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A MAPPING PROBLEM AND /.-INDEX. II 

MASAMI WAKAE AND OMA HAMARA 

1. Introduction. In [9], indices for equivariant mappings have been denned 
in the case that the transformation groups are cyclic. Thus a question will 
naturally arise as to the generalization of [4, Theorem 2] or [8, § IV, 
Theorem 2.8]. In this paper we will generalize the above result when the 
transformation groups are of order paqb, p, q are odd prime numbers. The 
method used here can be used directly for more general cyclic groups, say, 
of order n = pf1 . . . pm

am. However, the results are too complicated to be 
of interest. 

2. The index of a Euclidean space. Let a = pa and fi = qb, where p and q 
are odd prime numbers. Throughout this paper let S = {1, 5, . . . , sa^~1} act 
on Ra+e and SO (a + 0) as follows: 

s(xlt . . . , xa, yi, . . . , yp) = (x2, . . . , * « , *i> 3̂ 2, . . . , yp, yi). 
Let F(Ra+P) = {x\ x 6 R*^ and $'(*) = x for some i, 0 < i < a/3\. Then S 
acts on R*a+P = Ra+(i — F(Ra+P) and on SO (a + j8) properly discontinuously. 
It is clear that F(R*+e) = F^R") U F2(R

fi), where F± = F(R«) X &, 
F2 = Ra X F(RP) and F is the generalized (or fat) diagonal defined in 
[8, p. 411]. 

Let Ia+P be the unit (a + /3)-cube; then we may assume that Ra+P = int Ia+^ 
so thati?*«+£ = int(I«+* - F(/«+*)) C Ia+(i ~ F(Ia+P) = /**+*. The inclusion 
is clearly an equivariant map so that v(R*a+P) S v(I*a+P), where v(X) is the 
Jp-index of X [9, (4.5)]. Now we have J*a+0 = I*a X J**. Let K be a simplicial 
complex of 7 with the usual subdivision and Ka+P the cell complex K X . . .X K 
(a + j8 factors). Let 5P = {1, ̂ a " \ . . . , ^ « ^ l . Let ( i ^ ° " V be the 
subcomplex of Ka which consists of all cells ai X . . . X <rp (c* G Kpa~l) with 
no vertex of K common to all these <rt. It may be shown that \(Kpa~x)*v\ is 
a deformation retract of J*a as mentioned in [10, Theorem 1]. 

(Kpa~l)*v is of dimension (p — l )£ a _ 1 — 1. Also it may be shown that 
ICK*6"1)**! is a deformation retract of I*P. Hence | ( i ^ a ~ V I X {(K^1)^ is a 
deformation retract of I*a+t* = /*« X M Therefore H^I*"^) = 0 for 
i ^ (p - l)pa~l + (q - l)g&_1 - 1. By [3, p. 44] we have the following 
result. 

THEOREM 2.2. v(R*°+e) g (p - l)pa~l + (q - l ) ^ " 1 - 1. 

3. The index of SO(a + 0). The following results are known [1, proposition 
10.2 and théorème 19.1], where Bx* = H* (-Bx, Jp)*Bx is the classifying space of 
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a compact topological group X, and Jp( ) and A ( ) refer to the polynomial 
and to the exterior algebra over JP1 the integers modulo p, respectively: 

H* (SO (a + 0), Jp) =A(Ua+p-i, u3, uly . . . , «2(«+/Ï)-B), dim ut = i, 

B80(a+i3) = Jp(va+(j, vA, v8l . . . , ^2(a+i9)-4), dim Vi = i. 

Let T be the maximal torus in SO (a + /3), G the subgroup of T of elements 
of order a/3. 5 = {1, s, . . . , s0^-1} may be embedded in G, since 

roi 

010...0 
0010..0 

00 . . . . 1 0 
10. . . .0 

010...0 

0 0010..0 

0. , . .1 
10. . . .0 

is orthogonal and similar to 

D2 0 
•O(a-l) II 

iD 

0 03-D/2 D 

= D% 

where 

Dt = 

cos-
2ii 

-sin 
2**7 

2ii 
cos-

2*V 

. We have: 
oc J 

and JD — 

cos 
27V 

-sin 
2jr 

sin 
2/TT 

0 cos 
2/jr 

0 . 
Let w = \ (a + 

-Sr = Jp\ht h> • • • , 4 ) J 

B0*2*A(al9...,an) ®Jp(blfb2, . 
Bs*9*A(a) ®JP(b), 

dim /* = 2, 

, 6W), dim at = 1, dim 6̂  = 2, 

dim a = 1, dim b = 2. 
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Let M be a compact topological group, L a subgroup of M, and EM the 
iV-universal space of M for a sufficiently large N. T h e projection p(L, M) of 
5 L = £ M / i onto BM= EM/M induces p*(L, M ) : 5 M * - ^ 5 L * . 

By [1, p . 200] we have: 

p*(T, SO(a + P))vu = <7^i2, . . . , W ) for * = 1, 2, . . . , n - 1, 

where <Ji(h2, . . . , £n-i2) is the i th symmetr ic function in the a rguments 
h2, . . . , 4_i2 . W e have 

P*(T, SO(a + |8))»«+fl = hh... tn and p*(G, T)tt = bt. 

