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Abstract. This review first discusses the different types of numerical methods available for integrating 
the equations of motion of N-body systems. It is desirable to supplement ordinary integration schemes 
with special treatments of close encounters using a two-body perturbation description or introducing 
regularizing transformations of the co-ordinates and time. Direct methods are at present limited 
to the study of a few hundred particles but larger systems may be investigated using Monte Carlo 
techniques or the Boltzmann moment equations. 

N-body computations have been performed for a whole range of initial conditions and the general 
results are summarized. Numerical investigations have already clarified a number of important 
aspects of cluster evolution and the qualitative behaviour of small stellar systems is now quite well 
understood. Recent theoretical modifications have reduced the disagreement with experiments but 
further improvements are still needed. 

1. Introduction 

The study of N-body systems by numerical methods celebrates its tenth anniversary 
this year (von Hoerner, 1960). This relatively new development in stellar dynamics 
owes its existence entirely to modern technology and progress is therefore closely 
linked to the availability of bigger and faster computers as well as improved methods 
of solution. The simplicity of Newton's law of gravitation lends itself naturally to 
a numerical attack on the cluster problem. Given the initial distribution of individual 
masses, co-ordinates and velocities, the task is very well defined; e.g., to calculate in 
detail the behaviour of the system as a function of the time. Complete solutions 
to this problem can only be obtained by numerical methods based on time series 
expansions. 

Repeated integrations of the equations of motion can readily be made by exploring 
a whole range of parameters for different values of the particle number. In addition, 
more realistic star cluster models may be simulated by allowing for stellar evolution 
effects and the influence of an external gravitational field. It is the aim of the direct 
approach to provide a better understanding of the behaviour of self-gravitating sys­
tems and use the results for dynamical interpretation of actual star cluster evolution. 
A considerable theoretical effort has also been directed towards the solution of this 
problem and the different methods of attack make it necessary to distinguish between 
the branches of theoretical and experimental stellar dynamics. 

Although numerical studies are free from simplifying assumptions, the direct ap­
proach is limited to the simulation of small stellar systems because of heavy demands 
on the computing time. It is nevertheless encouraging that already the range of particle 
numbers has been extended to 500 which is comparable to the membership in typical 
galactic clusters and clusters of galaxies. The theoretical treatment becomes more 
reliable as the number of particles increases and a semi-empirical attack may therefore 
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be made on the more formidable globular cluster problem. In addition, collisional 
effects are less important in rich systems which may be studied by fast numerical 
methods. 

The problem of dynamical interpretation of the results presents considerable diffi­
culties since it has been shown that the numerical solutions are strongly divergent 
(Miller, 1964; Standish, 1968). Numerical integrations of the same system at different 
levels of accuracy lead to an increasing separation in phase space as defined by the 
individual evolution. It is therefore impossible to obtain the unique solution for all 
time specified by a set of initial conditions. On the other hand, time reversal tests have 
demonstrated that reliable individual orbits can be calculated for a few crossing times, 
after which the numerical solutions begin to depart significantly from the original 
behaviour. This interval is sufficiently long to establish general features of the evolu­
tion which are consistent with results obtained over much longer times. Small systems 
may exhibit rather large fluctuations, however, and many cases must be studied in 
order to define meaningful properties. Numerical experiments can therefore be 
considered as repeatable under different conditions only in a statistical sense. 

The evolution of richer clusters can be described with increasing confidence since 
each particle orbit is subject to a greater number of encounters. Thus the actual 
distribution of impact parameters resembles more closely the theoretical expectations 
which are represented by continuous expressions and more reliable comparisons can 
therefore be made in single cases. Cluster simulation by numerical means makes it 
possible to study individual interactions in considerable detail and suggest modifica­
tions of the dynamical assumptions which form the basis of theoretical treatments. 
The direct approach has already yielded extensive results which permit a qualitative 
description of the long term cluster evolution and this hopeful development should 
provide further stimulus for theoretical improvements. 

