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Abstract

We consider regular variation of a Lévy process X := (Xt )t≥0 in R
d with Lévy measure

�, emphasizing the dependence between jumps of its components. By transforming
the one-dimensional marginal Lévy measures to those of a standard 1-stable Lévy
process, we decouple the marginal Lévy measures from the dependence structure. The
dependence between the jumps is modeled by a so-called Pareto Lévy measure, which is
a natural standardization in the context of regular variation. We characterize multivariate
regularly variation of X by its one-dimensional marginal Lévy measures and the Pareto
Lévy measure. Moreover, we define upper and lower tail dependence coefficients for
the Lévy measure, which also apply to the multivariate distributions of the process.
Finally, we present graphical tools to visualize the dependence structure in terms of the
spectral density and the tail integral for homogeneous and nonhomogeneous Pareto Lévy
measures.
Keywords: Dependence of Lévy processes; Lévy copula, Lévy measure; Pareto Lévy
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1. Introduction

In a series of papers Hult and Lindskog [14]–[17] defined and investigated regular variation
of measures and additive processes, which apply in particular to Lévy measures and Lévy
processes. Their concept of regular variation of a stochastic process with càdlàg sample paths
is, for a Lévy process X = (Xt )t≥0, equivalent to regular variation of the random vector X1
and its Lévy measure; cf. [17, Theorem 5.1]. Similar concepts have been used to study the
extremal behavior of stochastic processes in [7] and [13].

Since regular variation of a random vector X1 is well understood (cf. [23] and [24]), it seems
that all relevant results can be translated from X1 to the corresponding Lévy measure. This is in
principle true, and a distributional copula Ct of Xt for every fixed t could be invoked. However,
owing to essential problems of this approach (for details, see [20, p. 1552]), alternatives have
to be found. Tankov and collaborators (cf. [6, Section 5] and [20]) proposed dependence
modeling of a Lévy measure by the so-called Lévy copula after standardizing the marginal
Lévy measure to the Lebesgue measure. Contrary to the distributional copula model, which is
always a distribution function, the Lévy copula defines a measure which is not a Lévy measure.
This approach has the disadvantage that results from [17] connecting regular variation of the
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118 I. EDER AND C. KLÜPPELBERG

multivariate increment distribution of a Lévy process and its Lévy measure cannot be applied
directly.

Anyway, starting from the Lévy measure instead of from the distribution of a Lévy process
is often simpler. It guarantees that the corresponding process is a Lévy process. Numerical
methods (for instance in finance) are often based on spectral methods, which again require
knowledge about the Lévy measure. Also, the statistical assessment of the Lévy measure has
made progress recently: Ueltzhöfer and Klüppelberg [27] presented a nonparametric method
based on previous work giving ample references, and Esmaeili and Klüppelberg [10]–[12]
invoked the Lévy copula idea for parametric estimation.

It was pointed out in Definition 2.2 of [1] that a simple transformation of the one-dimensional
marginal Lebesgue measures leads to a Lévy measure with standard 1-stable margins. The
resulting dependence function was denoted a Pareto Lévy copula in [21]. This transformation
has the advantage that the well-developed theory of multivariate regular variation can be applied
to tails of distributions and Lévy measures. In particular, as we will prove, extreme dependence
is the same in the Lévy measure and in the distribution of a Lévy process.

The authors of both [1] and [21] restricted their investigations to spectrally positive Lévy
processes, i.e. Lévy measures concentrated on the positive cone [0, ∞)d . Moreover, their
respective focus was rather on applications and not on the understanding and consequences of
the marginal transformation. In the present paper we explore this transformation for general
Lévy processes in R

d and use the Pareto Lévy measure for a new description of the dependence
structure of a Lévy measure. This approach clearly shows how the dependence structure of the
Lévy measure affects the extremal behavior (in particular joint large jumps) of the Lévy process
in a natural and intuitive way. Furthermore, to quantify the joint extremal jumps of the Lévy
process, we introduce tail dependence coefficients �U and �L for the Pareto Lévy measure
analogously to such measures for multivariate probability measures.

Our paper is organized as follows. In Section 2 we recall basic knowledge about multivariate
regular variation of Lévy measures and formulate Sklar’s theorem for Pareto Lévy measures.
We also present several examples, including a nonhomogeneous example, which gives rise
to a Lévy process with regularly varying marginal Lévy processes, which is not multivariate
regularly varying. Our main results about regular variation of a Lévy measure and its Pareto
Lévy measure are proved in Section 3. We also introduce upper and lower tail dependence
coefficients for the Lévy measure. In Section 4 we calculate the limit measure of a bivariate
regularly varying Lévy measure for homogeneous Pareto Lévy measures and also consider the
nonhomogeneous example outside multivariate regular variation. For d = 2, we also show
graphical representations of the dependence structure in Section 5.

2. Preliminaries

We assume that all random elements considered are defined on a common probability space
(�, F , P). For a topological space T its Borel σ -algebra is denoted by B(T). For B ∈ B(T),
we denote by B◦ and by B the interior and the closure of B, respectively, and ∂B = B \ B◦ is
the boundary of B.

Regular variation of Lévy measures is formulated in terms of vague convergence of Radon
measures on E := [−∞, ∞]d \ {0}, where 0 := (0, . . . , 0) is the zero in R

d , and we also
define ∞ := (∞, . . . ,∞). The space E is equipped with the usual topology such that B(E) =
B(Rd) ∩ E, and the Borel sets of R

d bounded away from 0 are relatively compact in E.
For a, b ∈ R

d , we write a < b if this holds componentwise. For a, b ∈ R, we write
a ∨ b := max{a, b}. For a set I , we define |I | as its cardinality.
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Pareto Lévy measures and multivariate regular variation 119

Let X := (Xt )t≥0 be a Lévy process in R
d with characteristic triple (γ , A, �), where

γ ∈ R
d , A is a symmetric nonnegative definite d × d matrix, and the Lévy measure � is a

measure on R
d satisfying �({0}) = 0 and

∫
Rd min{1, |x|2}�(dx) < ∞, where | · | denotes

an arbitrary norm in R
d . The Lévy–Khintchine representation gives E[ei(z,Xt )] = e−t�(z) for

z ∈ R
d and t ≥ 0, where

�(z) = i(γ , z) + 1

2
z�Az +

∫
Rd

(1 − ei(z,x) + i(z, x)1{|x|≤1})�(dx)

and (·, ·) denotes the inner product in R
d . We consider a Lévy measure � on E by setting

�(B) := �(B ∩ R
d) for B ∈ B(E). Furthermore, we assume throughout that the sample

paths of X are càdlàg. For details and more background on Lévy processes, we refer the reader
to [26].

