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A MAPPING PROBLEM AND J,-INDEX. II
MASAMI WAKAE axp OMA HAMARA

1. Introduction. In [9], indices for equivariant mappings have been defined
in the case that the transformation groups are cyclic. Thus a question will
naturally arise as to the generalization of [4, Theorem 2] or [8, §1IV,
Theorem 2.8]. In this paper we will generalize the above result when the
transformation groups are of order p%?®, p, ¢ are odd prime numbers. The
method used here can be used directly for more general cyclic groups, say,
of order n = p*t. .. p,om. However, the results are too complicated to be
of interest.

2. The index of a Euclidean space. Leta = p®and 8 = ¢° where p and ¢

are odd prime numbers. Throughout this paper let S = {1,s,..., s%1} act
on R*tf and SO (a + B) as follows:
SXLy e v ey Kay Y1y e v e ¥8) = K2y v vy Xay X1, Y2y « « + 5 Y5y V1)-

Let F(R**8) = {&| £ € R*t# and s'(x) = & for some 7, 0 < 7 < aB}. Then S
acts on Ryet8 = Retf — F(R>tF) and on SO (e + B) properly discontinuously.
It is clear that F(RetF) = Fi(R*)\U Fy(RFf), where F; = F(R*) X R#,
Fy, = R* X F(Rf) and F is the generalized (or fat) diagonal defined in
[8, p. 411].

Let I**8 be the unit (¢ + B)-cube; then we may assume that R*tf = int Jt8
so that Ry*+8 = int(J«+8 — F(I*+8)) C [+t — F(I*t8) = I+8 The inclusion
is clearly an equivariant map so that v(Rs**f) < v(Ix**#), where »(X) is the
Jo-index of X [9, (4.5)]. Now we have Ix**# = I X I.f. Let K be a simplicial
complex of I with the usual subdivision and K**# the cell complex K X ... X K
(o + B factors). Let S, = {1, s}, ..., s® D7 Tet (KP* ') be the
subcomplex of K= which consists of all cells ¢, X ... X 0, (¢; € K?*™') with
no vertex of K common to all these o;. It may be shown that [(K?*™")4?]| is
a deformation retract of I4* as mentioned in [10, Theorem 1].

(K?* ")« is of dimension (p — 1)p*1 — 1. Also it may be shown that
[(K?®")4? is a deformation retract of I48. Hence [(K?7")4?| X [(K? )4 isa
deformation retract of Is*t8 = Iy X I48. Therefore H!(Ix*t#) = 0 for
1= (p— 1)p* 1+ (g — 1)¢g"' — 1. By [3, p. 44] we have the following
result.

THEOREM 2.2. v(Rs*8) < (p — 1)p* 1+ (¢ — 1)g** — 1.

3. The index of SO(a + B). The following results are known [1, proposition
10.2 and théoréme 19.1], where Bx* = H*(Bx, J,), Bx is the classifying space of
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a compact topological group X, and J,( ) and A( ) refer to the polynomial
and to the exterior algebra over J,, the integers modulo p, respectively:

H*(SO(« + B8), Jp) = /\(“a+ﬂ—1, Usy Uty + oy Unarp)—5), dim u,

= /L,
Bsota+s) = Jp(Vats, V4, Vs, . . - ,vz(a+ﬂ>—4), dimo; = 1.
Let T be the maximal torus in SO(a 4+ 8), G the subgroup of T of elements
of orderaB. S = {1,s, ..., s 1} may be embedded in G, since
a B
—— ——
010...0 .......
0010..0 .......
....... O o
00....1
s=110....0
010...0
O 0010..0
....... .8
0..... 1
B 10....0 |
is orthogonal and similar to
D, -
D, O
D1 2
1D = D’
0 -1 2D
1
N 1]
where
2T . 27 2T . 2T
cos —— —sin — cos =~ —sin -
a a B B
D; = and ,D =
. Xumw 2 . 2w 2w
sin —— cos — sin =~ cos =
o a B B
Let n = (e + B). We have:
B *’_\—_."Jp(tl, tz,...,tn), dimti = 2,
Be* = A(ay, ..., a,) @ J,(by, bs, ..., 0b,), dima, = 1,dimb,; = 2,
Bs* = A\ (a) ® J, (), dima = 1,dimb =
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Let M be a compact topological group, L a subgroup of M, and E,, the
N-universal space of M for a sufficiently large V. The projection p(L, M) of

B = Ey/L onto Byy= Ey/M induces p*(L, M): By* — B.*.

By [1, p. 200] we have:

p* (T, SO(a + B))v4; = o4(t:?, . .

where o;(t2, ...