2. Direct Integration Methods 

A wide variety of direct methods have been used to integrate the equations of motion 
of the Af-body problem 

J = l 
j*i 

where the scaled mass and co-ordinates of a particle is denoted by mi and r;, respec­
tively, and dots represent differentiation with respect to the time t. These second-order 
differential equations are usually written as 6N equivalent equations of first order 
which can be solved numerically by step-wise integration. It is evident that the accelera­
tion calculation (1) becomes very time-consuming when the particle number N is large 
and for this reason high-order difference schemes are preferable since past information 
may then be used with very little additional effort. 
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Writing the force per unit mass as an extrapolating polynomial of degree n through 
n +1 fitting points in Newtonian form we have 

F,(0= t A,(t-toy. (2) 
A = 0 

The coefficients Ak are given by divided backwards differences weighted by constant 
coefficients (Wielen, 1967) and the expansion is valid over an interval At — t —10 which 
may be determined from the convergence property of Equation (2) itself. Integrating 
the polynomial twice we obtain the corresponding expression for the predicted posi­
tion „ + 2 

h(t) = ri(t0) + ri(t0)(t-t0)+ ) — n A „ . 2 ( l - l 0 f , (3) 
l_j m(m — \) 

m = 2 

with the two first terms representing the position and velocity at time t = t0. The new 
velocity is obtained in a similar manner. 

The predicted co-ordinates and velocities may be improved by taking the difference 
between the «'th-order extrapolating polynomial (2) and an interpolating polynomial 
of order n +1 which is obtained after the calculation of the new force. This procedure 
may be referred to as a semi-iteration, since the main part of the improvement is 
achieved without recalculating the force based on the predicted position. In this way 
almost one extra order of integration is included at very little additional effort. Prac­
tical experience indicates that the gain in efficiency beyond « = 3 or « = 4 does not 
justify the use of higher orders unless extreme accuracy is demanded. 

High-order schemes also require special starting procedures which are sometimes 
more complicated than the integration method itself. In the present formulation the 
derivatives may be obtained directly by explicit differentiation of Equation (1), in­
volving relative co-ordinates and velocities only. The coefficients Ax can readily be 
expressed in terms of the corresponding Taylor series derivatives. This method is very 
convenient for starting purposes but the multiple summations required at each stage 
makes it rather inefficient for continuing the integration of large particle numbers 
(Gonzalez and Lecar, 1968). 

The second essential requirement of an efficient numerical method consists of 
adopting a wide range of individual integration intervals. Thus the time-step ap­
propriate to close encounters must be reduced sufficiently in order to preserve the 
accuracy while new positions on smooth particle orbits may be recalculated much 
less frequently. Suitable criteria for selecting individual steps Att may readily be ob­
tained by considering the convergence of the force polynomial (2). This procedure 
necessitates separate prediction of all co-ordinates because of the force calculation (1) 
but the order used may be lower than employed by the full integration. Hence only a 
small proportion of the total time is used for the additional predictions but there is 
a considerable gain in efficiency by avoiding unnecessary force calculations. The 
computing time requirement is still proportional to N2 operations per crossing time, 
however, and more efficient procedures should be investigated. 
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The idea of individual time-steps may be carried one stage further by recalculating 
the contributions to Equation (1) at different times rather than simultaneously. Again 
the times for individual force computations may be determined from the rate of 
change of the corresponding contributions. For convenience all intervals are quantized 
into a relatively small set of categories where the steps Att may change by a factor of 
two either way. This idea has only been tried for the case « = 1 (Hayli, 1967) and its 
full advantage has therefore not been realized yet. 

Alternatively, distant force contributions may be calculated by the use of Legendre 
polynomials rather than individual summations (Aarseth, 1967). This simplification 
would be particularly useful for the integration of particles near the cluster centre 
where the net force produced by halo members is usually very small. Evidently a 
considerable gain in efficiency may result when the effect of distant particles is included 
by approximate methods, but any modifications which are introduced must be dynami­
cally consistent with the collisional nature of the direct approach. 

Numerical integrations of the equations of motion (1) cannot yield the exact solution 
for all time specified by a set of initial conditions. Although the error at each interval 
can be controlled by choosing suitable time-steps, the strong non-linearity of gravi­
tational interactions leads to an exponential growth with a rather short time-scale 
(Miller, 1964; Standish, 1968). 

