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1. Introduction

Let A be a unital C∗-algebra and for each n ∈ N let Mn be the n × n matrix algebra
over C. Let Mn(A) be the n × n matrix algebra over A and we identify Mn(A) with
A ⊗ Mn.

In [13], Plastiras gave an example of a pair of unital C∗-algebras A and B satis-
fying A �∼= B but M2(A) ∼= M2(B). Also, in [7], Cuntz showed that O3 �∼= B but
M2(O3) ∼= M2(B), where O3 is the Cuntz algebra generated by three isometries with
pairwise orthogonal ranges and B = M2(O3).

In this note, we shall give a necessary and sufficient condition that for a unital C∗-
algebra A there is a unital C∗-algebra B satisfying A �∼= B but Mn(A) ∼= Mn(B) for some
n ∈ N \ {1}. We shall refer to these conditions as ‘property (∗)’. Also, we shall give some
examples of unital C∗-algebras satisfying property (∗).

2. Preliminaries

Let A be a C∗-algebra, M(A) its multiplier algebra and Ã its unitization. Let idA be the
identity map of A and let 1A be the unit element in A if A is unital. We denote them by
id and 1 if no confusion can arise.

Let p be a projection in M(A). Then we call p a full projection in A if ApA = A (see [4]
or [5]). Let p, q be projections in A. Then p is equivalent to q in A, written p ∼ q, if p is
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Murray–von Neumann equivalent to q in A. We denote by (p) the equivalent class of p

in A. Also, p is subordinate to q, written p � q, if p is equivalent to a subprojection of q.
For every n ∈ N let {fij}n

i,j=1 be matrix units of Mn and let In be the unit element
in Mn. For any n, m ∈ N with n � m, we regard Mn as a left corner C∗-subalgebra of
Mm and In as a projection in Mm. Let K be the C∗-algebra of all compact operators on
a countably infinite-dimensional Hilbert space. We regard Mn as a C∗-subalgebra of K

for each n ∈ N in the usual way. Let {eij}i,j∈Z and {eij}∞
i,j=0 be two families of matrix

units of K.

Lemma 2.1. Let A be a unital C∗-algebra. Then the following hold.

(i) Let p, q be projections in A ⊗ K with p � q. If p is a full projection in A ⊗ K, then
so is q.

(ii) Let q be a projection in A ⊗ K. Suppose that q is full in A ⊗ K. Let p ∈ q(A ⊗ K)q
be a full projection in q(A ⊗ K)q. Then p is full in A ⊗ K.

Proof. (i)

A ⊗ K = (A ⊗ K)p(A ⊗ K) ⊂ (A ⊗ K)q(A ⊗ K) ⊂ A ⊗ K,

so that (A ⊗ K)q(A ⊗ K) = A ⊗ K, i.e. q is full in A ⊗ K.

(ii) We note that
q(A ⊗ K)p(A ⊗ K)q = q(A ⊗ K)q

since p is full in q(A ⊗ K)q. Then

(A ⊗ K)p(A ⊗ K) ⊃ (A ⊗ K)q(A ⊗ K)p(A ⊗ K)q(A ⊗ K) = A ⊗ K.

Therefore, p is full in A ⊗ K. �

For a unital C∗-algebra A and each n ∈ N, let FPn(A) be the set of all full projections
p in A⊗K with p(A⊗K)p ∼= Mn(A) and let FPn(A)/∼= {(p) | p ∈ FPn(A)}. We denote
FP1(A) and FP1(A)/∼ by FP(A) and FP(A)/∼, respectively.

3. A necessary and sufficient condition

Suppose that A is a unital C∗-algebra with property (∗). Then there is a unital C∗-
algebra B satisfying A �∼= B but Mn(A) ∼= Mn(B) for some n ∈ N \ {1}. Since A and B

are strongly Morita equivalent, by Rieffel [14, Proposition 2.1] there is a full projection
q ∈ A ⊗ K such that B ∼= q(A ⊗ K)q. Then

Mn(A) ∼= Mn(B) ∼= (q ⊗ In)(A ⊗ K ⊗ Mn)(q ⊗ In).

