOREM 1. Let X be a non-empty paracompact Hausdorff topological space
and Y be a non-empty convex subset of a topological vector space. Suppose S, T :
X — 2Y are correspondences such that

(1) foreach z€ X, coS(z)C T(z) and S(z) # 0,
(2) foreachy€eY, S '(y)isopenin X.
Then T has a continuous selection.
ProoOF: By (1), X = |J S~ !(y). Since X is paracompact, by (2) and Lemma 1

yeY
of Michael [10], there exists an open locally finite refinement F = {U, : a € A} of the

family {S~(y) : y € Y} where A is an index set and U, is an open subset of X. By

Proposition 2 of Michael [10], there exists a family of continuous functions {g, : a € A}

such that g, : X — [0,1], ga(z) =0 for 2 ¢ U, and ) gs(z) =1 for all z € X. For
acA

each a € A, choose y, € Y such that U, C S™*(ya). This can be done since F is a
refinement of {S~!(y):y € Y}. Define f: X - Y by

f(z) = Z 9a(2) Ya for each z € X.
a€A

From the local finiteness of F, it follows that for each z € X, at least one, and at most
finitely many, g.(z) is not zero, and f is a well-defined continuous function from X
to Y. Let z € X and a € A be such that go(z) # 0, then z € U, C S™(y,) so that
Ya € S(z). By (1) and the definition of f, we have f(z) € coS(z) C T(z) for each
z € X . This completes the proof.

If S =T, Theorem 1 reduces to Theorem 3.1 of Yannelis-Prabhakar [15].
We shall need the following lemma.

LEMMA 1. Let D be a non-empty compact subset of a topological vector space

E. Then coD is o-compact and hence is paracompact.
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PROOF: The proof that co D is o-compact can be found in [9, p.49]. For complete-
ness, we shall include the simple proof here. For each n € N, let S, = {(A1,...,2n):
ALy .., An 2 0 with 3" A; =1} and define f, : S, x [[D — E by

=1 =1

farse s dn, 21y 2a) = 3 Az
=1

n n

Then f, is continuous. Since S, x [[ D is compact, fn(Sn X [[ D) is compact. But
oo n =1 i=1

then coD = | fn (S'ﬂ x 11 D) is o-compact. It follows that co D is Lindeldf. Since

n=1 =1

co D is regular, coD is paracompact by Corollary 33.15 in [3, p.341]. This completes
the proof.

We remark here that the topological vector space E in the above lemma is not
assumed to be Hausdorff.

We shall prove the following fixed point theorem.

THEOREM 2. Let {X;}icr be a family of non-empty convex sets, each in a locally
convex Hausdorff topological vector space E;, where I is an index set. For each 1 €I,
let D; be a non-empty compact subset of X; and S;,T; : X = [[ X;: — 2P¢ be such
that for each 1 € I, el

(1) for each z € X, co Si(z) C Ti(z) and Si(z) # 0,
(2) for each y; € D;, S (y;) is openin X.

Then there exists a point T € D = H D; such that T € T(Z) = H T:(z), that is,

z; € Ti(z) for all i € I, where Z; is tI;EeIprojection of T onto X; for ::EaIch iel.
PROOF: Since D = H D; is compact in X, it follows from Lemma 1 that coD

1s paracompact in X . Fo;eéach 1€1,let S:‘;T,-* be the restrictions of S;,T; on coD,

then we have

(a) foreach z € coD, coS}(z)C coT;(z) and coS?(z) # 0,
(b) for each y; € Dy,

(57) (i) = {z € coD : yi € Si(=)}
={z €coD:y; € Si(z)}
=coDN S (w)

is open in co D.

By Theorem 1, for each i € I, T has a continuous selection f; : coD — D; such
that fi(z) € T(z) = Ti(z) for each z € co D.
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Define f:coD — D and T : coD — 2P by

Hf,(:z:) and T(z) = HT(::) for each z € co D.
el i€l

Then f is clearly continuous. By Theorem 4.5.1 of Smart [13], there exists Z € D
such that Z = f(Z) € T(Z). This completes the proof. 0

Theorem 2 generalises Theorem 3.2 of Yannelis-Prabhakar [15] in several ways :

(i) T need not be a singleton set,
(ii) X: need not be paracompact, and
(iii) Si and T; need not be identical.