2.1. Multivariate regular variation of Lévy measures

The notion of multivariate regular variation of a random vector has been in the focus of
multivariate extreme value theory for years; cf. [23] and [24]. A reformulation of the definition
in terms of a multivariate Lévy measure, which in most cases is an infinite measure, requires
an extension.

Definition 1. (Regular variation of Lévy measures; cf. [16, Section 3].) A Lévy measure � on
E is called regularly varying if one of the following equivalent definitions holds.

(i) There exists a norming sequence {cn}n∈N of positive numbers with cn ↑ ∞ as n → ∞
and a nonzero Radon measure µ on B(E) with µ(R

d \ R
d) = 0 such that

n�(cn·) v−→ µ(·) as n → ∞,

where ‘
v−→’ denotes vague convergence in B(E). Then necessarily the limit measure µ is

homogeneous of some degree α > 0 (called the index of regular variation), i.e. µ(t ·) =
t−αµ(·) for all t > 0. For � regularly varying with index α, norming sequence cn, and
limit measure µ, we will write � ∈ RV(α, cn, µ).

(ii) There exists a finite nonzero measure µS on B(S), where S := {x ∈ R
d : |x| = 1}

denotes the unit sphere with respect to a norm | · | on R
d , such that, for all u > 0,

�({x ∈ R
d : |x| > tu, x/|x| ∈ ·})

�({x ∈ Rd : |x| > t})
w−→ u−αµS(·) as t → ∞,

where ‘
w−→’ denotes weak convergence in B(S). We call µS the spectral measure of �.

2.2. The Pareto Lévy measure

We use the same notation as in [20]. Define sgn(x) := 1{x≥0} − 1{x<0} and

� (x) :=
{

(x, ∞), x ≥ 0,

(−∞, x], x < 0.
(1)

Definition 2. (Tail integral of a Lévy measure.) Let X be a Lévy process in R
d with Lévy

measure �. The tail integral of X is the function � : (R \ {0})d → R defined as

�(x1, . . . , xd) := �

( d∏
i=1

� (xi)

) d∏
j=1

sgn(xj ).
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120 I. EDER AND C. KLÜPPELBERG

By (1), all tail integrals are right-continuous functions on (R\{0})d . The tail integral does not
determine the Lévy measure uniquely, because it does not specify its mass on R

d \ (R \ {0})d .

Definition 3. (Margins of a Lévy process/Lévy measure/tail integral.) Let

X = (X1, . . . , Xd) = (X1
t , . . . , X

d
t )t≥0

be a Lévy process in R
d with Lévy measure � and I ⊆ {1, . . . , d} a nonempty index set. We

define the following quantities.

(i) The I -margin of X is the Lévy process XI := (Xi)i∈I .

(ii) Let �I be the Lévy measure of XI , denoted the I -marginal Lévy measure. Then

�I(A) = �({x ∈ R
d : (xi)i∈I ∈ A}), A ∈ B(R|I | \ {0}).

(iii) The I -marginal tail integral of X is given by �I : (R \ {0})|I | → R with

�I((xi)i∈I ) = �I

(∏
i∈I

� (xi)

) ∏
i∈I

sgn(xi).

To simplify notation, we denote one-dimensional margins by Xi , �i , and �i .

By [20, Lemma 3.5], the set of all marginal tail integrals {�I : I ⊆ {1, . . . , d}} determines
the Lévy measure � uniquely and vice versa.

The following lemma is well known; a proof can be found, for instance, in [8, Lemma 2.0.2].

Lemma 1. Let � be a d-dimensional Lévy measure. If � ∈ RV(α, cn, µ) then, for x > 0 and
all i = 1, . . . , d,

n�i(cnx) → µi(1)x−α and n�i(−cnx) → µi(−1)x−α as n → ∞,

where µi(B) := µ({x ∈ E : xi ∈ B}) for B ∈ B(R \ {0}) and µi(1), |µi(−1)| ∈ [0, ∞).
Furthermore, there exists an index i∗ ∈ {1, . . . , d} such that µi∗(1) − µi∗(−1) > 0 and

�i∗ ∈ RV(α, cn, µi∗).

Now we present our reference Lévy measure; it has been proposed in [21].

Definition 4. (Pareto Lévy measure, Pareto Lévy copula.) Let � be a d-dimensional Lévy
measure with one-dimensional marginals �i(dxi) = |xi |−2 dxi on R \ {0}. Then we call � the
Pareto Lévy measure (PLM) and its tail integral � is called the Pareto Lévy copula (PLC).

The margins �i are Lévy measures of 1-stable Lévy processes, but � is in general not the
Lévy measure of a 1-stable Lévy process.

The following result has been proved for Lévy copulas in [20, Theorem 3.6]. For a detailed
proof of this transformed version, we refer the reader to [8, Theorem 1.1.10].

Theorem 1. (Sklar’s theorem for Pareto Lévy measures.) (i) Let X be a Lévy process in R
d

with Lévy measure �. Let ∅ 
= I ⊆ {1, . . . , d} be an arbitrary index set. Then there exists a
PLM � such that

�I((xi)i∈I ) = �I

((
1

�i(xi)

)
i∈I

)
, (xi)i∈I ∈ (R \ {0})|I |. (2)

The PLM � is unique on
∏d

i=1 Ran(1/�i).
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(ii) Let � be a d-dimensional PLM, and let �i for i = 1, . . . , d be one-dimensional tail integrals
of arbitrary Lévy processes. Then there exists a Lévy process X in R

d , whose components have
tail integrals �1, . . . , �d and whose marginal Lévy measures satisfy (2) for every nonempty I ⊆
{1, . . . , d} and every (xi)i∈I ∈ (R \ {0})|I |. The Lévy measure � of X is uniquely determined
by � and �1, . . . , �d .

Remark 1. (Relation between Lévy copula and Pareto Lévy measure.) (i) Every Lévy copula
Ĉ uniquely defines a PLM �, given for x, y ∈ R

d such that 0 /∈ [x, y) by

�([x, y)) =
∑

u∈{1/y1,1/x1}×···×{1/yd ,1/xd }
(−1)N(u)Ĉ(u),

where u = (u1, . . . , ud) ∈ (−∞, ∞]d , N(u) := #{k : uk = 1/yk}, and 1/0 := ∞. Further-
more, for the PLC �, we have, for x = (x1, . . . , xd) ∈ (R \ {0})d ,

�(x1, . . . , xd) = Ĉ

(
1

x1
, . . . ,

1

xd

)
.