Let χ be an isomorphism of Mn(A) onto (q ⊗ In)(A ⊗ K ⊗ Mn)(q ⊗ In) and let p1 =
χ(1A ⊗ f11).

Lemma 3.1. With the above notation, p1 is a full projection in A ⊗ K ⊗ Mn.
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Proof. Since 1A ⊗ f11 is full in A ⊗ Mn, p1 is full in (q ⊗ In)(A ⊗ K ⊗ Mn)(q ⊗ In).
Since q ⊗ In is full in A ⊗ K ⊗ Mn, by Lemma 2.1 (ii) p1 is full in A ⊗ K ⊗ Mn. �

For any n ∈ N let ψn be an isomorphism of K⊗Mn onto K with ψn∗ = id, the identity
map of K0(K ⊗ Mn) onto K0(K). Let p = (idA ⊗ψn)(p1) ∈ A ⊗ K.

Lemma 3.2. With the above notation, p ∈ FP(A).

Proof. Since p1 is a full projection in A⊗K⊗Mn by Lemma 3.1, p is a full projection
in A ⊗ K. Also,

p(A ⊗ K)p ∼= (idA ⊗ψn)(p1(A ⊗ K ⊗ Mn)p1) ∼= p1(A ⊗ K ⊗ Mn)p1

= χ((1A ⊗ f11)(A ⊗ Mn)(1A ⊗ f11)) ∼= A.

Therefore, we obtain the conclusion. �

We shall show that p ⊗ In ∼ q ⊗ In in A ⊗ K ⊗ Mn. To do this, we need lemmas.

Lemma 3.3. With the above notation, for any N ∈ N there is a partial isometry
v ∈ K ⊗ Mn such that

v∗v =
N∑

j=−N

ejj ⊗ In, vv∗ =
N∑

j=−N

ψn(ejj ⊗ In) ⊗ f11

v(eij ⊗ fkl)v∗ = ψn(eij ⊗ fkl) ⊗ f11 for i, j = −N, . . . , 0, . . . , N and k, l = 1, 2, . . . , n.

Proof. Since (e00 ⊗ f11) ⊗ f11 is a minimal projection in (K ⊗ Mn) ⊗ Mn, ψn(e00 ⊗
f11)⊗f11 is a minimal projection in K⊗Mn. Since all minimal projections are equivalent,
there is a partial isometry w ∈ K ⊗ Mn such that

w∗w = e00 ⊗ f11, ww∗ = ψn(e00 ⊗ f11) ⊗ f11.

Let

v =
n∑

k=1

N∑
j=−N

(ψn(ej0 ⊗ fk1) ⊗ f11)w(e0j ⊗ f1k).

By routine computations, we can see that v is the required partial isometry in K ⊗ Mn.
�

Lemma 3.4. With the above notation, p ⊗ f11 ∼ p1 in A ⊗ K ⊗ Mn.

Proof. There are an N ∈ N and a projection p0 ∈ A⊗M2N+1⊗Mn ⊂ A⊗K⊗Mn such
that p0 ∼ p1 in A ⊗ K ⊗ Mn. Since (idA ⊗ψn)(p0) ⊗ f11 ∼ (idA ⊗ψn)(p1) ⊗ f11 = p ⊗ f11

in A ⊗ K ⊗ Mn, we have only to show that (idA ⊗ψn)(p0) ⊗ f11 ∼ p0 in A ⊗ K ⊗ Mn. We
write

p0 =
n∑

k,l=1

N∑
i,j=−N

aijkl ⊗ eij ⊗ fkl, where aijkl ∈ A.
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Then, by routine computations,

(1 ⊗ v)p0(1 ⊗ v)∗ =
n∑

k,l=1

N∑
i,j=−N

aijkl ⊗ v(eij ⊗ fkl)v∗ = (idA ⊗ψn)(p0) ⊗ f11,

p0(1 ⊗ v)∗(1 ⊗ v)p0 =
n∑

k,l=1

N∑
i,j=−N

(aijkl ⊗ eij ⊗ fkl)
(

1 ⊗
N∑

j=−N

ejj ⊗ In

)
p0 = p0.

