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Abstract

Ths is an expanded version of two lectures given at the conference held at Sydney University in December
1997 on the 50th anniversary of the death of G. H. Hardy.
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1. Introduction

The most influential figure in British mathematics this century was undoubtedly
G. H. Hardy. It is now almost exactly fifty years since his death, and so it would
seem to be most timely to review the many consequences of this influence. Hardy’s
early work was on the evaluation of integrals and his basic training was as an analyst,
indeed Britain’s first analyst of note. He was responsible almost single handedly for
dragging British mathematics into the twentieth century, for modernising the syllabi
at both Cambridge and Oxford, and for founding the very vibrant British school of
classical analysis. During the first decade of the century he also started to take an
interest in number theory, largely in association with his younger colleague J. E. Lit-
tlewood, but also, all too briefly, with S. Ramanujan. He and Littlewood also founded
the British school of analytic number theory which to this day is still one of the leading
groups in the world in this area.

It would be most remiss not to mention also another aspect of Hardy’s legacy,
namely expository textbooks. His 1908 ‘Pure Mathematics’ [36] was the first textbook
in English on analysis, and, in spite of style and content designed for the student with
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[2] Hardy’s legacy to number theory 239

a more formal or ‘old fashioned’ background, was still a standard recommended text
when the author arrived at University in 1963. Even more celebrated perhaps is the
elementary number theory text, [57] known universally as ‘Hardy and Wright’, which
is still a standard text, especially with regard to those topics which have a more analytic
flavour.

Hardy, either singly or jointly, wrote about 60 research papers in number theory,
most of them substantial and influential. Many are seminal. They can be classified into
two groups. There are those in which the conclusions are either definitive, or where
the state of knowledge has not since been further advanced, and there are those which
have stimulated a flood of developments and new ideas and applications. In either
case one has the impression that Hardy had a fine instinct for what was likely to be of
central importance. The bulk of the papers are either in multipiicative number theory
or in additive number theory and it is convenient largely to follow this classification.
In some instances, such as the work on Goldbach’s problem, the areas overlap.

2. Multiplicative number theory

Hardy'’s first paper on the Riemann zeta function, which is defined for Re s > 1 by

rs)=y n",
n=1

was an announcement in 1914 in the Comptes Rendus [37] of a proof that this function
has infinitely many zeros on the critical line, Res = % The Riemann zeta function has
a meromorphic continuation to the whole plane and is analytic at every point except
1 where it has a simple pole with residue 1. Hardy’s result can be thought of as a first
step towards the still unproved Riemann Hypothesis that all the non-real zeros B + iy
of £(s) satisfy 8 = % By the way, in the author’s opinion, the Riemann Hypothesis
and its generalisations are now the most important unsolved problems in mathematics.
Later in 1918, jointly with Littlewood [41], he obtained the explicit lower bound

No(T) > T:7 (T > Ty(e))

for No(T), the number of such zeros % + iy with 0 < y < T, and this was further
improved [45] to

No(T) > KT (T > Tp)
and

No(T + T*) = No(T) > KT* (T > Tp)
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where o > % and K is a suitable positive constant.

Selberg {102] refined the method by introducing the important idea of multiplying
¢ (s) by a ‘mollifier’, essentially the square of the partial sums of the Dirichlet series
for £(s)~'/2, in order to control better the size of certain mean values, and thereby
obtained a lower bound of the correct order of magnitude

No(T) > KTlogT (T > Tp),

although the constant K in this method is very small. Then, in the 1970s, Levinson
[73] introduced a somewhat different method which gives K = 0.342. The idea is to
relate the distribution of zeros of £(s) to those of £’(s) via the logarithmic derivative
of the functional equation. There have been a number of further refinements of
Levinson’s method by Levinson [74,75], by Lou [78], and by Conrey [12} who
obtained K = 0.3658.

The 1918 paper of Hardy and Littlewood quoted above is a gold mine of theorems
on the Riemann zeta-function and the distribution of primes, some of them on the
assumption of the Riemann Hypothesis. The results were new then of course, but
are now routinely assumed and taken for granted as the starting point for further
investigations. For example, it is there that the important mean value

T 1 .
2.1) /:T 'S (§+lt)

is first established. Another example, this time on the assumption of the Riemann
Hypothesis, is the conclusion that

2
dt ~2T logT

Xp:xplogp - % +0 ((1 —x)—'z)

as x — 1— which, for example, Montgomery and the author [84] were able to make
good use of to show in the ternary Goldbach problem that there is some limitation
on the quality of the approximation in the asymptotic formula for the number of
representations of a number as the sum of three primes. This problem will be returned
to below and discussed in greater detail.