Since G is generated by d , G2, . . . , Gni where 

Gi = 

2TT . 2TT 
c o s — - s i n — 

ap ap 

sin a/3 cos 

G2 = 

0 

2TT 
cos — 

ap 
2TT 

a £ 
sin 

0 

Gn — 

0 

a/3 

. 2TT 
-sin — 

ap 
COS a/3 

0 

0 

0 

1J 

l j 

cos 

sin 

a/3 
2TT 

a/5 

. 2TT 
-sin — 

ap 
cos-

a p j 

and since 5 is orthogonal and similar to 
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Di 
Dt 0 

-D(a-l)/2 
iD 

0 05-1)/2-D 

1 
1 

we see that 

p*(S, G)bt = tfb, for i = 1, . . . , i ( « - 1), p*(S, G)6, = (*' - i ( a - l))ab, 

for i = | ( a — 1) + 1, . . . , n — 1, and p*(5, G)ôw = a/36. Hence 

P*(S,G)bt = 0 (mod£) 

for fc" > J (a — 1). This generalizes [5, (a)]. 
We have the following lemma [4; 5]. 

LEMMA I l r=i ( l + (ib)2) s 1 + Ab2m (mod p) where m = \{p - 1) and A 
is a non-vanishing constant. 

P*(5, SO(a + 0))(3so<«4*>) = P* (5 , G)P*(G, r ) P * ( r , SO(a + /3))BSo(«+« 

= P * ( 5 , G ) [ J P ( n (1 + ^ 2 ) ) ® /p(6i>2, . . . A ) J 

= p*(5,G)[j,(2(fî%i+ &/))] 
This equals, since a = £a, 1 + A'¥*-»"'* [8, § IV, Lemma 2.5], where A' 

is a non-vanishing constant. Therefore, by [2, Proposition 10.3], 

#*(SO(a + P)/S) = A (a) ® JpW/jQ)**-»*'*) ® P ' , 

where J (p^-v*'») is the ideal generated by fr*-1^** and 

P' = A (Ua+p-i, US, . . . , $(2(p_i)a)/p-l f . . . , #4*1-5). 

By an argument similar to that in [9], we may show the following. 

THEOREM 1. i/(SO(a + 0)) = 2(£ - l )« /£ = 2(p - l)pa~l. 

4. A mapping problem. When g: 5 a +^-1 —» R is given, the map 

G: SO (a + 0) -±R«+P 
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is defined by G(wu... , w^) = ( g ( « 0 , . . . , g(w«+/j)). Let E = G~l(F(R^)) 
and A = SO(a + /3) - E = ^ ( R * 0 * * ) . It is clear that F\A: A -» R*«+0 is free 
equivariant. Therefore, v(A) ^ i/(R*«+*) ^ (p - l)pa~l + (q - l ) ^ 1 - 1. 

If X is a locally Euclidean manifold, with Cech or Alexander (co)homology 
groups over Jp with closed supports, [7, (6.2)] becomes 

. . . -*H\X'% U') -»HXX') -*H\U') -^ . . . 

. . . -+HN-t(X' - V) ^HN^(X') ^Hv-iQCX' - Uf) i . . . 

with exact rows and commutativity in the squares, where U is an open set 
in X, X' = X/S, U' = U/S, S is a properly discontinuous transformation 
group on X and U and N = dim X. 

(b) dim (X' - [ / ' ) = M implies # ; ( X ' - U') = 0 for j > M. 

Let s/^X.s) be the ith 7P-Smith class of X in H^X/S,^) [9, 
Definition 3.5]. Let 0: X —> Y be a free equivariant mapping. Then 

0*j/*(F, s) = s/l(X,s) 
[9, (3.6)]. 

With the above notation we have the following result. 

THEOREM 1. Let E' = E /5 . If 

2 (£ _ l ) ^ - i > (p - l)p*-i + (q - l)g&"i - 1, 

that is, if a > 0, /ftew HN-j(E') ^ 0 /or 

(£ - l)£«-i + (2 - l)qb-' - l ^ j S2{p- l)pa-i - 1, 

where N = dim SO (a + 0) = i ( a + 0)(a + /3 - 1). 

Proof. Substitute X ' = SO (a + 0)/S, £/' = A' in the diagram (a). Since 
KR*a+/0 ^ (£ - l ) ^ a _ 1 + (3 - l)^"*1 - 1 , ^ ( A , 5) = 0 for 

* è (fi - l)pa~l + (q- 1)<Z&_1 - L 

On the other hand, j /*(SO(a + 0), 5) ^ 0 for i ^ 2(fi - l)pa~l - 1. The 
exactness and commutativity of the diagram (a) will yield the desired result. 

Remarks. (1) If P > a, that is, if 

2(q - l)qb-i > (fi - l)pa~l + (q- I)?6"1 - 1, 

then we may use the /^-indices to obtain a similar result. 
(2) dim E ^ i ( a + 0 - l ) (a + 0) - (fi - l)pa~l - (q ~ l ) ^ " 1 + 1. 
(3) By [6, p. 41] and the technique in [4, Corollary 4 or 8, § IV, 

Corollary 2.10], we may show that there exists a point x Ç F(Ra+P) such that 
if £ 0 = G-^x), then dim EQ ^ dim E - dim F(Ra+P). 
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(4) A (p + q)-dimensional rectangular parallelotope has (p + q) possible 
edge lengths. If q or more edge lengths are the same, the (p + q)-dimensional 
rectangular parallelotope is called a g-semicube. 

If a = b = 1 and p > q, then by the method used in [4, Corollary 5] we 
may show that: If K is a compact convex body in RP+(Z, then the dimension 
of the set of circumscribing g-semicubes is at least \{p + q) (p + q — 3) + 3. 

There is a set of dimension at least 

\{P + q)(P + <Z - 3) + 1 = h(P + S - D(P + 2 - 2 ) 

of circumscribing g-semicubes with the same edge length. 
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