Therefore, p0 ∼ (idA ⊗ψn)(p0) ⊗ f11 in A ⊗ K ⊗ Mn. �

Proposition 3.5. With the above notation, p ⊗ In ∼ q ⊗ In in A ⊗ K ⊗ Mn.

Proof. By Lemma 3.4, χ(1⊗fjj) ∼ χ(1⊗f11) = p1 ∼ p⊗f11 ∼ p⊗fjj in A⊗K⊗Mn

for j = 1, 2, . . . , n. Thus in A ⊗ K ⊗ Mn,

q ⊗ In = χ(1 ⊗ In) =
n∑

j=1

χ(1 ⊗ fjj) ∼
n∑

j=1

p ⊗ fjj = p ⊗ In.

Therefore, we obtain the conclusion. �

Theorem 3.6. Let A be a unital C∗-algebra. Suppose that there is a unital C∗-
algebra B satisfying A �∼= B but Mn(A) ∼= Mn(B) for some n ∈ N \ {1}. Then there are
full projections p, q in A ⊗ K with p ∈ FP(A), q /∈ FP(A) such that q(A ⊗ K)q ∼= B,
p ⊗ In ∼ q ⊗ In in A ⊗ K ⊗ Mn.

Proof. Since A and B are strongly Morita equivalent by Rieffel [14, Proposition 2.1],
there is a full projection q in A ⊗ K such that q(A ⊗ K)q ∼= B. If q ∈ FP(A), A ∼=
q(A⊗K)q ∼= B. This is a contradiction. Thus q /∈ FP(A). Furthermore, by Proposition 3.5
there is a p ∈ FP(A) such that p ⊗ In ∼ q ⊗ In in A ⊗ K ⊗ Mn. �

Corollary 3.7. Let A be a unital C∗-algebra. Then the following conditions are equiv-
alent.

(i) There is a unital C∗-algebra B satisfying A �∼= B but Mn(A) ∼= Mn(B) for some
n ∈ N \ {1}.

(ii) There is a full projection q in A ⊗ K with q /∈ FP(A) satisfying that there is a
p ∈ FP(A) such that p ⊗ In ∼ q ⊗ In in A ⊗ K ⊗ Mn for some n ∈ N \ {1}.

Proof. (i) ⇒ (ii). This is clear by Theorem 3.6.

(ii) ⇒ (i). Put B = q(A ⊗ K)q. Then

B ⊗ Mn
∼= (q ⊗ In)(A ⊗ K ⊗ Mn)(q ⊗ In) ∼= (p ⊗ In)(A ⊗ K ⊗ Mn)(p ⊗ In) ∼= A ⊗ Mn

since p ⊗ In ∼ q ⊗ In in A ⊗ K ⊗ Mn and p ∈ FP(A). Also, A �∼= B. Indeed, if A ∼= B,
q(A ⊗ K)q ∼= A. Thus q ∈ FP(A). This is a contradiction. Therefore, we obtain the
conclusion. �
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Corollary 3.8. Let A be a unital C∗-algebra. Suppose that A has cancellation or A is
purely infinite simple and that K0(A) is torsion free. Then A does not satisfy property (∗).

Proof. Suppose that there is a unital C∗-algebra B satisfying A �∼= B but Mn(A) ∼=
Mn(B) for some n ∈ N\{1}. Then there are full projections p, q ∈ A⊗K with p ∈ FP(A)
and q /∈ FP(A) such that p⊗In ∼ q⊗In in A⊗K⊗Mn by Corollary 3.7. Hence n[p] = n[q]
in K0(A). Since K0(A) is torsion free and A has cancellation or A is purely infinite simple,
p ∼ q in A ⊗ K. This is a contradiction. Therefore, we obtain the conclusion. �

4. Examples

In this section, we shall give some examples of unital C∗-algebras with property (∗).
Let A be a unital C∗-algebra. For any p ∈ FP(A), ((idA ⊗ψn)(p ⊗ In)) ∈ FPn(A)/∼

by an easy calculation. In the same way as in the proof of [8, Lemma 3.1], we see
that ((idA ⊗ψn)(p ⊗ In)) is independent of the choices of p ∈ FP(A) and ψn by easy
computations. Hence we can define a map µn : FP(A)/ ∼→ FPn(A)/ ∼ by µn((p)) =
((idA ⊗ψn)(p ⊗ In)).