A hypothesis which can sometimes serve in place of the Riemann Hypothesis, and
which would follow from it, is the Lindelof Hypothesis, which says that for any real
number o, for every positive real number ¢, for each sufficiently large ¢,

Z(s)] < [¢|mx(3=o0)+e

where s = o + iz. In a remarkable paper in which the results are still definitive and
the theory has not moved on much further, Hardy and Littlewood [48], obtain eight
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equivalent assertions to the Lindel6f Hypothesis. Perhaps the most interesting of these
is a criterion involving moments, namely that for each k = 1,2, 3, ... and for each

e >0,
1 T
7

In a connected paper, [46], they obtain the important bound

T
2.2) f
-7

This, together with (2.1), is an important ingredient in modern work on the distribution
of the zeros of £(s), and in particular for upper bounds for N (o, T) the number of
real zeros B+ iy of £(s) with 8 > 0 and 0 < y < T. The method of proof of (2.2)
is via something called the approximate functional equation. In essence this says that
although the Dirichlet series defining ¢ (s) diverges when o < 1, if one takes a suitable
partial sum of this series it is still quite a good approximation to ¢ (s) in the critical
strip. In [53] the form of this approximation is obtained which is still the best that is
known, namely that when s = o +it,0 < 0 < 1, one has

(6) = Y0 X O X+ 0 (6 11y )

n<x n<y

2k

dt = O(T®).

C(%+it)

4
dt = O(T(log T)*%).

z(% +in)

where

i 1
X(S) — ﬂs—% r (2 l Zs)
T (35)

It is quite remarkable how much of Hardy’s work in this area is still definitive.
But Hardy also contributed to the area through his lectures and his leadership. In
particular a number of gifted students were attracted to work in the area, and one
of them, Titchmarsh [109], produced what is still the standard text on the Riemann
zeta-function.

3. Joint work with Ramanujan

Perhaps Hardy’s most famous contribution to mathematics was his support for
Ramanujan, and the affect this has had on number theory and the theory of modular
forms. One joint paper which stimulated a good deal of later work and developments
was [56] in which it is shown that w(n), the number of distinct prime factors of n,
has normal order loglogn, more precisely that given any function f(n) satisfying
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f(n) > oo asn — 0o one has |w(n) — loglogn| < f(n)/loglogn for almost all
n. Their proof follows from a study of the distribution of those n for which w(n) has
a given value k. This result suggests that w(n) is rather well distributed, and that it
should have a distribution function. A first step in this direction was taken by Turdn
[111] who established the inequality

Z lw(n) —loglogn|* = O (x loglog x).

n<x

His proof is very short and only depends in a straightforward way on simple elementary
results in the theory of distribution of primes. In fact with very little further elaboration
one can obtain the Turdn-Kubilius inequality (Kubilius [72]), that for each positive
number ¢ there is an xy(¢) such that for every x > x(¢) one has for any additive
function f(n)

XY f) — AP < 2+ e)BR),

n<x

where

k
A(x)=2f§f: 21— py

pr<x

and

kY (2
By = Y PO
prsx
A little later Erdés and Kac [29, 30] were able to show that w(n) has essentially a
normal distribution about its mean. This is the genesis of probabilistic number theory,
and since then the techniques and ideas which have flowed across a broad landscape
have created a host of important and vital weapons in the research armoury of analytic
number theorists. There are several modern texts which give an excellent oversight of
this area by Elliott [24—26] and Tenenbaum {108].
Perhaps the most cited of Hardy’s papers in number theory is the joint one with
Ramanujan [55] on p(n), the number of ways of writing n as the sum of any number
of positive integers. Thus

=34+24+1=34+14+14+1=24+2+2
=2424+14+1=24+14+14+14+1=14+14+1+14+1+1
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and so p(6) = 11. They obtain an asymptotic formula for p(n) of such a precision
that it could be used for calculating p(n). Later, of course, Rademacher [87], refined

the method to obtain the exact formula
H T 2 1
sinh (;\/;/n — ﬂ)
l ’
vV n—3

| R—" d
p(n) = n—ﬁ;ﬁAq(n)a-;

where

q

Amy= ) €™“De(—an/q)

a=1
(a,9)=1

and s(a, q) is Dedekind’s sum

b (fab
wo-$2((2)

((x) =x—[x]— % when x is not an integer and is 0 otherwise, and e(z) = e**"*.
There is a very interesting article by Selberg [103] reflecting on the relationship
between Hardy and Ramanujan, and giving an excellent insight into this work. The
underlying idea behind the proof has been enormously influential. The starting point
is the generating function

fO=Tla-H"=1+ pwe",
k=1 n=1
which converges when |z| < 1. Now an identity of Euler shows that

21/24f(z)_1 — i (__l)kZ(Gk—l)z/Z‘t,

k=—00

which is a theta function, and by the usual linear fractional transformations one finds
when

!

(a,g)=1, aad=-1 (modq), w=u+iv, v>0,

that

(e (Gre)) = rmovmimon (i (o)) (7 -7)
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where p(g, a) is aroot of unity. Now if one supposes that w is small, with Rew < Jw,
then one is studying f on an arc centered near a ‘rational point’ on the unit circle, and

2mi
Re—
q*w
is large so that f on the right is dominated by its constant term 1. Thus the other
factors on the right give a good approximation to f on this arc. By applying the
Cauchy integral formula to f on a circle of centre the origin and of radius just a bit
smaller than 1 one can pick out the coefficient p(n). Then by partitioning the circle
into a large number of small arcs, using on each one the approximation just described,
adding up the contributions from each arc, and letting their number tend to infinity
one can obtain the desired formula.