The error amplification introduced by successive encounters may be reduced by 
more powerful methods to be discussed subsequently but cannot be entirely removed. 
Results may still be used for statistical purposes, however, provided that the evolution 
rate depends mainly on the overall structure and systematic errors do not enter into 
the calculation of individual encounters. 

Practical applications make use of the ten general constants of the motion as inte­
gration tests. The conservation of the total energy, angular momentum and centre of 
mass motion does not by itself guarantee the accuracy of numerical solutions since 
errors may cancel but this is not likely to occur in general. An additional and more 
detailed check is provided by the time reversibility of the equations of motion. It is 
therefore prudent to investigate the correlation between a meaningful integration and 
the corresponding accuracy of the conserved quantities by time reversal tests before 
deciding on the final integration parameters. 

3. Special Treatments of Close Encounters 

Direct integrations of the equations of motion are very time-consuming for systems 
which develop high-density cores. This difficulty reflects the shortening of the central 
relaxation time due to the strong interaction of close neighbours. As the force fluctua­
tions increase in strength it also becomes more difficult to conserve the integrals of 
motion. The choice therefore lies between terminating the calculations or making use 
of more powerful methods. 

Detailed examinations of critical stages of evolution usually reveal the presence of 
close binaries or sub-groups where the members are strongly bound. The numerical 
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problem becomes more serious if the binaries have long life-times since the calculation 
of each revolution typically takes a few hundred time-steps even if the basic elements 
do not change significantly over many periods. Close binaries may also suffer 
further changes of the semi-major axis and the replacement of the two components 
by the centre of mass motion would not be dynamically consistent. Instead it is 
natural to introduce two-body perturbation methods, replacing the dominant term 
by the analytical solution which is modified by the effect of the external field. 

A classical variation of parameters method (Pines, 1961) has been introduced for 
studying close binaries in simulated clusters (Aarseth, 1970). The equation of motion 
for the relative co-ordinates R = r t — r, can be derived by writing Equation (1) for the 
two mass points mk, mv Subtraction gives 

R = _ - * ' R + F , (4) 
R 

where F denotes the relative perturbation acceleration. 
The unperturbed solution of Equation (4) may be written in terms of the Lagrangian 

representation coefficients / and g as 

R = / R 0 + </R0. (5) 

The complete motion of both components is obtained by calculating the corresponding 
centre of mass motion. Equation (5) and its derivative can be inverted to express the 
initial position and velocity vector R0, R0 as functions of R and R. The relation (5) 
is then maintained in the presence of perturbations by integration of the variational 
equations 

R ^ ^ R - ^ R - g r F , 

R; = - / ( R + . f R + / F . 

This notation uses dots to represent the two-body variation which would remain in 
the absence of perturbations while the perturbative variation of a quantity h is denoted 
by h'. The auxiliary variables are derived from basic elements and the perturbation 
effect enters through the scalar products R • F and R • F which should remain small for 
the method to be efficient. 

An invariant parameter 

7 = , (7) 
mk + mt 

may be introduced to indicate the relative importance of the external force field. Hence 
the perturbation treatment is limited to values of y which produce slowly varying 
elements and the two-body description must be replaced by direct integrations of both 
components if y exceeds a few per cent. On the other hand, it is permissible to make 
use of the unperturbed formulation (5) if the external effect is too small to change the 
relative binding energy by a significant amount. It is interesting to note that the un­
perturbed approximation may describe the actual motion more accurately than the 
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corresponding orbit calculated by direct means because of numerical errors introduced 
during critical encounters. The appropriate two-body reflection in the centre of mass 
frame may therefore be used with advantage for the closest encounters, provided that 
the relative perturbation is sufficiently small. 