3. APPLICATIONS

Let X;,..., X, (n > 2) be topologlcal spaces and X = HX Let 1 € {1,...,n}

be arbitrarily fixed. Let X = H X;jand 7 0 X — X; and X o X, be the
j=1
J#

projections. If z € X, we can write m;(z) = 2; and Ti(z) = ;. Let A be a subset of
X, z; € X; and Z; € )?,-. Then [z;,7;] denotes the point ¢ € X such that mi(z) = 2;
and #;(z) = Z; and we define A(z;) = {§; € X:: [zi,5:]) € A} and A(Z;) = {y: € X; :
[vi,2:] € A}. I A; C X; and A; C X;, A; ® A; denotes the set {[y;,7:] € X : v €
A; and §; € A;}.

We shall give an application of a fixed point theorem to an intersection theorem as
follows:

THEOREM 3. Let {X;}ier be a family of non-empty convex sets, each in a locally
convex Hausdorff topological vector space E;. For each 1 € I, let D; be a non-empty
compact subset of X;. Suppose that {A;}ier,{B:}ier are two families of subsets of

X = [] X; having the following properties:
el

(1) for each i € I and z; € D;, the set Bi(=:) is open in X;,
(2) foreachi € I, and §; € X;, the set B;(§:)ND; (= {z: € D; : [z:,%i] € Bi})
75 @ and co (B;(‘_;J;) n D,') - A,‘(f];) N D;.

Then we have () A; # 0.
i€l

PROOF: Define S;, T;: X — 20 as follows :

Si(y) = Bi(%:) n Dy,
Ti(y) = Ai(#:)ND;, foreachye X.
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Then by (2), for each i € I and y € X,co0Si(y) C Ti(y) and Si(y) £ 0. By (1), for
each i € I and z; € D;,

S =zi) ={y € X : z: € Si(y)}
={ye X :z;€ Bi(z:) N D;} (={y € X : z; € Bi(%:)})
={y € X : [z:,3i] € B:}
= X; ® Bi(z:)

is open in X.
By Theorem 2, there exists z € D = [[ D; such that z € T(z) = [] Ti(z), that
iel i€l
is, z; € Ai(%;) for all + € I and hence z = [z;,7;] € [) Ai. Therefore (| A; # 0. This

completes the proof. €1 el 0

We remark that Theorem 3 is closely related to but not comparable to Theorem 2
of Shih-Tan [12] which was a non-compact generalisation of Fan’s intersection theorem
[6] (in our case, the space E; is required to be locally convex).

Next we shall give two equilibrium existence theorems for a non-compact abstract
economy with an infinite number of commodities and an infinite number of agents.
We first give some definitions in equilibrium theory. Let the set I of agents be any
(possibly uncountable) set. An abstract economy T = (X, Ai, Bi, P;);¢; is defined
as a family of ordered quaduples (X;, A;, B;, P;) where A;,B; : [] X; — 2Xi are

jer
constraint correspondences and P; : [] X; — 2% is a preference correspondence.
€l
An equilibrium for T is a point Z € X = [] X; such that for each ¢ € I, Z; €

iel
clx,;Bi(Z) and A;(Z) N Pi(Z) = @ . When 4; €= B; for each i € I, our definitions
of an abstract economy and an equilibrium coincide with the standard definitions, for
example in Borglin-Keiding [1, p.315] or in Yannelis-Prabhakar [15, p.242].
We shall first show that by applying Himmelberg’s fixed point theorem [8, Theorem
2] instead of Ky Fan’s fixed point theorem [5], the proof of Theorem 6.1 of Yannelis-
Prabhakar [15] can be used to prove its non-compact case.

THEOREM 4. Let I' = (X, A;, Bi, P;);cr be an abstract economy such that for
eachiel,

(1) X; is a non-empty convex subset of a locally convex Hausdorff topological
vector space E; and D; is a non-empty compact subset of X;,

(2) for each z € X = []X;, Ai(z) is non-empty, Ai(z) C Bi(z) C D; and
Bi(z) is convex, el

(3) the correspondence cl B; : X — 2%i defined by (cl B;)(z) = clx,Bi(z) for

each z € X, is upper semicontinuous,
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(4) foreach y€ D;, A;'(y)is openin X,

(5) for each y € X;, P;[*(y)is openin X,

(6) foreachzec X, =z; ¢ coPi(z),

(7) theset {z € X : co Ai(z) N co Pi(z) # 0} is paracompact.

Then T’ has an equilibrium Z € X, that is, for each i € I,
Z; € clx,Bi(z) and Ai(Z)NPi(Z)=0.
PRroOF: We first fix i € I. Define ¢; : X — 2%i by
di(z) = co Ai(z) N co Pi(z) for each z € X.