In this paper (Section 7.2) there is also a brief discussion about the representation
of a number as the sum of a fixed number of squares of integers. This is the genesis
of the celebrated Hardy-Littlewood circle method, and it is on this and related matters
that the rest of the lecture is concentrated.

4. Partitio Numerorum: Waring’s Problem

Thus if r,(n) is the number of representations of n as a sum of s squares, then

0(z) =1+ Z ro(n)z",

n=1

where

o

0(z) = Z =1 +i2z"z
n=1

n=—o0

is also a theta function and a similar analysis can be contemplated. The objective is an
approximation to r,(n) when 7 is large from which one can deduce that it is positive
for all large n. By Cauchy’s integral formula one has

1
r(n) = — / 62y 2" dz
2ni Jg

where ¥ is a circle centre the origin of radius p,0 < p < 1. Supposethatz = pe(a/q),
where (a, g) = 1 and e(z) = €*™'*. Then by rearranging the terms of 8 according to
the residue class of n» modulo ¢ one finds that

q9

6(z) =) elax’/q) ) p"
n=1

x=1
n=x (mod q)
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and when p is close to 1, by a variant of the integral test, for example, this is readily
seen to give

0(z) ~q7'S(g,a)C(1 — p)'?

where C is a certain positive constant and S(g, a) is the Gauss sum
q
S(g.a) =) _e(ax?/q).

x=1

Moreover one can expect such an expression to be valid for z in a neighbourhood of
pe(a/q), and as z moves away from this point it is not hard to see by partial summation
that to start off with there is some decay and

6 (pe(a/q + B)) ~ q~'S(g,a)C(1 — pe(B))~'/2.

It is not hard to obtain a quantitative version of this valid roughly whenever

z=pla/g+B), p=1-1/n, Bl =1/(g¥n), q=+/n

Fortunately, by Dirichlet’s theorem on diophantine approximation, every point on the
circle lies on such an arc and this leads to an asymptotic formula for r,(n)

ry(n) ~ G,(n)J;(n),

where

65(n>=fj Z ~S(g,aye(—an/q)

q=1 a=1
a,q)=1

and

1/2

JS(n) =C (1 — pe(B) " p™"e(—Bn)dp.

—12

valid whenever s > 5. The integral in J;(n) here is quite easy to estimate, and is
asymptotically

Clns/Z—l

and the series G,(n) reflects certain interesting number theoretic properties of the
sequence of squares, and can be shown to be bounded below by a positive constant
provided s > 5. Of course, it is already known that four squares suffice (Lagrange,

https://doi.org/10.1017/51446788700034984 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034984

246 R. C. Vaughan {9]

1770), and, from the work of Jacobi, that the above asymptotic formula holds when
s = 4, and indeed more strongly as an exact formula. What is interesting about this
is the comparative simplicity of the idea and the possibility of applying it to a whole
range of problems.

This is what Hardy and Littlewood proceeded to do, with very profound conse-
quences. In doing so they had to make a very important innovation, and this can be
best described, perhaps, in relationship to their work on Waring’s problem, that is,
the question of how large s has to be so that every positive integer can be written as
the sum of at most s kth powers of positive integers. Waring (1770, see [124], pp.
336 and 379) had asserted a belief that 4 squares, 9 cubes, 19 biquadrates, and so on,
would suffice. A number of special cases had been treated in the nineteenth century,
and eventually in 1909 Hilbert [63] had shown that for each k& such an s exists, and
his method could be made to give an upper bound for s as a function of k. However,
this bound grew so rapidly with & that his result has never been viewed as much more
than a pure existence theorem. The smallest such s which suffices for a particular £ is
usually denoted by g (k). It is now believed that

3 k
4.1) glk)y =2+ [(5) ] -2,

it certainly being true that
3 k
2Y1{3) | -1
)]

requires this many summands, and (4.1) is now known to hold whenever k <
471, 600, 000. Also Mahler [79] has shown that if there are any exceptions, then
there are only a finite number of them. The proofs of (4.1) are the combined efforts
of many mathematicians, but the seminal work is that of Hardy and Littlewood in a
very important series of papers, embarked upon on Littlewood’s return from the First
World War, ‘On some problems of Partitio Numerorum’ [42-44,47,49-52].