More recently a general regularization method has been developed for the per­
turbed two-body problem where close encounters are treated very accurately (Kustaan-
heimo and Stiefel, 1965). The basic idea of regularization is to transform the equations 
of motion (1) into a form which removes the singularity of two-body collisions. 
This is achieved by first introducing generalized coordinates u for the relative motion 
R = (X!, X2, X3) by the transformation 

X^—u\ — u\ — u\-\-u\, 

X2 = 2(ulu2 — M3U4), (8) 

X3 = 2(ulu3 + u2U4.), 

which satisfies the relation 

R = u\ + u\ + u\ + u\. (9) 

The singularity is removed by the regularizing substitution 

df = R d t , (10) 

where T is the new fictitious time. The resulting equation of motion then becomes 
(Stiefel, 1967) 

u"j = i (h0 + W) Uj + iRqj 0 = 1, 2, 3, 4) (11) 

in which h0 is the energy constant of the two-body motion and W is the work done 
by the external force field. The generalized perturbations qj are calculated from the 
actual components of F by the relations 

lj LSuj ' 
(12) 

Hence the second term becomes arbitrarily small as i?->0 and the solution is regular 
for collision orbits. 

It has been demonstrated that the regularized solution is more powerful than the 
direct method at relatively large separations for three interacting particles (Peters, 
1968). This early attempt also showed a significant improvement when regularizing 
the closest pair at any time for one case N=25 starting from rest. Only minor modifica­
tions are necessary for an efficient treatment of systems with large particle numbers. 

The combined term h0+ Win Equation (11) represents the actual binding energy 
per unit mass of the relative motion which reduces to 

hA2 i>}2-K+<)]^- (13) 
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Although not applicable to collision orbits this expression has the advantage of being 
very simple, whereas the original application involves an N2 term which becomes 
prohibitive for large particle numbers. 

The modified regularization treatment may be used to study the general cluster 
problem without experiencing the numerical difficulties due to close two-body en­
counters. This approach is more efficient than the perturbation method since much 
greater external effects can be included. Again the complete motion of both compo­
nents is obtained by introducing the corresponding centre of mass. In addition, the 
relation (10) must be integrated in order to provide a connection between the fictitious 
time and the global reference time. Finally, the singularity of Equation (13) may be 
avoided by introducing an equation of motion for the binding energy itself, making 
16 equations in all. The simultaneous use of two different methods necessitates 
additional programming for decision-making and reorganization but the resulting 
saving of time-steps and gain of accuracy is substantial (Aarseth, 1971). 

The two-body regularization method is less efficient when dealing with multiple 
encounters since only the dominant interaction can be regularized. Although such 
events are less common it is nevertheless desirable to seek an improved treatment. 
One promising alternative consists of using the time transformation 

d* = - dr (14) 
V 

for an arbitrary number of closely interacting particles giving rise to the potential V. 
Although less powerful than the full two-body regularization, the resulting equations 
of motion are again non-singular since Equation (14) reduces asymptotically to the 
form (10) in the event of a binary collision. It is also natural to include all strongly 
interacting particles in the transforming function V, leaving more distant members to 
be treated by the standard method (Heggie, 1971). 

The recent introduction of special integration procedures is very promising for 
further numerical explorations of the collisional cluster problem. It is perhaps fitting 
that the rapid increase of available computing power should be matched by improve­
ments in technique. Even so the task of the direct attack is formidable and alternative 
ideas must be considered for an extension to larger particle numbers. 

4. Simplified Methods 

In view of the severe computing time requirement for all direct methods it is desirable 
to explore faster alternatives which reproduce the general behaviour of N-body sys­
tems at particle numbers already studied. The increased speed of calculation may then 
be exploited to simulate the evolution of richer clusters where the adopted approxima­
tions have greater validity. Clearly the collisional approach must not sacrifice too 
much of the essential dynamics; e.g., encounter effects between neighbouring stars 
must be included. The introduction of spherical symmetry already implies a consider­
able simplification without loss of dynamical consistency. In addition, equal masses 
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may be assumed if the more general case cannot be treated. It may be noted that neither 
of these assumptions would make much difference to the direct method as long as the 
particle description is maintained. 

A fast Monte Carlo method has recently been introduced to study the evolution of 
spherical star clusters (Henon, 1966). Each particle is represented by two quantities 
only; the binding energy and angular momentum per unit mass. Subsequent changes 
of the fundamental parameters are calculated by selecting a position along the orbit at 
random and letting the particle encounter another body chosen at random. The effect 
of the two-body interaction is then multiplied by an appropriate factor to give the 
new velocity at the end of the encounter and the next particle is treated similarly. 
This approach replaces the summation of JV-1 terms in Equation (1) by the interaction 
of one typical member only and therefore leads to considerable saving of time. 
Furthermore, the time intervals Att which at present are equal can be a substantial 
fraction of the relaxation time and may easily exceed the crossing time for rich systems. 