Consequently, for a PLM � with Lévy copula Ĉ the following statements are equivalent.

1. � is the Lévy measure of a 1-stable Lévy process.

2. � is homogeneous of degree 1, i.e. �(tA) = t−1�(A) for all t > 0 and A ∈ B(E).

3. Ĉ satisfies, for all t > 0,

Ĉ(tx1, . . . , txd) = tĈ(x1, . . . , xd), x ∈ R
d .

(ii) From part (i) we immediately identify the Lévy copula from [20].

The advantage of working with a Pareto Lévy measure instead of a Lévy copula should be
clear: the Pareto Lévy measure is always a Lévy measure. We will see below that this is the
appropriate framework for regularly varying Lévy processes.

Since Lévy measures can be singular at the origin, the Lévy measure on the hyperplanes
through the axes needs special attention. Furthermore, since PLCs are defined quadrantwise,
special care has to be taken for sets which are not concentrated in one single quadrant. The
following result presents the Lévy measure � of arbitrary rectangles in terms of the PLM � and
the marginal tail integrals �i for i = 1, . . . , d. For the proof, see the proof of Proposition 1.1.11
of [8, Appendix].

Proposition 1. Let � be a PLM, and let �i for i = 1, . . . , d be one-dimensional Lévy
measures. Let � be the Lévy measure defined by (2). With �i(0) := �i(0+) = limx↓0 �i(x)

and �i(0−) = limx↑0 �i(x), the following assertions hold.

(i) For a, b ∈ R
d with 0 /∈ ∏d

i=1(ai, bi],

�

( d∏
i=1

(ai, bi]
)

= �

( d∏
i=1

(
1

�i(ai)
,

1

�i(bi)

])
. (3)
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(ii) Let ∅ 
= K ⊂ {1, . . . , d}. Define

Ai :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

�i(0−)
,

1

�i(0+)

]
if �i(0−) < 0, �i(0+) > 0,

[
0,

1

�i(0+)

]
if �i(0−) = 0, �i(0+) > 0,

[
1

�i(0−)
, 0

]
if �i(0−) < 0, �i(0+) > 0.

For a, b ∈ R
d with 0 /∈ ∏

i∈K{0} × ∏
i /∈K(ai, bi],

�

(∏
i∈K

{0} ×
∏
i /∈K

(ai, bi]
)

= �

(∏
i∈K

Ai ×
∏
i /∈K

(
1

�i(ai)
,

1

�i(bi)

])
. (4)

Conversely, the PLM � that was constructed from � to satisfy (2) can be given for arbitrary
rectangles in terms of the Lévy measure � and its marginal tail integrals �i for i = 1, . . . , d.
It follows directly from the construction of the measure m and the Lévy copula in the proof of
Sklar’s theorem in [20] with the transformation of the marginals to 1-stable instead of Lebesgue
measures.

Define, for x ∈ (−∞, ∞] and i = 1, . . . , d, the extended marginals �̇i(x) := �i(x) for
x 
= 0 and ∞ for x = 0 (which holds for all processes apart from compound Poisson processes
anyway). Define also

	�i(x) :=
{

limξ↑x �i(ξ) − �i(x) = �i({x}) for x 
= 0,

0 for x = 0.

Denote by λ the Lebesgue measure on R and by δx the Dirac measure in x.

Proposition 2. Let � be a Lévy measure with one-dimensional margins �i for i = 1, . . . , d.
Define

Di := �

(
1

�i(0−)

)
∪ �

(
1

�i(0+)

)
∪ {0}. (5)

For the PLM � constructed from � as in Theorem 1(i), the following assertions hold.

(i) For a, b ∈ R
d with (a, b] ⊂ ∏d

i=1 Di ,

�((a, b]) = � ⊗ λ|[0,1]d
({

(x1, . . . , xd, y1, . . . , yd) ∈ (Rd \ {0}) × [0, 1]d :
1

�̇i(xi) + yi	�i(xi)
∈ (ai, bi] for i = 1, . . . , d

})
. (6)

(ii) For a, b ∈ R
d with (a, b] ⊂ R

d \ ∏d
i=1 Di ,

�((a, b]) =
d∑

i=1

δ0 ⊗ · · · ⊗ δ0︸ ︷︷ ︸
i−1

⊗�i ⊗ δ0 ⊗ · · · ⊗ δ0︸ ︷︷ ︸
d−i

((a, b]), (7)

where �i(dxi) = |xi |−2 dxi for xi ∈ R \ {0}.
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Remark 2. For a multivariate compound Poisson process, the sets Di are equal to

Di =
(

−∞, − 1

λ−
i

]
∪

(
1

λ+
i

, ∞
)

∪ {0}

for i = 1, . . . , d, where λ−
i , λ+

i > 0 are the intensities of the positive and negative Poisson
processes, respectively. The above construction in Proposition 2 ensures that the resulting PLM
has indeed 1-stable margins.

Example 1. (Independence PLM.) The jumps of a Lévy process are independent, if the Lévy
measure is supported by the coordinate axes, i.e. the independence PLM is given by

�⊥(A) =
d∑

i=1

�i(Ai) for A ∈ B(Rd \ {0}),

where Ai := {xi ∈ R : (0, . . . , 0, xi, 0, . . . , 0) ∈ A} and �i denotes the Lévy measure of a
one-dimensional standard 1-stable Lévy process. By [20, Lemma 3.5], � is characterized by
the marginal tail integrals (�⊥,I )I⊆{1,...,d}, given for (x1, . . . , x|I |) ∈ (R \ {0})|I | by

�⊥,I (x1, . . . , x|I |) =
{

0 if |I | > 1,

x−1 if |I | = 1.

Example 2. (Complete positive dependence PLM.) The jumps of a Lévy process are completely
dependent or comonotonic, if there exists a strictly ordered set S ⊂ K := {x ∈ R

d : sgn(x1) =
· · · = sgn(xd)} such that, for almost all sample paths, 	Xt ∈ S for t > 0; see [20,
Definition 4.2]. In this case, all components jump almost surely together and, therefore, the
PLM of complete positive dependence is concentrated on (R \ {0})d . So � is characterized by
the corresponding PLC, given for (x1, . . . , xd) ∈ (R \ {0})d by

�||(x1, . . . , xd) = 1

|x1| ∨ · · · ∨ |xd |1K((x1, . . . , xd))

d∏
j=1

sgn(xj )

and supported by {x ∈ R
d \ {0} : x1 = · · · = xd}.