Now write

F(z) = Zz'"* (z] < D).

m=1

Then by collecting together those terms in the multiple sum for whichm!+. - -+m* = n
one finds that

F(z)’ = f: e i Zmirerm — i R,(n)z",
m my=1
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where R, (n) is the number of representations on # in the required form m’l‘ +-- -+m§ =
n. Proceeding as for squares one has

1
R,(n) = R/ F(z)z" 'dz
¢

where ¥ is a circle centre the origin of radius g, 0 < p < 1, and on an arc near the
rational point ¢(a/q) one has an approximation

F(pe(B +a/q)) ~q7'S(q,a)C(1 — pe(B))~"/*

where now S(q, a) is the generalised Gauss sum

q9

S(g.a) =) _e(ax*/q).

x=]
Unfortunately Hardy and Littlewood were only able to establish this when, essentially,

p=1=1/n, 1Bl <q'n?™ 1<a<q<n’t, @@q¢=1

and, when k& > 2, these arcs only cover a negligible proportion of the circle radius
p. In order to deal with this difficulty, however, they were able to draw upon ideas
then recently expounded by Weyl [125] in his seminal work on uniform distribution.
They would have realised that if ¢ is not very close to a rational number with a
small denominator, then the values of e(ax*) can be expected to be fairly uniformly
distributed around the unit circle and so one might expect that f («) is small compared
with the crude estimate O (n'/*) obtained by replacing each term in f by p”". In fact
they were able to make use of some of the techniques introduced by Weyl in order to
show that on the remaining arcs the generating function is indeed relatively small. It
was in view of the distinction between the two kinds of arcs, those on which one has
an asymptotic result and those on which one has only a O-estimate that they coined
the terms ‘major arcs’ and ‘minor arcs’ respectively, and it is this division which is
what one usually has in mind when in speaking of the Hardy-Litlewood method. In
this way they were able to obtain [44, 47] the asymptotic formula

PO+ /K i

R;(n) ~ &;(n) TG/k)

whenever s > (k — 2)2¢~! + 5. Here the ‘singular series’

o0 q
S.m=Y > q7Sg.a e(-an/q)
g=1 a=1

(a.q)=1
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reflects the solubility of the congruence
k k k —
xi+x,+---+x;,=n (modq)

with (x;, ¢) = 1 for some i (nonsingular solubility). They were able to show that &, (n)
is bounded away from zero whenever for every ¢ this congruence has a nonsingular
solution. Thus if one defines G (k) to be the smallest s such that every sufficiently
large natural number is the sum of at most s kth powers of natural numbers, then their
method gave quite effective upper bounds for G (k), and, in particular, gave

Gk) < (k —2)2*' +5.

There has been a great deal of work on this in the intervening 75 years. There is
an important innovation by Vinogradov in which the generating functions F(z) are
replaced by finite sums, which can now be studied on the unit circle, thus f becomes

fl@y= ) e(am).

m=<ntik

The current state of play on the above asymptotic formula is that it has been shown to
hold for s > 2¢ by Hua [68], for s = 2¢ by Vaughan [115,116], for s > 7.2¢/8 and
k > 6 by Heath-Brown (60, 61], for s = 7.2¢/8 and k > 6 by Boklan [4], and when k
is larger than about 10 for s > s, where sy ~ Ck?log k by the method of Vinogradov.
In its most refined form, by Ford [32], one has C = 1.

In the sixth paper of the ‘Partitio Numerorum’ sequence they introduce a further
idea which was another pointer to a great deal of later work. One of the difficulties
in gaining control of the minor arcs is a lack of suitably good mean value estimates
for f(z), or, with Vinogradov’s innovation, for f(«). It turns out that one has much
tighter control if there is an efficient way of constructing fairly dense sets .%, of
natural numbers / each one of which is a sum of ¢ kth powers of natural numbers.
They introduced a way of doing just that. It is based on the very simple observation
that the kth powers are themselves spaced an appreciable distance apart. In particular
when P <m <n <2Ponehasn* —mf =@ —m)(*~' + .- + m*) > kP*".
Thus one can construct the %, by taking P, = 2" P~V and considering the
numbers / of the form

Imy=mt+mh+---+mt

with P, < m, < 2P,. Now they observed that for large P these numbers /(m) are
distinct, and actually this is quite easy to see, for suppose that

I(m) = I(n)
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and let j be the smallest j such that m; # n;. Then

kPI™ < mh —nb| < Imb,, —nb, |+ O(P)y) < PIH 4 O(P] YY)

J j+! j

which is impossible if P, and hence P;, is large enough. The number of choices
of mis at least P, P,--- P, > CP**('=1/%" and no I(m) exceeds 2*' P*. Thus by
taking P = %N /¥ they were able to construct sets ., C [1, N] of the required kind
which have at least CN'~'~/%' elements, and for ¢ growing only a bit larger than &
the exponent is already quite close to 1. This is the so-called ‘diminishing ranges’
argument, and whilst it was only used by Hardy and Littlewood to obtain a fairly
modest improvement in the above stated upper bound for G (k), it was later taken up
very effectively by Vinogradov and Davenport. In fact the state of the art in 1985 was
as follows

Gé4)y=16, G) <23, G®O)<36, G()=<53 GO =<T3

the first three by Davenport [14, 15], and the latter two by his methods, and

lim
P Flogk —
due to Vinogradov [123]. Actually, Davenport was able to show that a function,
modified to take account of local solubility, satisfies

G*(4) < 14.