The assumption of spherical symmetry also permits a fast calculation of the po­
tential, hence the new binding energy is readily obtained. A wide variety of steady-
state initial conditions may be studied; recent results are discussed elsewhere in this 
volume (Henon, 1971). It may be emphasized here that effects of multiple encounters 
are neglected in this procedure which can be shown to be mathematically equivalent 
to a solution of the corresponding Fokker-Planck equation. Direct integrations indi­
cate that such effects are important for all cases studied so far, but the dependence 
on particle number is not yet known. 

A second new method for computing cluster evolution is based on the numerical 
solution of moment equations derived from the Boltzmann equation (Larson, 1970). 
Again spherical symmetry is assumed and the treatment is most suitable for equal-mass 
cases. Four moments are used to characterize the velocity distribution which is ex­
panded in Legendre polynomials about a Maxwellian. Expressions for the correspond­
ing collision terms in the Fokker-Planck equation are derived on the assumption that 
the velocity distribution is nearly Maxwellian. The relaxation effects in the outer parts 
are therefore not correctly descri bed but encounters are also less important in regions of 
low density. The numerical integration of the moment equations proceeds by well tried 
hydrodynamical methods which give physically acceptable solutions (Larson, 1971). 

Both the Monte Carlo techniques and the Boltzmann moment approach are very 
promising for attacking the cluster problem. The results obtained so far are encourag­
ing and there is no doubt that such methods must be used to describe the evolution of 
richer systems when encounter effects are included. In the first instance, however, it is 
desirable to explore the region of overlap with direct methods (N< 1000) in order to 
gain more confidence in the results. 

5. Definitions and Initial Conditions 

TV-body integrations are most conveniently performed with scaled quantities and the 
results may be discussed in terms of a well-defined mean crossing time. Natural units 
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are introduced by taking the gravitational constant equal to unity; in addition, the 
total mass and binding energy of a bound system are scaled by the relations 

N 

X mt = N, E= -iN2. (15) 
( = 1 

This energy scaling has the advantage that results for different starting values of the 
virial theorem parameter may be compared at the same time once the initial evolution 
is over. Using the mis velocity the units (15) then define the mean crossing time 

/ 8 \ 1 / 2 

<--y • (i6) 
The relevant physical time in years is related to the scaled time by 

/R3\112 

TsiL5xl0\ff) '• ( 1 7 ) 

where R corresponds to r = 1 as given in pc and M is the mean particle mass in solar 
units. 

The dynamical state of systems with small particle numbers is best described in 
terms of the individual binding energy and angular momentum rather than the com­
plete distribution function/(w, r, f) used by theoretical considerations. In practice 
these distributions are often discussed separately; in addition, integral properties such 
as space density and mean velocity are studied as functions of central distance. The 
binding energy per unit mass is defined with respect to the inertial frame by 

+ iif, (18) 

using the convention Ei < 0 for bound orbits. Although the binding energy is of 
fundamental interest in stellar dynamics, additional knowledge is often needed in 
order to give a better description of the overall evolution. For instance, the presence of 
binaries cannot be deduced directly from the energy distribution. Instead it is useful 
to introduce an invariant parameter X giving the fraction of total energy absorbed by 
the relative motion of mk and m, as 

'" i t" 1 ; _ L 

~2cT~ * 
AN2, (19) 

where a is the semi-major axis. 
A wide variety of initial conditions have been studied for particle numbers in the 

range N=3 to TV" =500. Simple starting models can be obtained from random distri­
butions of co-ordinates and velocities for a given mass spectrum. The velocities are 
then scaled to the desired value of the virial theorem parameter. This procedure does 
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not introduce any special constraints on the initial configuration and simulated clusters 
are free to set up a dynamically consistent structure. 