42, ..., t,—12. We have
p*(T, SO(OL + ﬁ))ﬂa-{-ﬁ = lils... 1l and p*(G, T)t, = bi.
Since G is generated by Gy, Gy, . . . , G,, where
_cos 2 —sin =T |
af af O
sin B o} B
G]_ = 1 ’
L 1.
B -
1
S 2r in 2% O
co v sin o8
sin 2 cos 2r
Gy = a8 af
1
| 1]
- -
Gn = 1 9
0S 27 —sin 2m
O ¢ af af
sin 2T cos =%
L af afd

L] tn—lz)

and since s is orthogonal and similar to
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D,

D, O

D12
lD ’

O -1 2D
1

we see that

0*(S,G)b; = i8b, for i =1,...,3(a — 1), p*(S,G)b; = (z — 3(a — 1))ab,
fori=3(e—1)+1,...,n — 1,and p*(S, G)b, = afb. Hence

p*(S,G)o, =0 (mod p)

for 2 > %(a — 1). This generalizes [5, (a)].
We have the following lemma [4; 5].

Lemma IT7,(1 + (@)?) =1 4+ Ab*™ (mod p) where m = 1(p — 1) and A

is a non-vanishing constant.

p*(S, SO (e + ﬁ))(B;‘O(Q'I-B)) = p*(S, G)p* (G, T)p*(T, SO(a + B))Biowss
n—1

p*(S, G)[Jp<£[l 1+ bf)) ® J,(b1,bs, . . .,bn)}

= p*(S, G)[Jp(%ﬁl) 1+ bf))] .
This equals, since @ = p%, 1 4+ 4'6@-D/7 [§ § IV, Lemma 2.5], where A4’
is a non-vanishing constant. Therefore, by [2, Proposition 10.3],
H*(SO(x + B)/S) = N(a) ® J,(b)/ I (b»-v="7) @ P,
where  (b@-Da/?) is the ideal generated by b®=Da/? and

P = A (ua+5_1, UZy o o vy 12(2(1;—1)01)/11—1, “eey u4n_5).
By an argument similar to that in [9], we may show the following.

TaEOREM 1. »(SO(a + B)) = 2(p — 1)a/p = 2(p — 1)p* L

4. A mapping problem. When g: S2+5-1 — R is given, the map
G: SO(a + B) = Rot8
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is defined by G(wy, ..., Wets) = ((w,), ..., 2(Wasg)). Let E = G1(F(Rt8))
and A = SO(a + 8) — E = G1(R4**#). It is clear that F|A: A — Ry*t8 is free
equivariant. Therefore, v(A) = v(Ry*t%) = (p — 1)p* 1 + (¢ — 1)g*! — 1.

If X is a locally Euclidean manifold, with Cech or Alexander (co)homology
groups over J, with closed supports, [7, (6.2)] becomes

S HXL U S HIX) - H U S ..

o s s o

.o __)HN—i(X, - U,) _)HN—i(X’) —)HN_i(X,,X’ - U’)i...

with exact rows and commutativity in the squares, where U is an open set
in X, X’ =X/S, U = U/S, S is a properly discontinuous transformation
group on X and U and N = dim X.

(b) dim (X' — U’) = M implies H;(X’ — U’) = 0 forj > M.

Let &/%(X,s) be the th J,-Smith class of X in H'(X/S,J,) [9
Definition 3.5]. Let ¢: X — Y be a free equivariant mapping. Then

AV, s) =L (X, s)

[9, (3.6)].

With the above notation we have the following result.
TueOREM 1. Let E' = E/S. If
200 — Dp*t > (p — 1)pt + (¢ — g™t — 1,
that is, if « > B, then Hy_;(E") # 0 for
P—-—Dp '+ (@—Dg'—1=j=20p—p~'—1,
where N = dim SO(a + 8) = 3@ + B8) (@ + B8 — 1).
Proof. Substitute X’ = SO(a + 8)/S, U’ = A’ in the diagram (a). Since
y(Ret8) = (b — )p* '+ (¢ — D' — LZ(A,5) = 0 for
iz (p—1p 1+ (g — gt — L

On the other hand, &7 (SO(x + B),s) # 0 for 2 < 2(p — 1)p*! — 1. The
exactness and commutativity of the diagram (a) will yield the desired result.

Remarks. (1) If B8 > «, that is, if
20— D' > @ —Dp* 7t + (¢ — D - 1,
then we may use the J,-indices to obtain a similar result.
(2)dimE 2 3(@+B8—1)(@+8) — (@ — 1pt — (¢ — g+ L
(3) By [6, p. 41] and the technique in [4, Corollary 4 or 8, §1V,
Corollary 2.10], we may show that there exists a point & € F(Re+#) such that
if Eo = G™1(%), then dim E; = dim E — dim F(Ret8),
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(4) A (p + g)-dimensional rectangular parallelotope has (p + ¢) possible
edge lengths. If ¢ or more edge lengths are the same, the (p 4+ ¢)-dimensional
rectangular parallelotope is called a g-semicube.

If a =5b=1and p > ¢, then by the method used in [4, Corollary 5] we
may show that: If K is a compact convex body in R?*¢, then the dimension
of the set of circumscribing ¢g-semicubes is at least $(p + ¢)(» + ¢ — 3) + 3.

There is a set of dimension at least

e+ +qg—3)+1=30+q¢—1)p+qg—2)

of circumscribing g-semicubes with the same edge length.
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