Here G*(4) is the smallest number s such that whenever 1 < r < s every sufficiently
large number n = r (mod 16) is the sum of at most s biquadrates. Also, it should
be pointed out here, that having such relatively good bounds for G (k) means that the
determination of g(k) for any given k is only a finite computation(!), and it is indeed
via this route that one has the almost complete determination of g(k) when k > 4
which was mentioned earlier.

There is a variant of the diminishing range technique, which can be thought of as
a p-adic version. Suppose, for the purposes of illustrating the idea, that k is odd and
consider for a given prime number p with P/* < p < 2P"*and p = —1 (mod k)
those numbers of the form

m* + p*l

where m < P, p t m and where [ belongs to a set ¥ C [1,27*P*"']. Again these
numbers are distinct because otherwise if m* + p*l = m™ + p*I’, then one would have
m* = m" (mod p*) and since k is coprime to the order of the multiplicative group
of residue classes modulo p* one would have m = m' (mod p*). But p* > P so
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m = m’, and so on. This is more complicated of course, but it gives a chance for more
wrinkles in the argument. Already both Davenport and Vinogradov make use of this
idea in their work.

All of the diminishing ranges arguments have one fairly big disadvantage. They
destroy the homogeneity of the form

4.2) mi 4 +m

and from an analytic point of view this renders nugatory many of the symmetries one
would like to make use of in mean value theorems. However, more recently there
has been a further development of this technique [117]. Consider those numbers
of the form (4.2) with each m; belonging to the set &/ (P, P°) of natural numbers
not exceeding P with no prime factor exceeding P*. In Carl Pommerance’s slightly
tongue-in-cheek parlance this is the set of ‘smooth’ numbers, of level P¢. By the way,
even in this terminology one sees the influence of Hardy. In one of his lectures [39] on
Ramanujan describing the work [89] on highly composite numbers there is a passage
in which certain numbers are called round. Well, the smooth numbers are not exactly
round, but they are, er, well, sort of round ..., and certainly smooth!

These smooth numbers have a very interesting property. Given R < P and
m € &/ (P, P*) withm > R there is always a divisor r of m with R < r < RP*. The
point is that one can take successive prime factors from m and multiply them together
until one just gets beyond R, and obviously the number r so obtained cannot be larger
than R P¢. Now it turns out that in m* the factor r* can be made to play the same role
as the p* in the p-adic method. However the retention of a homogeneous structure
in (4.2) has enabled us to use a very large range of techniques, and has led to some
striking lowering of the upper bounds for G (k). Thus one now has

G4 <12, GGB)=<17, G(6) <24,
G(T) <33, G@®) <42, GO <51

The first of these is in [117], the third in [120], the fifth in [119], and the rest in [121].
For larger k, Wooley has shown [126] that

) G(k)
1 <1
TSP rlogk

5. Partitio Numerorum: The Goldbach Problems

Now let me return to ‘Partitio Numerorum’. Hardy and Littlewood [49, 50] also
turned their attention towards the other famous pair of questions of additive number
theory, namely the Goldbach problems, firstly as to whether every even number greater
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than 2 is the sum of two primes, and secondly as to whether every odd number greater
than 5 is the sum of three primes. Here the natural generating function is

Fizy=Y 2",
14
but for reasons of technical convenience one usually prefers to work with

F(z) = Zz”log p.

p

Then
F) =) R(mz",
n=1
where
R(my= ) logpi--logp.
Pr. . Ps
Pit-+ps=n

Now one runs into the problem that there is only rather indifferent information about
the distribution of primes in arithmetical progressions, and even today one is forced to
take the major arcs to be extremely thin. Moreover, Weyl’s work sheds no light on the
distribution of the sequence a¢p when « is not well approximated by a rational number
with a small denominator, so there was no obvious way to proceed on the minor
arcs. Thus Hardy and Littlewood decided to proceed on the basis of the Generalised
Riemann Hypothesis (GRH). Let x be a Dirichlet character modulo ¢, that is, a
homomorphism from the multiplicative group of reduced residue classes modulo g to
C. Then the Dirichlet series

nS

L(s. x) = Z x(n)
n=1

has a meromorphic continuation to the whole of C, and indeed, unless x is a trivial
character it is an entire function. Then the GRH is the statement that all the zeros
of L(s, x) have their real parts not exceeding % With the assumption of this very
powerful hypothesis it was possible to treat all the arcs, and this led to an asymptotic
formula. In particular, when s = 3 they were able to show that

5.1

1 1 1
Z log p, log p; log ps ~ Enzn(l - (;J——I)E)H(l+—__(p— 1)3)-

prtprtpy=n pin pin
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When s = 2, their method was less successful, but they were still able to show that

Sl G ()=o)

n<X pln pin

and from this it follows that
E(X) :=card{n < X : 2|n, Ry(n) =0} = (X%ﬂ)’

and in particular that almost every even number is the sum of two primes.
Later, in 1937, Vinogradov [121], using, of course, instead of the F above, the
finite sum

Fl@) =) eap)

p<X

found a very ingenious way of estimating this sum non-trivially on the minor arcs,
and thereby gave an unconditional proof of the asymptotic formula (5.1). Using
Vinogradov’s results on F (o) a number of authors [11, 13, 31] were able immediately
to show that for any fixed positive A > 0, E(X) = O(X (log X)~*). More recently
Montgomery and Vaughan {86] were able to show that there is a positive number &
such that

E(X) = 0(X"?).