The restriction of starting with constant density systems is of little consequence for 
initial non-equilibrium configurations because of the short time-scale for significant 
redistribution of mass. Alternatively, more specific cases may be considered with 
starting conditions based on theoretical or astrophysical models. In particular it is of 
interest to study centrally concentrated stationary systems based on theoretical solu­
tions of the Liouville equation (Wielen, 1967). Of the many possible mass distributions, 
the function f(m)ozm~2 is representative of the mass spectrum in young galactic 
clusters and is also sufficiently steep to be of general dynamical interest. 

Individual particles suffer changes in the orbital parameters primarily by close 
encounters and the combined effect is obtained by dynamical theories for assumed 
distributions. Corresponding expressions may be introduced for relaxation times 
derived from numerical studies. Empirical definitions usually depend on the size of the 
sampling interval; furthermore, the contributions from two close particles may domi­
nate unless many averages are taken. It can readily be shown that the instantaneous 
rate of change of the binding energy of one particle is given by 

i=J \r-tj\3 

The expression (20) may be used to calculate mean relaxation times which only depend 
on the co-ordinates and velocities. In addition to the weighted mean defined by 

JV 

f E = - i r - 1 — •-. (2 i ) 
I mt |Z?,| 

f = i 

it is instructive to study the r-dependence of the relaxation time since the former may 
be characteristic of the central region only. Repeated averages reduce spurious effects 
of close hyperbolic encounters but large contributions from permanent binaries would 
still be included for small perturbations. Instead it would be more meaningful to in­
clude the contribution from the centre of mass motion only. 

Given the mean relaxation time of the whole system or a group of similar particles, 
the corresponding escape rate Q or Q(m) may be derived from the relation 

ON At 
AN = - — , (22) 

where AN denotes the number of dynamical escapers during the time interval At. 
Events leading to escape are usually well defined for isolated systems. The uncertainty 
in the derivation of Q is therefore mainly due to statistical fluctuations if AN<^N. 
On the other hand, it is difficult to preserve uniform relaxation time definitions over 
the long intervals which are necessary in order to achieve significant escape rates. 
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6. General Discussion of Results 

Cluster simulations are of limited value unless it can be established that different 
systems exhibit a characteristic behaviour when studied over significant times. On 
theoretical grounds it is expected that the evolution of all cases considered by direct 
methods are dominated by close encounter effects, except during the early stages of 
non-equilibrium configurations when mass motions are important. Stellar encounters 
therefore provide a regulating mechanism for structural readjustments which tends 
to decrease initial condition differences. During this process of energy exchange some 
particles achieve escape velocity as the result of close encounters and are lost from 
isolated systems. The continuous production of escapers prevents clusters from reach­
ing a steady state, but the evolution may nevertheless be described by a sequence of 
quasi-equilibrium states provided that the escape rate is small. 

The overall evolution of simulated clusters proceeds in the direction of more pro­
nounced core-halo type mass distributions. Only a small proportion of the halo mem­
bers have sufficient kinetic energy to escape the system altogether, but more distant 
parts of the halo are gradually populated by highly eccentric orbits. The latter are 
mainly ejected from the central regions and the relatively long periods ensure that 
there is a net outward mass flux. The additional loss of fast particles from the inner 
region decreases the retardation on bound halo orbits and prolongs the phase of 
outward motion. Conditions of strict equilibrium implies an equal number of positive 
and negative radial velocities at all energies. Such configurations cannot be reached in 
practice but it is useful to study the gradual approach to equilibrium from simple 
initial states. 

Halo orbits are approximately collisionless on the time-scale of most numerical in­
vestigations. Significant modifications of the binding energy and angular momentum 
therefore takes place on subsequent passages through the central region, thereby 
maintaining the predominance of radial motion for distant particles. The velocity 
anisotropy increases outwards from an approximate Maxwellian central distribution 
and is closely linked to the overall cluster structure. Although the transition is gradual 
the isotropic region can be considered completely relaxed by encounters. Consequently 
the halo velocity distribution may be used as a dynamical age indicator provided that 
distant particles were not present originally. Alternatively, it may be possible to ascribe 
an approximate dynamical age to the central nucleus if violent initial conditions can 
be ruled out. 