Example 3. (Archimedean PLM.) Analogously to the Archimedean copula construction (cf.
[22, Section 4]), Archimedean Pareto Lévy measures can be defined by constructing their
PLC on (R \ {0})d and setting �(Rd \ (R \ {0})d) = 0. Let ϕ : [−1, 1] → [−∞, ∞] be a
strictly increasing continuous function with ϕ(1) = ∞, ϕ(0) = 0, and ϕ(−1) = −∞, having
derivatives of order up to d on (−1, 0) and (0, 1), satisfying, for all k = 1, . . . , d,

∂kϕ(u)

∂uk
≥ 0, u ∈ (0, 1), and (−1)k

∂kϕ(u)

∂uk
≤ 0, u ∈ (−1, 0).

Set ϕ̃(u) := 2d−2(ϕ(u) − ϕ(−u)) for u ∈ [−1, 1]. Then

�(x1, . . . , xd) = ϕ

( d∏
i=1

ϕ̃−1
(

1

xi

))
, (x1, . . . , xd) ∈ (R \ {0})d ,

is a PLC; see [20, Theorem 6.1]. If we construct a Lévy measure � by margins �i for
i = 1, . . . , d and an Archimedean PLM, � may have mass on R

d \ (R \ {0})d , although �

does not. From (4) we see that �(Rd \ (R \ {0})d) > 0 if and only if �i(0+) < ∞ or
�i(0−) > −∞ for at least one i.
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Example 4. (Clayton PLM.) Setting

ϕ(x) = (− log |x|)−1/θ (η1{x>0} − (1 − η)1{x<0}), θ > 0, η ∈ (0, 1),

in Example 3 corresponds to the Clayton Pareto Lévy measure, and the Clayton Pareto Lévy
copula is, for θ > 0 and η ∈ [0, 1], given for (x1, . . . , xd) ∈ (R \ {0})d by

�η,θ (x1, . . . , xd) = 22−d

( d∑
i=1

|xi |θ
)−1/θ

(η1{x1···xd>0} − (1 − η)1{x1···xd<0}).

For d = 2, this reduces to

�η,θ (x1, x2) = (|x1|θ + |x2|θ )−1/θ (η1{x1x2>0} − (1 − η)1{x1x2<0}), (8)

which covers with its single parameter θ the whole range of dependence; see, e.g. [4], [5], and
[9] for applications in insurance and operational risk modeling. This PLC has also been the
focus of parametric estimation in [10], [11], and [12]. The Clayton PLM is homogeneous of
degree 1.

Example 5. (Nonhomogeneous PLM.) Setting

ϕ(x) = ζ
|x|

1 − |x| (η1{x>0} − (1 − η)1{x<0}), ζ > 0, η ∈ (0, 1),

in Example 3 yields the PLC for ζ > 0 and η ∈ [0, 1] given for (x1, . . . , xd) ∈ (R \ {0})d as

�η,ζ (x1, . . . , xd) = ζ
∏d

i=1 |1/xi |∏d
i=1(|1/xi | + ζ ) − ∏d

i=1 |1/xi |
(η1{x1···xd>0} − (1 − η)1{x1···xd<0}).

For d = 2, the PLC �η,ζ reduces to

�η,ζ (x1, x2) = 1

|x1| + |x2| + ζ |x1x2| (η1{x1x2>0} − (1 − η)1{x1x2<0}),

which was treated in [9, Example 2.8(d)]. Obviously, this PLM has homogeneous margins, but
is not homogeneous of degree 1. Consequently, the corresponding Lévy process has regularly
varying marginal processes, but is not regularly varying.

3. Regular variation and the Pareto Lévy copula

As stated in Lemma 1, multivariate regular variation of � implies regular variation of at least
one of the one-dimensional marginal Lévy measures �i . To prove the converse, we assume
without loss of generality that �1 ∈ RV(α, cn, µ1). We also assume that the following tail
balance conditions hold for x > 0 and all i = 1, . . . , d:

lim
n→∞ n�i(cnx) = p+

i x−α and lim
n→∞ −n�i(−cnx) = p−

i x−α, (9)

where p+
i , p−

i ∈ [0, ∞). For x ∈ R, we define

p
sgn(x)

i :=
{

p+
i if x ≥ 0,

p−
i if x < 0.

The following result has been proved for copulas in Theorem 3.1 of [21].
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Theorem 2. Let � be a PLM, and let �i for i = 1, . . . , d be one-dimensional Lévy measures.
Let � be the d-dimensional Lévy measure defined in (3). Suppose that �1 ∈ RV(α, cn, µ1)

and that the tail balance conditions (9) for the margins hold. Furthermore, suppose that
� ∈ RV(1, n, ν). Then � ∈ RV(α, cn, µ), where µ is given by

µ((a, b]) = ν((ã, b̃]), a, b ∈ R
d , (10)

and ã = (ãi)i=1,...,d is given by

ãi :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if ai = 0,

sgn(ai)(p
sgn(ai )

i )−1|ai |α if ai 
= 0, p
sgn(ai )

i > 0,

∞ if ai > 0, p
sgn(ai )

i = 0,

−∞ if ai < 0, p
sgn(ai )

i = 0,

(11)

with b̃ = (b̃i)i=1,...,d defined analogously.

Proof. First we show that {n�(cn·)}n∈N is relatively compact in the vague topology. Since
� is a Lévy measure, for the ball B0,r = {x ∈ R

d : |x − 0| < r}, we obtain

sup
n∈N

n�(cn(R
d \ B0,r )) < ∞ for all r > 0,

and, by [19, Theorem 15.7.5], the sequence {n�(cn·)}n∈N is relatively compact. So there are
subsequential vague limits and, by [16, Theorem 2.8], we have to show convergence for sets in
a determining class. The sets {(a, b] : a, b ∈ E, a ≤ b} are a ∩-stable generator of B(E), but,
since �(R

d \ R
d) = 0, it is sufficient to investigate convergence on the sets {(a, b] : a, b ∈

R
d \ {0}, a ≤ b}. Consequently, we have to show that limn→∞ n�(cn(a, b]) = µ((a, b]) for

all sets (a, b] with a, b ∈ R
d \ {0}, 0 /∈ (a, b], and

µ(∂(a, b]) = µ

( d⋃
k=1

∏
i<k

[ai, bi] × {ak, bk} ×
∏
i>k

[ai, bi]
)

= 0,

where µ is a nonzero Radon measure with µ(R
d \ {0}) = 0 and homogeneous of degree α.