6. Partitio Numerorum: other consequences

This celebrated series of papers had a number of other consequences. One was that
for many problems one could use it as a predictive tool. For example in the Goldbach
binary problem, or the question as to the solubility, and number of solutions for large
n of,

n=p+x’+y*,
or of
n=f(x]§--- sxk)’

where f is a form of degree d with integer coefficients, one could predict an asymptotic
formula for the number of solutions by first constructing the appropriate generating
functions and then working out the contribution from the major arcs, and finally
assuming that the contribution from the minor arcs is of smaller order.
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One of the papers in the ‘Partitio Numerorum’ series, number VII, was never pub-
lished, probably because it also needed to assume the GRH and Hardy and Littlewood
felt that that they did not want to publish too much which depended on an unproved
hypothesis. This manuscript dealt with small differences between prime numbers.
Let p; =2, p, =3, ... be the sequence of primes. By the prime number theorem,

Pn+i — Dn <

! := liminf < 1.

n—-oo l()g p"

Of course, if one believes in the twin prime hypothesis, then / = 0. On GRH, they
were able to show that / < % and Rankin [91] showed that the method would give
(1 +4©)/5 where © is such that no Dirichlet L-function has a zero with real part
exceeding ©, so in particular on GRH, / < % At about the same time, Erdds [28]
gave an unconditional proof that / < 1 via Brun’s sieve, and later Ricci [93] showed
that! < 2.

The starting point of PN VII is an observation, which, for simplicity of exposition,

is perhaps best cast in a more modem form, namely that the integral

]
/ 1S(a) K (@) dex
0
where the generating function is

S@) =) _(log p)e(ap)

p=X

and there is a kernel formed from

K(@) =) e(ah),

h<H
counts (with weight log p, log p,(H — |h|)) the number of solutions of
pr—p2=h.

The contribution from the term # = 0 is easily estimated via the prime number theorem
and contributes asymptotically

HXlogX.

Suppose that the major arcs contribute a larger amount. Then since the integrand is
positive one can throw the minor arcs away and still deduce that there are primes
D1, D2 with

O<py—py<H
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and so the question then is how small can one make H and yet be successful in this
endeavour. This was largely the state of play when Bombieri and Davenport [6] started
to work on the problem. One thing which is immediately evident when one works on
this is that information about the distribution of primes in arithmetic progressions to
moduli out to +/X would be very useful, and it was about this time that Roth [97] had
been working on the large sieve. Thus in order to describe this part of Hardy’s legacy
it is necessary to go on a small detour to meet the large sieve. It has already been
seen in Hardy’s work with Ramanujan that it is possible to deal with the normal order
of some arithmetical functions and that this was developed by Turan and Kubilius.
Linnik [76] and Rényi [92] had also spotted the potential of dealing in a similar way
with the general distribution of sequences into residue classes modulo a prime,

Zp.hy= ) a,.

n<N
n=h (mod p)

Here one might hope that the expected value of this is Z/p where

Z = Za,,.

n<N

By the orthogonality property of the additive characters,

o= () g ()

a=1 n<N
and so
p 2 p—1 2
Yz == =p 3 Y ae (“—’1)
h=1 a=1 |{n<N p
Thus
P 2 p—1 a 2
oY |lzom -2 = ‘s(~) ,
P<Q k=l p=Q a=l q
where

N
S(x) = Za,,e(an).
n=1

Now suppose that there is a A = A(N, Q) such that for every sequence of complex
numbers a, one has

©6.1) 3 i ‘S(z)rskZIanlz.

q<Q a=l q n<n
(a.9)=1
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Moreover, suppose that for each prime p there are f(p) residue classes h for which
Z(p, h) = 0 and suppose that a, = 1 or 0, so that one can think of Z as counting
the elements of a set which have arisen by a sieving process in which f(p) residue
classes are removed for each prime modulus p. Then the above gives

Y p'Zf(p) <3Z,
p=Q

that is,

A
I o —.
Z p=Q p -! f (p )
The number f(p) of residue classes ‘removed’ can be large and so for this reason, a
nontrivial inequality of the kind (6.1) is known as the large sieve inequality. Actually
there are ways of making use of the information from composite ¢ in (6.1) to obtain
upper bound sieve estimates [7, 81]

A
Z= 2 fip)
quQ M(C[) nplq p—f(p)

which are similar to those obtained by other upper bound sieve methods.
In [97] Roth had obtained the remarkable bound