The simulation of systems with a general mass distribution introduces many in­
teresting features and is also more realistic. Relative evolution rates may be estimated 
by comparing similar equal-mass cases. Numerical half-lives of 5-50 mean crossing 
times have been obtained for repeated experiments with N<24 (van Albada, 1968). 
The disruption rate is considerably increased for small clusters with moderate mass 
dispersions, whereas larger mass ratios do not decrease the life-times correspondingly. 
Encounters between unequal masses tend to promote equipartition of kinetic energy 
and light particles therefore have a higher probability of achieving escape velocity. 
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Mass segregation takes place at the same time, however, and the longer intervals 
between significant encounters for light bodies counteracts the greater probability 
of escape in a given event. 

Particles which lose kinetic energy become more strongly bound to the centre and 
may eventually form part of a dense nucleus dominated by heavy bodies. The strong 
central force field generates high velocities in order to maintain approximate equili­
brium, whereas the mean velocity decreases at greater distances. This paradoxical 
development does not necessarily contradict the tendency towards equipartition during 
single encounters since the velocity of light halo bodies exceed the mean central value 
during passages through the nucleus. Invoking the equipartition effect, it is also possible 
to explain qualitatively the higher escape probability of light particles from the centre 
since a moderate mass ratio would be sufficient to raise the equipartition value above 
the local escape velocity. Further increases of the mass dispersion do not alter the 
character of this process; since the greater relaxation efficiency is partly compensated 
by a reduced number of central bodies. 

The mass segregation of bound members may be estimated by comparing the mean 
central distance or binding energy for a given mass interval. Although differences in the 
mean quantities increase with time on the average, the dispersion within one group is 
often considerable. Thus light halo particles often become bound to the nucleus by 
temporary capture. Conversely, heavy bodies may be found at large central distances; 
this is particularly common in highly evolved systems which have expelled a signifi­
cant proportion of members originally in the nucleus. The presence of heavy bodies 
in the outer region leads to enhanced relaxation of halo orbits but the time-scale for 
randomization of velocity components is usually too long to be reached by actual 
calculations. 

Escapers carry away excess kinetic energy and therefore leave the remaining system 
more strongly bound. In addition, the expansion of the outer region must be compen­
sated by a corresponding contraction of the core which itself is losing particles. Since 
no general configurations with more than two bodies are known to be stable it may be 
conjectured that the final state of evolution would tend towards one close binary with 
the remaining members at infinity. Evidently the time-scale for complete disruption 
of an isolated system may be arbitrarily large since it depends on the actual distribution 
of binding energies. For practical applications it is therefore more useful to estimate 
the half-life which is subject to less uncertainty and also within reach of machine 
calculations. 

The final binary state conjectured above is of more than theoretical interest since 
the binary phenomenon appears to be fundamental to most phases of cluster evolu­
tion. At first, shortlived pairs are formed at small central distances where the proba­
bility of favourable multiple encounters is relatively high. Once formed, a binary may 
either increase its binding or suffer disruption by further encounters. The former pro­
cess dominates for heavy pairs interacting with field particles, and leads to an energy 
sink behaviour. A more detailed discussion is given elsewhere in this issue. 

Binary activity is intimately connected with the halo expansion and escaper forma-
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tion. It has been established that most energetic escapers are associated with binary 
interactions (van Albada, 1968; Aarseth, 1968; Hayli, 1970). The efficiency of this 
mechanism favours the formation of one close central binary where the evolution 
measure X as denned by Equation (19) may eventually exceed unity (Allen, 1968; van 
Albada, 1968; Aarseth, 1968). Such extreme configurations have been reached after 
about 20-30 initial crossing times for systems containing up to 250 particles. 

The addition of a galactic tidal field also speeds up the escape rate and should be 
included in the simulation of real star clusters. In this case many halo members which 
would remain bound in isolated systems escape when passing close to the Lagrangian 
equilibrium points (Hayli, 1970). The escape rate is increased further by the disruptive 
effect of passing interstellar clouds (Bouvier and Janin, 1971). Mass loss effects in 
heavy stars during advanced stages of physical evolution have also been considered 
(Wielen, 1968); more recent results of realistic cluster simulations are given elsewhere 
in this volume (Wielen, 1971). 