Lemma 4.1. With the above notation, µn is surjective for any n ∈ N.

Proof. Let q ∈ FPn(A). Then there is an isomorphism χq of A⊗Mn onto q(A⊗K)q.
Put p = χq(1A ⊗ f11). Then p(A ⊗ K)p ∼= A and by Lemma 2.1 (ii) p is a full projection
in A ⊗ K since p is full in q(A ⊗ K)q. Thus p ∈ FP(A). Furthermore, in the same way
as in the proof of Lemma 3.4, (id⊗ψn)(χq(1 ⊗ f11) ⊗ fjj) ∼ χq(1 ⊗ fjj) in A ⊗ K for
j = 1, 2, . . . , n. Hence, in A ⊗ K,

(id⊗ψn)(p ⊗ In) =
n∑

j=1

(id⊗ψn)(χq(1 ⊗ f11) ⊗ fjj) ∼
n∑

j=1

χq(1 ⊗ fjj) = q.

Therefore, we obtain the conclusion. �

Proposition 4.2. Let A be a unital C∗-algebra such that K0(A) has a torsion element
x with nx = 0 and kx �= 0 for k = 1, 2, . . . , n − 1, where n ∈ N with n � 2. Suppose that
FP(A)/∼= {(1A ⊗ e00)}. Then there are unital C∗-algebras A1 and A2 strongly Morita
equivalent to A such that Mn(A1) ∼= Mn(A2), Mk(A1) �∼= Mk(A2) for k = 1, 2, . . . , n − 1.

Proof. For the x ∈ K0(A), there are l, m ∈ N and a projection p ∈ Ml(A) such that
x = [p] − [1A ⊗ Im] in K0(A). Since nx = 0 in K0(A), [p ⊗ In] = [1 ⊗ Imn] in K0(A).
Thus there are k, N ∈ N with N � l, m such that

(p ⊗ In) ⊕ (1A ⊗ Ik ⊗ In) ∼ (1A ⊗ Im ⊗ In) ⊕ (1A ⊗ Ik ⊗ In)

in MN+k(A) ⊗ Mn, where we regard p and Im as projections in MN+k(A). Thus

(p ⊕ (1 ⊗ Ik))MN+k(A)(p ⊕ (1 ⊗ Ik)) ⊗ Mn

∼= ((1 ⊗ Im ⊗ In) ⊕ (1 ⊗ Ik ⊗ In))(MN+k(A) ⊗ Mn)((1 ⊗ Im ⊗ In) ⊕ (1 ⊗ Ik ⊗ In))
∼= Mm+k(A) ⊗ Mn.
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Put A1 = (p⊕(1⊗Ik))MN+k(A)(p⊕(1⊗Ik)), A2 = Mm+k(A). Then Mn(A1) ∼= Mn(A2).
Let q = p⊕(1⊗Ik). Since 1⊗Ik is full in MN+k(A), by Lemma 2.1 (i) q is full in MN+k(A).
Hence by Brown [4, Corollary 2.6] A1 is strongly Morita equivalent to A. Suppose that
Mr(A1) ∼= Mr(A2) for some r ∈ N with 1 � r � n − 1. Then by an easy computation,
(idA ⊗ψr)(q ⊗ Ir) ∈ FP(m+k)r(A). Since FP(A)/∼= {(1 ⊗ e00)}, by Lemma 4.1

FP(m+k)r(A)/∼=
{(

1 ⊗
(m+k)r∑

j=0

ejj

)}
.