For a, b ∈ E and the weight constants pi given in (9), we define the index sets

K1 := {i : aibi 
= 0, p
sgn(ai )

i p
sgn(bi )

i > 0},
K2 := {i : aibi 
= 0, p

sgn(ai )

i > 0, p
sgn(bi )

i = 0},
K3 := {i : aibi 
= 0, p

sgn(ai )

i = 0, p
sgn(bi )

i > 0},
K4 := {i : aibi > 0, p

sgn(ai )

i = p
sgn(bi )

i = 0},
K5 := {i : ai < 0 < bi, p

sgn(ai )

i = p
sgn(bi )

i = 0},
K6 := {i : ai = 0, p

sgn(bi )

i > 0},
K7 := {i : ai = 0, p

sgn(bi )

i = 0},
K8 := {i : bi = 0, p

sgn(ai )

i > 0},
K9 := {i : bi = 0, p

sgn(ai )

i = 0}.
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Moreover, we set, for a, b ∈ E with 0 /∈ (a, b],

µ((a, b]) := ν

( ∏
i∈K1

(
sgn(ai)

p
sgn(ai )

i

|ai |α,
sgn(bi)

p
sgn(bi )

i

|bi |α
]

×
∏
i∈K2

(
sgn(ai)

p
sgn(ai )

i

|ai |α, ∞
)

×
∏
i∈K3

(
−∞,

sgn(bi)

p
sgn(bi )

i

|bi |α
]

×
∏
i∈K4

∅ ×
∏
i∈K5

(−∞, ∞)

×
∏
i∈K6

(
0,

sgn(bi)

p
sgn(bi )

i

|bi |α
]

×
∏
i∈K7

(0, ∞)

×
∏
i∈K8

(
sgn(ai)

p
sgn(ai )

i

|ai |α, 0

]
×

∏
i∈K9

(−∞, 0]
)

.

Consider sets (a, b] with a, b ∈ R
d \ {0}, 0 /∈ (a, b], and µ(∂(a, b]) = 0. From relation (3)

we obtain

n�(cn(a, b]) = n�

(
n

∏
i∈K1,K2,K3,K4,K5

(
1

n�i(cnai)
,

1

n�i(cnbi)

]

×
∏

i∈K6,K7

(
1

n�i(0+)
,

1

n�i(cnbi)

]

×
∏

i∈K8,K9

(
1

n�i(cnai)
,

1

n�i(0+)

])
. (12)

From the definition of the pi in (9) we conclude that, as n → ∞,(
1

n�i(cnai)
,

1

n�i(cnbi)

]
→

(
sgn(ai)

p
sgn(ai )

i

|ai |α,
sgn(bi)

p
sgn(bi )

i

|bi |α
]

=: B1 for i ∈ K1,(
1

n�i(cnai)
,

1

n�i(cnbi)

]
→

(
sgn(ai)

p
sgn(ai )

i

|ai |α, ∞
)

:= B2 for i ∈ K2,(
1

n�i(cnai)
,

1

n�i(cnbi)

]
→

(
−∞,

sgn(bi)

p
sgn(bi )

i

|bi |α
]

=: B3 for i ∈ K3,(
1

n�i(cnai)
,

1

n�i(cnbi)

]
→ ∅ =: B4 for i ∈ K4,(

1

n�i(cnai)
,

1

n�i(cnbi)

]
→ (−∞, ∞) =: B5 for i ∈ K5,(

1

n�i(0+)
,

1

n�i(cnbi)

]
→

(
0,

sgn(bi)

p
sgn(bi )

i

|bi |α
]

=: B6 for i ∈ K6,(
1

n�i(0+)
,

1

n�i(cnbi)

]
→ (0, ∞) =: B7 for i ∈ K7,(

1

n�i(cnai)
,

1

n�i(0+)

]
→

(
sgn(ai)

p
sgn(ai )

i

|ai |α, 0

]
=: B8 for i ∈ K8,(

1

n�i(cnai)
,

1

n�i(0+)

]
→ (−∞, 0] =: B9 for i ∈ K9.
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Furthermore,

0 /∈ (a, b] �⇒ 0 /∈
d∏

i=1

(
1

n�i(cnai)
,

1

n�i(cnbi)

]
�⇒ 0 /∈

9∏
i=1

Bi

and

µ(∂(a, b]) = 0 �⇒ ν

(
∂

d∏
i=1

(
1

n�i(cnai)
,

1

�i(cnbi)

])
= 0 �⇒ ν

(
∂

9∏
i=1

Bi

)
= 0.

Since n�(n·) v−→ ν(·) as n → ∞ and ν has no atoms on the considered sets, by applying Propo-
sitions 4.2.1 and 4.2.2 of [8], it follows that expression (12) converges to µ and relation (10)
holds.

The properties of µ can easily be seen: µ is an α-homogeneous Radon measure on B(E)

with µ(R
d \ R

d) = 0 since ν is a 1-homogeneous Lévy measure. Moreover, µ is a nonzero
Radon measure because the one-dimensional margin µ1 is a nonzero measure.

The following result is a converse of Theorem 2 and extends Lemma 1.

Theorem 3. Let � be a d-dimensional Lévy measure with one-dimensional margins �i for i =
1, . . . , d, and let � be the PLM constructed for � to satisfy (2). Suppose that � ∈ RV(α, cn, µ).
Then the tail balance conditions (9) hold and � ∈ RV(1, n, ν). For a, b ∈ R

d with (a, b] ⊂∏d
i=1 Di and Di defined as in (5), the relation between µ and ν is given as

ν((a, b]) = µ((â, b̂]), (13)

where, for i = 1, . . . , d,

âi :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if p
sgn(ai )

i = 0,

sgn(ai)(p
sgn(ai )

i ai)
1/α if p

sgn(ai )

i > 0,

∞ if ai > 0, p
sgn(ai )

i = 0,

−∞ if ai < 0, p
sgn(ai )

i = 0,

with the b̂i defined similarly. For a, b ∈ R
d \ ∏d

i=1 Di , we have ν((a, b]) = �((a, b]).
Proof. By Lemma 1, the tail balance conditions (9) hold with p+

i := µi(1) and p−
i :=

−µi(−1), and there exists at least one index i∗ such that p+
i∗ + p−

i∗ > 0. Analogously to
the proof of Theorem 2, we have to show that n�(n(a, b]) → ν((a, b]) as n → ∞ for all
a, b ∈ R

d \ {0}, 0 /∈ (a, b], and ν(∂(a, b]) = 0, where ν is a nonzero 1-homogeneous Radon
measure with ν(R

d \ R
d) = 0. Recall the definition of the sets Di in (5). By relation (7),

� is 1-homogeneous on R
d \ ∏d

i=1 Di and so we define ν((a, b]) := �((a, b]) for sets
(a, b] ⊂ (Rd \ ∏d

i=1 Di ). Furthermore, we define ν on B(E) by ν(R
d \ R

d) := 0 and, for
(a, b] ⊂ ∏d

i=1 Di , we set, defining x̃i as in (11),

ν((a, b]) := µ({(x1, . . . , xd) ∈ R
d \ {0} : x̃i ∈ (ai, bi] for i = 1, . . . , d}).