7. Comparison with Theory 

Many attempts have been made to construct theoretical cluster models which are 
dynamically consistent. Although the numerical experiments are restricted to rather 
small particle numbers, there is nevertheless some hope that a meaningful comparison 
can be made with theoretical predictions. As yet no theory can be said to give a com­
pletely satisfactory description of cluster evolution as understood from the numerical 
results. In particular it is desirable that improved treatments should include mass 
segregation effects as well as velocity anisotropy in the outer region. The presence of 
one or more close binaries also leads to increased relaxation and the production of 
energetic escapers not predicted theoretically. 

Numerical calculations are particularly well suited for testing theoretical assump­
tions which are made in order to obtain complete solutions to the time dependent 
problem. The usual approach is to proceed from equal-mass systems to the general 
case by assuming the velocity distribution of different mass groups. The expected 
equipartition of kinetic energy does not occur for reasons discussed above. In addi­
tion, the total velocity distribution is not Maxwellian even in the simpler equal-mass 
case, but this approximation may still be used in the inner regions where encounters 
are more effective. 

It is encouraging that the mean relaxation time for centrally concentrated systems 
is in substantial agreement with the corresponding numerical values for cases with 
^ = 1 0 0 (Aarseth, 1966; Wielen, 1967). A systematic dynamical comparison with the 
predicted dependence on particle number has not yet been attempted because of the 
uncertainty in defining a satisfactory numerical procedure. Instead the equivalent 
relaxation time due to deflections of one particle moving in a stationary field has been 
calculated for many constant density systems (Standish and Aksnes, 1969). The agree­
ment with the classical Chandrasekhar theory is extremely good in the range N = 25 
to JV=2500. This result therefore supports the assumption of relaxation by two-body 
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encounters in homogeneous systems, but dynamical calculations have shown that 
multiple encounters are important under more realistic conditions. 

Calculated relaxation times may be used to derive the mean escape rate of different 
mass groups as defined by Equation (22). In the absence of a standard definition of the 
relaxation time, however, it is more meaningful to compare the mass dependent rela­
tive escape rate per crossing time 

ANmtcr 
Lm = — — . (23) 

NmAt 
Although statistical fluctuations still enter through the uncertainty in the number of 
escapers, this effect can be minimized by repeated calculations or, alternatively, one 
system can be studied over longer time intervals. The two procedures are not equiv­
alent, however, because the structure may change significantly in the latter case. 

Experimental determinations of the relative escape rate have been made for several 
cases with ^ = 1 0 0 giving Lm~(0.7 + 0.1) x 10~2 for three mass groups (Wielen, 1967). 
The conclusion of nearly constant relative escape over a wide mass range is supported 
by one case with iV = 250 integrated over 28 mean crossing times (Aarseth, 1968); 
viz. Lm~(0.9±0.2)x 10"2 for three groups containing 90% of the particles. The 
increased escape rate is mainly due to the steeper mass spectrum and the presence of a 
close heavy binary which dominates the evolution. Corresponding escape rates for 
equal-mass systems are significantly smaller even if temporary binaries are present. 
Thus an early calculation with two cases N=25 gives Z ^ ^ x l O - 3 based on one 
escaper only (von Hoerner, 1963) but this value is consistent with more recent studies 
of small particle numbers (van Albada, 1968). 

The numerical escape rates may be compared with theoretical predictions for 
similar systems. Analytical expressions have been derived in the case of Plummer's 
model for a general mass distribution with spherical symmetry and velocity isotropy 
(Henon, 1969). Although mass segregation effects are not included, it is more important 
that the interaction between different masses has been calculated analytically. 

The resulting agreement between theoretical and experimental escape rates is now 
better than a factor of two for the cases ^=100 and N=250 discussed above. Some 
allowance should also be made for the effect of binaries and the higher central density 
in many cases, both of which would tend to decrease the discrepancy further and might 
in fact lead to a theoretical over-estimate. On the other hand, improved treatments of 
the mass segregation effect should reduce the number of light escapers in order to be 
consistent with the numerical escape rates. Finally, we note that the predicted escape 
rate remains small for equal mass systems; e.g.,Lj~2.6 x 10~2 N_1 in good agreement 
with numerical results for small particle numbers. 
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