A < C(N + Q*log Q),

and it turned out that bounds of this kind in (6.1) were just what Bombieri and
Davenport needed in their work on small differences between primes. In fact, Bombieri
[5] was able to show that

i Y du
max_sup 1 - — = 0 (x(logx)™).
g<x'?(log x)~8# @a=! y<x PZSY: ¢(q) J, logu ( )
p=a (mod q)

This led to the striking bound

fim inf 27— P o (2 + «/5) /8 = 0.46650 ... .
nooo log py

This was later lowered first by Huxley by the use of more sophisticated kernels

[69, 70] and then by Maier [80] who showed how his mechanism for detecting greater

oscillations in the distribution of primes could be inserted into the framework of the

method. These developments via the large sieve stimulated an enormous amount of

work in the area in the *60s and "70s.
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Returning to the large sieve inequality, Gallagher [34] noticed that the simple

formula
a alq
F (;) = Fl) + / F'(B)dp

can be used to bound

in terms of
s+
/ G(B)dp
e
with
G(B) = S(B)
and

G(B) = S(B)S'(B)

and then by completing to a unit interval, applying Cauchy-Schwarz to the second
integral and using Parseval’s identity he obtained

r<aN+ Q.

The author remembers being particularly excited by this when he was a post-graduate
student because it had the flavour of the Hardy-Littlewood method in it.

Another line of attack on the large sieve inequality is via duality. In general, given
a sequence of R real numbers x, for which min;.z |x, — x; — k| > § whenever r # s
one would like to be able find the best possible value of A = A(N, §) such that for
every sequence of complex numbers a, one has

Zane(x,n) <A lal

n<N
By duality this is equivalent to showing that for every sequence of complex numbers
b, one has

R

>

zN: Zbe(xn) <AZ|b 2.
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Now if one multiplies out the sums on the left and brings the sum over » inside
one finds that the general term is a geometric progression which one can sum. The
diagonal terms contribute

N i b, ?
r=1

and the non-diagonal terms contribute two expressions of the kind
b b= 2isin n(x — X5)
ris

where |c,| = |b,|. Now this double sum is vaguely reminiscent of Hilbert’s inequality

c,C
BB FES yI
F—s -

re seZ

r#s
Obviously the first place to check out the proofs of this, of course, is the book everyone
knows as ‘Inequalities’ [54]. Hardy, Littlewood and Pélya give Schur’s proof of this
inequality and following a suggestion of Selberg, Montgomery and the author [83]

were able to show that one can take

AN,8) =N+68"

Four years later — in 1977 — Paul Cohen pointed out a wrinkle which achieves the
best possible bound

AN,8) =N —-1+68"

One spin off from this was that the same method also establishes a version of this for
R rather than the torus R/Z. Thus if for each # one has min,, ., [x, — x,| > 8, > O,
then one can show that there is a constant C such that

N N N
a,a —
I e P DL
Xm — n=1

m=1 n=1
n#m

This has applications to mean values of Dirichlet polynomials. It gives
T
J

https://doi.org/10.1017/51446788700034984 Published online by Cambridge University Press

—it

N
=" la, (T + O(n))
n=1


https://doi.org/10.1017/S1446788700034984

258 R. C. Vaughan [21]

and the presence of the n in the O-term rather than an N which was all that had
been available earlier, can be very useful. In particular, by using only the simple

approximation
1 . N:
— it ) = -3 O
4(2’”) 2 (1+|z|)

valid for |[t| < N, instead of the approximate functional equation, Montgomery and the
author [85] were able to give a simple proof of Hardy and Littlewood’s [41] estimate

R

At about the same time Selberg [104, §§20, 21] discovered a more direct approach to
the large sieve inequality, based on constructing optimal, or close to optimal, trigono-
metrical polynomials which approximate the characteristic functions of intervals.
Again this is something which has wide application.

Perhaps the most striking development to come out of the large sieve was Bombieri’s
theorem [5] that

5

dt =2T logT + O(T).

1 Y du

max su - —— = O (x(logx)™*)}.

s D 1= s | ag| = O (e )
p=a (modq)

g<x'"(log.x)~

In many situations this can be used in place of GRH. For example, the asymptotic
formula for the number of solutions of

n=p+x+y,

which had been predicted by Hardy and Littlewood by suppressing the minor arcs,
and then established by the difficult dispersion method of Linnik [77], was later given
a relatively straightforward proof by Elliott and Halberstam [27] in which Bombieri’s
theorem is combined with a method of Hooley [64]. Also, Bombieri’s theorem and a
similar result on the distribution of products of primes was an important ingredient in
Chen’s theorem [10] that every large even number 2n satisfies

2n:p+P2

where P, denotes a number having at most two prime factors.

We now have relatively simple proofs of Bombieri’s theorem. In fact we now have
a general method which enables us to treat certain sums over primes in a fairly unified
way. Thus the same approach will also give an estimate for

Y _(og pye(ap)

p=X
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suitable for use on the minor arcs when the Hardy-Littlewood-Vinogradov method is
applied to the ternary Goldbach problem. This approach is based on the following
simple identity, [112, 113]. Let

A(n) =logp
when 7 is of the form p* and be O otherwise.