By (4), (5) and Lemma 5.1 of Yannelis-Prabhakar [15], it is easy to see that for
each y € X;, ¢7'(y) is open in X. Let U; = {z € X : ¢i(z) # 0}. Since U; =
U ¢:7'(y), Us is open in X. By (7), U; is paracompact. Note that ¢;|y, : U; — 2%i
yEX;
has the following properties :
(i) for each z € U;, ¢;|y;(z) is non-empty and convex,
(1) for each y € X;, (¢;|U'.)—1(y) = ¢;(y) NU; is open in U;.
By Theorem 3.1 of Yannelis-Prabhakar [15] (which is the case S = T in our
Theorem 1), there exists a continuous selection f; : U; — 2%¢ such that fi(z) € ¢ilu;(z)
for all z € U;. Define F;: X — 2%i by

Fi(z) = {fi=)}, if z € U;,
T edxBil=), iz ¢ U

By (3) and Lemma 6.1 of Yannelis-Prabhakar [15], F;: X — 2%i is upper semicontin-
uous on X . Clearly for each z € X, Fi(z) is a non-empty closed convex subset of D;
by (2). Finally we define F: X — 2X by

F(z) = HF.(:) for each z € X.
el

It follows from Lemma 3 of Fan [5] that F' is upper semicontinuous on X . Obviously

for each = € X, F(z) is a closed convex subset of D = [[ D;. By Tychonoff’s product
i€l

theorem (for example see Dugundji {4, p.224]), D is a compact subset of X. Hence

by Theorem 2 of Himmelberg [8], there exists a point £ € D such that z € F(z).

If Z € U; for some 1 € I, then Z; = fi(Z) € coAiZ) N coPi(Z) C coPi(Z) which

contradicts (6). Thus for each i € I, we must have Z ¢ U; so that Z; € clx,B;(Z) and
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co A;(Z) N co Pi(Z) = 0. Consequently, Z is an equilibrium for I'. This completes the
proof. 0

As we have seen in the proof, we can obtain a stronger separation result, that is,
for each i € I, co Ai(Z) Nco P(Z) = 0.

Theorem 4 generalises Theorem 6.1 of Yannelis-Prabhakar [15] in the following
ways :

(i) for each i € I, the space E; need not be metrisable,
(i1) for each i € I, the set X; need not be compact, and
(iii) the set I of agents need not be countable.

THEOREM 5. Let I' = (X;, A;, B;, P;);.; be an abstract economy such that for
each t € I, the following conditions hold:

(1) X; is a non-empty convex subset of a locally convex Hausdorff topological
vector space E; and D; be a non-empty compact subset of X;,

(2) for each z € X, A;(z) is non-empty and co A;(z) C Bi(z) C D;,

(3) for each y; € D;, the set [(coP:)” (%) U F;] N A7*(y;) is open in X,
where F; = {z € X : Ai(z) N Py(z) = 0},

(4) for each z € X, z; ¢ coPi(z).

Then T’ has an equilibrium.

PROOF: Foreachi € I,let Gi={z € X : A;(z)NP;(z) # 0} andforeach z € X,
let I(z) = {i € I : A;(z) N Py(z) # 0}. For each i € I, we define the correspondences
S, i X=]]X:i— 2Di by

iel
co Pi(z) N Ai(z), ifie€ I(z),
Si(z) = .
Ai(z), ifig¢I(z),

Ti(z) = co Pi(z) N By(z), ifie€ I(z),
o Be), ifi¢I()

Then we have the following properties:

(i) foreach i€l and z € X, coSi(z) C Ti(z) and Si(z) # 0,
(i) for each i € I and y; € Dy,

S7'w) = {[(co P) (1) N A7 ()] N Gi} U (A7 () N FY]
= [(co P (w:) N A7 ()] U (47} (%) N FY)
= [(co P) ™ () U Fi] N A7 (w:)

is open in X by (3).
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By Theorem 2, there exists Z € D such that Z; € T;(Z) for all : € I. By (4) and the
definition of T;, we have Z; € B;y(Z) and A;(Z)N Pi(Z) =0 for all + € I. This
completes the proof. 0

Finally we remark that Theorems 4 and 5 are closely related to those results of

Shafer-Sonnenschein [11, p.347], Borglin-Keiding [1, p.315] and Tarafdar [14, Theorem
3.1].
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