Hence (id ⊗ψr)(q ⊗ Ir) ∼ 1 ⊗
∑(m+k)r

j=0 ejj in A ⊗ K. Since ψr∗ is the identity map of
K0(K ⊗ Mr) onto K0(K), r[q] = (m + k)r[1A] in K0(A). Hence rx = 0 in K0(A). This is
a contradiction. Therefore, we obtain the conclusion. �

The Cuntz algebra O3 satisfies the assumptions of Proposition 4.2 since K0(O3) ∼=
Z/2Z and FP(O3)/∼= {(1 ⊗ e00)} by [8, Corollary 4.6] and [9, Corollary 15]. We shall
give an example of a simple unital C∗-algebra with cancellation satisfying the assumptions
of Proposition 4.2.

For a C∗-algebra C we denote by Aut(C) the group of all automorphisms of C and by
sr(C) its stable rank.

Let θ be a non-quadratic irrational number in (0, 1) and let Z + Zθ be the ordered
group with the usual total ordering. Let D be the group of all rational numbers and let
G = (Z+Zθ)⊕D be the ordered group with the strict ordering from the first coordinate.
We denote by G+ its positive cone and we choose an order unit u ∈ G by u = (1, 0).
Then by routine calculations, we can see that (G, G+, u) is a simple dimension group by
Blackadar [2, Theorem 7.4.1]. Let C be a unital AF-algebra corresponding to (G, G+, u).
Let α be an automorphism of C such that the automorphism α∗ of K0(C) is defined by
α∗(a, b) = (a,−2b) for any (a, b) ∈ K0(C). Let A = C ×α Z. Then in the same way as in
Blackadar [2, 10.11.2], we can see that A is a simple unital stably finite C∗-algebra with
its scaled ordered group as follows:

((Z + Zθ) ⊕ Z/3Z, {(a, b) ∈ (Z + Zθ) ⊕ Z/3Z|a > 0} ∪ {(0, 0)}, (1, 0)).

Example 4.3. Let A be as above. Then A has cancellation and satisfies the assump-
tions of Proposition 4.2. Thus there are unital C∗-algebras A1 and A2 strongly Morita
equivalent to A such that M3(A1) ∼= M3(A2), Mk(A1) �∼= Mk(A2) for k = 1, 2.

In fact, let (a, [b]) be any positive element in (Z + Zθ) ⊕ Z/3Z, where a ∈ Z + Zθ

with a > 0 and [b] is an equivalence class in Z/3Z of b ∈ Z with 0 � b � 2. Then by
the Pimsner–Voiculescu exact sequence, there is a projection q in some Mn(C) such that
[q] = (a, [b]) in K0(A). Since C has cancellation, by the definition of the ordering of
K0(C), there is a projection p in Mn(C) such that p � q and [p] ∈ (Z+Zθ)⊕0 ⊂ K0(C).
Since qMn(A)q is simple, p is full in qMn(A)q.

The conjecture in Blackadar [1, Remark A7] has been proved by Blackadar. This we can
obtain that sr(qMn(A)q) � sr(pMn(A)p). Also since α∗([p]) = [p] and C has cancellation,
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there is a unitary element w ∈ Mn(C) such that α(p) = w∗pw. Hence

sr(qMn(A)q) � sr(pMn(A)p) = sr(pMn(C)p ×Ad(w)◦(α⊗idMn ) Z)

� sr(pMn(C)p) + 1 = 2.

Thus by Blackadar [1, Theorem A1], A has cancellation. Since θ is non-quadratic, by Shen
[15, Theorem 2.1] the identity map of Z+Zθ is the unique order-preserving automorphism
of Z + Zθ. Thus for any β ∈ Aut(A ⊗ K) there is an automorphism σ of Z/3Z such that
β∗ = idZ+Zθ ⊕σ on K0(A ⊗ K) = (Z + Zθ) ⊕ Z/3Z. Hence β∗([1 ⊗ e00]) = (1, σ(0)) =
(1, 0) = [1 ⊗ e00] in K0(A ⊗ K). Since A has cancellation, β(1 ⊗ e00) ∼ 1 ⊗ e00 in A ⊗ K.
Therefore, FP(A)/ ∼= {(1 ⊗ e00)} since FP(A)/ ∼= {(β(1 ⊗ e00)) | β ∈ Aut(A ⊗ K)}
by [8, Theorem 4.5].

Next we shall give an example of a unital C∗-algebra A with property (∗) whose K0(A)
is torsion free.