D Amgn) =S~ S~ S+ Sa,

n<X

where

Si= ) um) y_ logng(mn),

m<U n<X/m
$:= Y by Y glmn),
m=<UV n<X/m

S3:Z Z cmA(n)e(amn),

m>U Van<X/m

Sa=Y_ Alm)g(n),

n<vy

bu= D wHAG),
=2

Cy = Z u(r).
r<y

rlm

This and a large family of similar identities have had quite wide application in analytic
number theory. The above may look complicated, but it is immediate from the trivial
identity

—%(S) =—G(5)¢'(s) — F(s)G(5)¢(s)

—(G(s)E(s) = 1) (—%(S) - F(S)) + F(s)

This memoir has only begun to scratch the surface of the vast body of applications
of the Hardy-Littlewood method. There is a very considerable series of applications to
general forms, by Birch [3], Davenport [16], Heath-Brown [59, 62], Hooley [65-67],
Schmidt [98-101] and others, and likewise to systems of forms. Another class of
problems is concerned with mixed exponents. For example it can be shown that when
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the pair k, [ is 3,3 [17], 3,4 [94] or 3, 5 [114], or 2, I [18] with [ arbitrary, then almost
every natural number can be written in the form

PR

provided that the appropriate local condition is satisfied and that for every other choice
of exponents with 2 < k£ < [ there is a set of positive density which is not represented.

The method has also proved useful in elucidating the general distribution of primes
in arithmetical progressions. Results obtained by the Hardy-Littlewood-Vinogradov
method have been used by Montgomery [82] to show that when O < x

2

- X
1 _— = 1 0 + 21 —A
2 X 2 logp = gy | = 0xlog @+ 0 (Qx+x'(logx)™)

(a.q)=1 p=a (mod q)

and on GRH Goldston and Vaughan [35] have shown that

2

g X
> > Zl"gl’—m

q=<Q a=l p=x
(a.q)=1 p=a (mod q)

= QxlogQ —cQx + O (Qz(x/Q)%“ + x}(log x)} (log logx)z) .

Recently the Hardy-Littlewood method has been used to obtain results of this kind
regarding the distribution of general sequences into arithmetical progressions [118].

A very ingenious adaptation of the Hardy-Littlewood method was made by Roth
[95,96] in order to show that any subset & of [1, n] N Z which has no three members
in arithmetic progression satisfies card & = o(n). Later Szemerédi [107] showed by a
different method that the conclusion still held even when the hypothesis was weakened
to o/ having no k members in arithmetic progression. Then Furstenberg [33] gave
another proof of Sezemeredi’s theorem based on ergodic methods, and some of the
other applications of his methods have the flavour of a variant of the Hardy-Littlewood
method.

Davenport and Heilbronn [19] introduced an interesting variant of the method
which showed that if A,, ... , As are not all in rational ratio and not all the same sign,
then for each positive number ¢ there are integers x,, ... , x5, not all zero, such that

|Mxf 4+ 4+ Asx?| < e
Again there has been a good deal of activity attacking more general situations, and

achieving more precise estimates. For example Vaughan [111] was able to show that
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there are infinitely many solutions in primes p,, p,, ps to the inequality
IA1p1 + A2ps + A3ps) = O(max(p;)~""(log max(p;))™.

Baker and Harman [1], and [58] have taken this further.

Another area of interest has been in developing the method for use in algebraic
number fields. Notable moves in this direction have been made by Siegel [105, 106],
Rademacher [88], Birch [2], Davidson [20-22]. There is also an increasing interest
in applying the method to other rings, for example the ring of polynomials over finite
fields, for which see Effinger and Hayes [23].

There has been a very striking recent development by Bombieri and Iwaniec [8, 9]
the main objective of which is to obtain non-trivial estimates for exponential sums of
the kind

P DERICIO))

M+l<n<M4N

where ¢ is a real valued function of a real variable satisfying certain smoothness
conditions. There are famous applications of such estimates to the error term in the
Dirichlet divisor problem, to Gauss’s problem of counting the number of lattice points
in a large circle centered on the origin, and of the order of magnitude of the zeta
function on the % line (this latter problem is related to the Lindel6f Hypothesis). In
their arguments there is a clear division of cases according as to how close the second
derivative of ¢ at a particular point is to a rational number with a relatively small
denominator. If it is close to such a rational number then there are quite precise
estimates available. Otherwise, alternative procedures are required. The division
smacks of a division into major and minor arcs. Huxley has taken the methods a
good deal further, and as he says [71, p. 470] ‘The Hardy-Littlewood method is one
of the great themes of number theory this century’. Moreover it seems to be gaining
momentum rather than losing it. By 1981 the number of research papers which made
some use of the method was almost exactly 400. In the intervening sixteen years
that number has more than doubled. It is hard to know how number theory would
have developed without Hardy’s influence, but it certainly would have done so rather
differently. Hardy’s legacy is very clearly a lasting one and an immensely rich one.
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