Here ν is a 1-homogeneous Radon measure since µ is an α-homogeneous Lévy measure and �

is 1-homogeneous on R
d \ ∏d

i=1 Di . Moreover, ν is a nonzero measure because µi∗ is nonzero
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and p+
i∗ + p−

i∗ > 0. Suppose that a, b ∈ R
d \ {0} with 0 /∈ (a, b] and ν(∂(a, b]) = 0. With

relation (6) we obtain, for (a, b] ⊂ ∏d
i=1 Di ,

n�(n(a, b])
= n� ⊗ λ|[0,1]d

({
(cnx1, . . . , cnxd, y1, . . . , yd) ∈ (Rd \ {0}) × [0, 1]d :

1

n�̇i(cnxi) + nyi	�i(cnxi)
∈ (ai, bi] for i = 1, . . . , d

})
. (14)

With limn→∞ n	�i(cnxi) = 0 we have

lim
n→∞

1

n�̇i(cnxi) + yi	�i(cnxi)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if xi = 0,

sgn(xi)(p
sgn(xi )

i )−1|xi |α if xi 
= 0, p
sgn(xi )

i > 0,

∞ if xi > 0, p
sgn(xi )

i = 0,

−∞ if xi < 0, p
sgn(xi )

i = 0.

We see that ν(∂(a, b]) = 0 holds if and only if µ(∂(â, b̂]) = 0 and 0 /∈ (a, b] implies that
0 /∈ (â, b̂]. So, with Propositions 4.2.1 and 4.2.3 of [8], it follows, for (14) as n → ∞, that

lim
n→∞ n�(n(a, b]) = µ ⊗ λ|[0,1]d ({(x1, . . . , xd, y1, . . . , yd) ∈ (Rd \ {0}) × [0, 1]d :

x̃i ∈ (ai, bi] for i = 1, . . . , d}) = ν((a, b]),
and (13) follows.

We conclude this section with an account of extreme (jump) dependence between compo-
nents of a Lévy process. In analogy to the definition of the tail dependence coefficient for
distribution functions (see, e.g. [18]) we define extreme dependence measures for different
situations. The definition is usually restricted to dimension d = 2.

Definition 5. (Tail dependence coefficients.) Let � be a Lévy measure in R
d with equal

marginals. We define its upper and lower tail dependence coefficients as

�U := lim
t→∞

�(t, . . . , t)

�1(t)
and �L := lim

t→−∞
�(t, . . . , t)

�1(t)
,

respectively, provided that these limits exist. If �U > 0, we call � upper tail dependent, and
if �L > 0 the PLM � is called lower tail dependent.

Recall that, for multivariate distributions, the tail dependence coefficient is a copula param-
eter. The following result shows that the analogous result holds for Lévy measures: the tail
dependence coefficients are PLC parameters. It is a simple consequence of the definitions.

Proposition 3. Assume that � is a Lévy measure in R
d with equal marginals and with PLM �.

Then
�U = lim

t→∞ t�(t, . . . , t) and �L = lim
t→−∞ |t�(t, . . . , t)|.

Moreover, both limits exist.

The picture changes when we deal with nonequal marginals as in Theorem 2.
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Proposition 4. (i) Assume that �∈RV(α, cn, µ), one of the marginals, say, �1 ∈RV(α, cn, µ),
and the tail balance condition (9) holds for all marginals. Then the PLM � ∈ RV(1, n, ν) and

lim
t→∞

�(t, . . . , t)

�1(t)
= µ(1, . . . , 1)

µ1(1)
= ν

(
1,

p+
2

p+
d

, . . . ,
p+

1

p+
d

)
, (15)

lim
t→−∞

�(t, . . . , t)

�1(t)
= µ(−1, . . . , −1)

µ1(−1)
= ν

(
−1, −p−

1

p−
d

, . . . , −p−
1

p−
d

)
, (16)

and both limits exist. If p+
i = 0 or p−

i = 0 for some i ∈ {2, . . . , d}, then the corresponding
component is interpreted as ∞ and it does not contribute to the limit.

(ii) For a Lévy measure � with equal marginals, the limits in (15) and (16) are �U and �L,
respectively.

Note also that the representations on the right-hand sides of (15) and (16) show that the
weights of the d marginals play an important role, as well as the tail integral of the limit
measure ν of the PLM �.

By Theorem 5.1 of [17], X1 ∈ RV(α, cn, µ) if and only if � ∈ RV(α, cn, µ); hence, the
following holds.

Corollary 1. (i) Let (Xt )t≥0 be the Lévy process with Lévy measure �. Assume that X1 =
(X11, . . . , X1d) has equally distributed marginals. Recall that the upper and lower tail depen-
dence coefficients of X1 are defined as

lim
x→∞

P(X11 > x, . . . , X1d > x)

P(X11 > x)
and lim

x→−∞
P(X11 ≤ x, . . . , X1d ≤ x)

P(X11 ≤ x)
, (17)

respectively, provided that the limit exists. Assume that X is regularly varying with X1 ∈
RV(α, cn, µ). Then the limits in (17) both exist and are �U and �L, respectively.

(ii) The results of Proposition 4(ii) hold for the distribution tails in the spirit of (17).

4. Examples

To simplify notation, we consider only the case d = 2. Moreover, we assume that we are
in the framework of Theorem 2 with �1 ∈ RV(α, cn, µ1), p+

1 , p−
1 > 0, and p+

2 , p−
2 ≥ 0, i.e.

µi(x) = sgn(x)p
sgn(x)

i |x|−α for x 
= 0.

Example 6. (Example 1 continued: independence PLM.) Since �⊥ is homogeneous of degree
1, by Theorem 2 we obtain � ∈ RV(α, cn, µ) and, with

�⊥(dx1, dx2) = δ0(dx1)|x2|−2 dx2 + δ0(dx2)|x1|−2 dx1, (x1, x2) ∈ R
2 \ {0},

the limit measure µ is supported on the axes. Hence, µ is given by

µ(dx1, dx2) = δ0(dx1)
αp

sgn(x2)

2

|x2|α+1 dx2 + δ0(dx2)
αp

sgn(x1)

1

|x1|α+1 dx1, (x1, x2) ∈ R
2 \ {0}.