Let C
m be the topological space of m-tuples of complex numbers and let S2m−1 be

the (2m − 1)-dimensional unit sphere of C
m. Let C(S2m−1) be the C∗-algebra of all

complex-valued continuous functions on S2m−1. Then K0(C(S2m−1)) = Z[1C(S2m−1)]
and K1(C(S2m−1)) = Z[v], where v is a unitary element in Mm(C(S2m−1)). In the
same way as in Clarke [6], we shall define the Toeplitz algebra τ(S2m−1) as follows: let
Ext(C(S2m−1)) be the group of all stable strong equivalence classes of unital exten-
sions of C(S2m−1) by K. Since there is the isomorphism γ of Ext(C(S2m−1)) onto
Hom(K1(C(S2m−1)), Z) ∼= Z defined in Brown [3, Theorem] or Blackadar [2, 16.3.2], we
define a unital extension τ as γ([τ ])([v]) = 1, where [τ ] is the stable strong equivalence
class in Ext(C(S2m−1)) of τ . We may assume that τ is essential by Blackadar [2, Propo-
sition 15.6.5]. Let τ(S2m−1) be the pull-back of (C(S2m−1), M(K)) along τ and the
quotient map of M(K) onto M(K)/K. We regard K as a C∗-subalgebra of τ(S2m−1).
Then K0(τ(S2m−1)) ∼= Z.

Example 4.4. With the above notation, suppose that m � 3. Then there is a unital
C∗-algebra B satisfying Mm−1(τ(S2m−1)) �∼= B but M2m−2(τ(S2m−1)) ∼= M2(B).

In fact, since γ([τ ])([v∗]) = −[e00] in K0(K), by the definition of γ([τ ]),[
V ∗

[
1 ⊗ Im 0

0 0

]
V

]
−

[[
1 ⊗ Im 0

0 0

]]
= −[e00]

in K0(K), where V is a unitary element in M2m(τ(S2m−1)) with

(π ⊗ idM2m)(V ) =

[
v 0
0 v∗

]

and where π is the homomorphism of τ(S2m−1) onto C(S2m−1) associated with τ . Hence[
V ∗

[
1 ⊗ Im 0

0 0

]
V

]
=

[[
(1 − e00) ⊗ f11 +

∑m
j=2 1 ⊗ fjj 0

0 0

]]
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in K0(K̃). Since K̃ has cancellation, there is a unitary element R in M2m(K̃) such that

R∗V ∗

[
1 ⊗ Im 0

0 0

]
V R =

[
(1 − e00) ⊗ f11 +

∑m
j=2 1 ⊗ fjj 0

0 0

]
.

Thus
(1τ(S2m−1) − e00) ⊕ Im−1 ∼ 1τ(S2m−1) ⊕ Im−1 in Mm(τ(S2m−1)),

where we regard Im−1 as the unit element in Mm−1(τ(S2m−1)). Let p = (1−e00)⊕Im−2 ∈
Mm−1(τ(S2m−1)). Then

p ⊕ p = (1 − e00) ⊕ Im−2 ⊕ (1 − e00) ⊕ Im−2 ∼ (1 − e00) ⊕ Im−3 ⊕ (1 − e00) ⊕ Im−1

∼ (1 − e00) ⊕ Im−3 ⊕ 1 ⊕ Im−1 = (1 − e00) ⊕ Im−1 ⊕ Im−2

∼ Im−1 ⊕ Im−1

in M2m−2(τ(S2m−1)). Thus

pMm−1(τ(S2m−1))p ⊗ M2 ∼= (p ⊕ p)M2m−2(τ(S2m−1))(p ⊕ p) ∼= M2m−2(τ(S2m−1)).

Put B = pMm−1(τ(S2m−1))p. Then M2(B) ∼= M2m−2(τ(S2m−1)). We shall prove
that B �∼= Mm−1(τ(S2m−1)). By Phillips and Raeburn [12, Remark 2.23], the Picard
group of C(S2m−1), Pic(C(S2m−1)), is isomorphic to the semi-direct product group
H2(S2m−1, Z) ×s Homeo(S2m−1), where Homeo(S2m−1) is the group of all homeomor-
phisms on S2m−1 and it acts on H2(S2m−1, Z) in the natural way. Since H2(S2m−1, Z) =
0 by Massey [11, Theorem 2.14], Pic(C(S2m−1)) ∼= Homeo(S2m−1). Thus, by [8, Theo-
rem 4.5], FP(C(S2m−1))/ ∼= {(1 ⊗ e00)}. Since (π ⊗ idK)(q) ∈ FP(C(S2m−1)) for any
q ∈ FP(τ(S2m−1)), (π ⊗ id)(q) ∼ 1C(S2m−1) ⊗ e00 in C(S2m−1) ⊗ K. Hence, by [10,
Lemma 4.1],

FP(τ(S2m−1))/∼
⊂ {(q) | q is a projection in τ(S2m−1) ⊗ K with (π ⊗ id)(q) = 1 ⊗ e00}.

By [10, Theorem 2.1], for every projection q ∈ τ(S2m−1) ⊗ K with (π ⊗ id)(q) = 1 ⊗ e00,
q(τ(S2m−1)⊗K)q ∼= τ(S2m−1). Furthermore, since τ is essential, q is full in τ(S2m−1)⊗K.
Thus

FP(τ(S2m−1))/∼
= {(q) | q is a projection in τ(S2m−1) ⊗ K with (π ⊗ id)(q) = 1 ⊗ e00}.

Hence, by an easy computation, we can see that

FP(τ(S2m−1))/∼=
{((

1 −
n∑

j=0

ejj

)
⊗ e00

) ∣∣∣∣ n ∈ N ∪ {0}
}

∪
{(

1 ⊗ e00 +
n∑

j=1

ejj ⊗ e11

) ∣∣∣∣ n ∈ N

}
.
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Moreover, by Lemma 4.1,

FPm−1(τ(S2m−1))/∼=
{((

1 −
n∑

j=0

ejj

)
⊗

m−2∑
k=0

ekk

) ∣∣∣∣ n ∈ N ∪ {0}
}

∪
{(

1 ⊗
m−2∑
k=0

ekk +
n∑

j=1

ejj ⊗
2m−3∑

k=m−1

ekk

) ∣∣∣∣ n ∈ N

}
.

Since Mm−1(τ(S2m−1)) is finite by Blackadar [2, 6.10.1], (p) /∈ FPm−1(τ(S2m−1))/ ∼.
Therefore, B �∼= Mm−1(τ(S2m−1)).

Finally, we shall give an example of a unital C∗-algebra A without property (∗) whose
K0(A) has a torsion element.

For every k ∈ N \ {1} let τk be an essential unital extension of C(S1) by K with
γ([τk])([v]) = k. Let Ek be the pull-back of (C(S1), M(K)) along τk and the quotient
map of M(K) onto M(K)/K. Then K0(Ek) ∼= Z ⊕ Z/kZ and, in the same way as in
Example 4.4, we can see that

FP(Ek)/∼= {(p) | p is a projection in Ek ⊗ K with (π ⊗ id)(p) = 1C(S1) ⊗ e00},

where π is the homomorphism of Ek onto C(S1) associated with τk.

Example 4.5. With the above notation, Ek does not satisfy property (∗).
In fact, by Corollary 3.7 it suffices to show that for any projection q ∈ Ek⊗K satisfying

that there is a projection p ∈ FP(Ek) with p ⊗ In ∼ q ⊗ In in Ek ⊗ K ⊗ Mn for some
n ∈ N \ {1}, q ∈ FP(Ek). Suppose that q is such a projection. Then nπ∗([q]) = n[1] in
K0(C(S1)). Since K0(C(S1)) ∼= Z and C(S1) has cancellation, (π ⊗ idK)(q) ∼ 1 ⊗ e00 in
C(S1)⊗K. Thus, by [10, Lemma 4.1], there is a projection q0 ∈ Ek ⊗K such that q0 ∼ q

in Ek ⊗ K and (π ⊗ id)(q0) = 1 ⊗ e00. Therefore, q ∈ FP(Ek).
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