Then the upper and lower tail dependence coefficients, �U and �L, equal 0.
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Example 7. (Example 2 continued: complete positive dependence PLM.) �‖ is homogeneous
of degree 1 and with (10) we obtain

µ(� (x1)×� (x2)) = (p
sgn(x1)

1 |x1|−α ∧p
sgn(x2)

2 |x2|−α)1K((x1, x2)), (x1, x2) ∈ (R\{0})2.

For x1 ∈ R \ {0}, we have

µ(� (x1) × {0}) = µ1(� (x1)) − lim
x2↑0

µ(� (x1) × � (x2)) − lim
x2↓0

µ(� (x1) × � (x2))

=
{

p
sgn(x1)

1 |x1|−α if p
sgn(x1)

2 = 0,

0 if p
sgn(x1)

2 > 0.

Analogously, for x2 ∈ R\{0} with p+
1 > 0 and p−

1 > 0, we obtain µ({0}×� (x2)) = 0. Since �‖
is supported by {(x1, x2) ∈ (R \ {0})2 : x1 = x2}, µ is supported by {(x1, x2) ∈ (R\{0})2 : x2 =
(p

sgn(x2)

2 /p
sgn(x1)

1 )1/αx1}. Finally, the limit measure µ results in

µ(dx1, dx2) = p
sgn(x1)

1
α

|x1|α+1 1{x2=(p
sgn(x2)

2 /p
sgn(x1)

1 )1/αx1} dx1, x1 ∈ R \ {0}.

Then the limits in (15) and (16) are given as

lim
t→∞

�(t, t)

�1(t)
= p+

1 ∧ p+
2

p+
1

and lim
t→−∞

�(t, t)

�1(t)
= −p−

1 ∧ p−
2

p−
1

.

Example 8. (Example 4 continued: Clayton PLM.) The Clayton PLM �η,θ is homogeneous
of degree 1 and we have �η,θ (R

2 \ (R \ {0})2) = 0. For x1 ∈ R \ {0}, we obtain

µ(� (x1) × {0}) = lim
ε↑0

µ(� (x1) × (ε, 0])

=

⎧⎪⎨
⎪⎩

0 if p−
2 > 0,

lim
ε↑0

�η,θ

(
�

(
sgn(x1)

p
sgn(x1)

1

|x1|α
)

× � (ε)

)
if p−

2 = 0,

=
{

0 if p−
2 > 0,

p
sgn(x1)

1 |x1|−α(η1{x1<0} + (1 − η)1{x1>0}) if p−
2 = 0,

and, for x2 ∈ R \ {0}, we obtain

µ({0} × � (x2)) = lim
ε↑0

µ((ε, 0] × � (x2))

= lim
ε↑0

�

((−1

p−
1

|ε|α, 0

]
× � (x̃2)

)
= �η,θ ({0} × � (x̃2))

= 0.

Let x1, x2 ∈ R \ {0}. If p
sgn(x2)

2 > 0 then

µ(� (x1) × � (x2)) = ((p
sgn(x1)

1 )−θ |x1|αθ + (p
sgn(x2)

2 )−θ |x2|αθ )−1/θ

× (η1{x1x2>0} + (1 − η)1{x1x2<0}).
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If p
sgn(x2)

i = 0 then

µ(� (x1) × � (x2)) = �η,θ

(
�

(
sgn(x1)

p
sgn(x1)

1

|x1|α
)

× ∅

)
= 0.

Moreover, the limits in (15) and (16) are given by

lim
t→∞

�(t, t)

�1(t)
= µ(1, 1)

µ(1)
=

⎧⎪⎨
⎪⎩

η((p+
1 )−θ + (p+

2 )−θ )−1/θ

p+
1

if p+
2 > 0,

0 if p+
2 = 0,

and

lim
t→−∞

�(t, t)

�1(t)
= µ(−1, −1)

µ(−1)
=

⎧⎪⎨
⎪⎩

−η((p−
1 )−θ + (p−

2 )−θ )−1/θ

p−
1

if p−
2 > 0,

0 if p−
2 = 0,

and �U = �L = η2−1/θ . So, if η > 0 and p+
2 > 0 (p−

2 > 0), then we always have upper
(lower) tail dependence.

Example 9. (Example 5 continued: nonhomogeneous PLM.) �η,ζ is concentrated on (R\{0})2

and we obtain

lim
n→∞ n�η,ζ (n(� (x1) × � (x2))) = 1

|x1| + |x2| + n|x1x2| = 0, x1, x2 ∈ R \ {0}.
Therefore, �η,ζ is not only nonhomogeneous, but also not regularly varying. Consequently, by
Theorem 2, � defined by (2) is not multivariate regularly varying. Moreover, �U = �L = 0,
so there is no tail dependence in this model.

It was shown in [9] that, for η = 1, the Lévy measure of the sum of the two components of
the bivariate Lévy process can, for certain marginal models, be calculated explicitly. This is
also true for the PLM. Surprisingly, it turns out that the Lévy measure of the sum

�+(·) := �1,ζ ({(x1, x2) ∈ R
2 \ {0} : x1 + x2 ∈ ·})

is univariate regularly varying. Note that this does not contradict [3, Theorem 1.1], where it was
proved that a vector X is regularly varying, if and only if every linear combination is regularly
varying. More precisely, for z > 0,

�+(z) = 6 + 2zζ

z(4 + zζ )
+ 4 + 2zζ

z(4 + zζ )
√

zζ(4 + zζ )
ln

(∣∣∣∣ zζ + √
zζ(4 + zζ )

zζ − √
zζ(4 + zζ )

∣∣∣∣
)

.

From this, it is easy to see that �+(z) ∼ 2z−1 = �1(z) + �2(z), which exhibits the same
behavior as the independence model.

5. Graphical representation of the dependence structure of Lévy processes

For a stable random vector, the spectral measure characterizes the dependence between the
marginals (see [25, Definition 2.3.2]), which remains true for a regularly varying random vector
in the limit; see Definition 1. Consequently, the spectral density has been presented graphically
for stable and regularly varying distributions and processes, at least in two dimensions.

The PLC provides a new possibility to visualize the dependence structure between the jump
parts of the marginal Lévy processes. As a graphical tool, it can also be applied to nonregularly
varying PLMs, where no spectral measure exists. Whereas an empirical version of the spectral
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density estimates a density, immediately by definition, an empirical version of the PLC estimates
a tail integral. This means that it always exists, also if the spectral measure has no density, or
if the PLC is not homogeneous of any order. Moreover, the dependence of joint extremes is
estimated by the tail dependence coefficients, which is based on the PLC and the tail integral
as indicated in Definition 5 and Corollary 4.

In the first subsection below we present both graphical representations for bivariate homo-
geneous PLMs from the previous examples, the spectral density, and the PLC. In the second
subsection we visualize the dependence structure of the nonregularly varying PLM given in
Example 5 only by its PLC, since there exists no spectral density.

5.1. Homogeneous Pareto Lévy measures

Recall from Theorem 14.3 of [26] that the 1-homogeneous PLM � as a 1-stable Lévy
measure has, for all B ∈ B(Rd), the representation �(B) = ∫

S

∫ ∞
0 1B(rφ)r−2 drµ̃S(dφ),

where S denotes the unit sphere in R
d . Since µ̃S is a finite measure, it can be normalized

to a probability measure, which means in our situation that

µS(·) = µ̃S(·)
�({x ∈ R2 : |x| > 1}) = �({x ∈ R

2 : |x| > 1, x/|x| ∈ ·})
�({x ∈ R2 : |x| > 1}) . (18)

This representation shows that µS measures the dependence between joint extremes, and that
it depends on the chosen norm | · |.

Using polar coordinates r = |x| and φ = x/|x| ∈ S, the PLM � has, for the set A :=
{(r, φ) : 0 ≤ r1 ≤ r ≤ r2 ≤ ∞, 0 ≤ ρ1 ≤ φ ≤ ρ2 < 2π}, the representation

�(A) =
∫ ρ2

ρ1

∫ r2

r1

r−2 drµ̃S(dφ). (19)

Note that all sets A of this type form a semialgebra of subsets of R
2 \ {0} and, hence, generate

the Borel σ -algebra B(R2 \ {0}). Defining the transformation T : [0, ∞) × [0, 2π) → R
2 by

T (r, φ) = r(cos φ, sin φ), � has a density given in polar coordinates as

� ◦ T (dr, dφ) = µ̃S(dφ)r−2 dr. (20)

From this we see firstly the well-known fact that the spectral density as the normalized angular
measure completely determines the dependence in 1-stable models (as in all homogeneous
models of any order). We also note that the homogeneity on the whole of R

d plays an important
role for the multiplicative structure in (20): for a general PLM, this no longer holds.

Using the notation introduced above, we can relate the spectral measure with the PLM as
follows. Since the arcs are for any norm given by

Sρ1,ρ2 :=
{

(cos φ, sin φ)

|(cos φ, sin φ)| : ρ1 < φ ≤ ρ2

}
,

we find, from (18) by integrating out r over (1, ∞) in (19), that

µS([ρ1, ρ2]) =
∫ ρ2
ρ1

µ̃S(dφ)∫ 2π

0 µ̃S(dφ)
= �(Sρ1,ρ2)∫ 2π

0 µ̃S(dφ)
. (21)

We present the spectral measures by plotting the density µS(dφ)/dφ on [0, 2π). Here
we take an idea from [2] and visualize µS as a graph such that the area included between two
angles (ρ1 and ρ2, say) and a solid curve (s(ρ) for ρ ∈ [ρ1, ρ2]) represents the spectral measure
µS([ρ1, ρ2]). The uniform distribution corresponds then to the unit circle. We call these graphs
Basrak graphs.
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Whereas polar coordinates are the natural coordinates for the spectral measure, the natural
coordinates for the PLC � are the Cartesian coordinates. The natural generator of the Borel
σ -algebra B(R2 \ {0}) are here the sets, which have been used to define the tail integral. It
is, however, obvious from the definition of the spectral measure in (18) that there is no simple
relation between the spectral measure and the PLM on these sets. For specific PLCs, it is
possible (as shown below) to obtain the form of the corresponding spectral measure, provided
that the homogeneity property holds.

On the other hand, for nonhomogeneous PLCs, there exists no spectral measure. More
precisely, the factorization of the PLM into a radial part and an angular part is no longer possible:
the angular part still depends on r; cf. Example 13. However, the PLC � exists and can also be
visualized. Consequently, we also suggest a graphic representation for the PLC. This is done
as follows. For a given point (x1, x2) not on any axes, we plot |�(x1, x2)| = �(� (x1)×� (x2))

as the L2-distance of a point to the origin, where we can also use any other distance.

Example 10. (Examples 1 and 6 continued: independence PLM.) Since �⊥ has mass only on
the axes, its spectral measure is, for φ ∈ [0, 2π), given by

µS(dφ) = 1
4δ0(dφ) + 1

4δπ/2(dφ) + 1
4δπ (dφ) + 1

4δ3π/2(dφ).

Figure 1 shows the spectral density µS(dφ)/dφ. The PLC �⊥ is equal to 0; see Figure 2.

Example 11. (Examples 2 and 7 continued: complete positive dependence PLM.) �‖ has
mass only on {x ∈ R

2 \ {0} : x1 = x2} and its spectral measure is, for φ ∈ [0, 2π), given
by µS(dφ) = 1

2δπ/4(dφ) + 1
2δ5π/4(dφ). The right diagram of Figure 1 shows the spectral

density µS(dφ)/dφ for angles in [0, 2π) and as Basrak graph. The PLC �‖ is given as
�‖(x1, x2) = 1K((x1, x2)) sgn(x1) sgn(x2)/(|x1| ∨ |x2|), and is visualized in Figure 2.

Example 12. (Examples 4 and 8 continued: Clayton PLM.) From (8) we find that

�η,θ (dx1, dx2) = (1 + θ)(|x1|θ + |x2|θ )−1/θ−2|x1|θ−1|x2|θ−1

× (η1{x1x2>0} + (1 − η)1{x1x2<0}) dx1 dx2.

Spectral measure of the
independence FLM

Spectral measure of the
complete dependence FLM

0.00 0.0

0.00

0.10
0.1

0.10

−0.10
−0.1

−0.2

−0.3

−0.4
−0.10

0.05

−0.05

0.20

0.2

0.3

0.4

0.0 0.1−0.1−0.2−0.3−0.4 0.2 0.3 0.40.20

−0.20

−0.20

0.15

−0.15

0.25

−0.25

Figure 1: The left diagram shows the Basrak graph of the spectral measure µS of the independence PLM
in [0, 2π) with uniform weights 0.25 on 0, 1

2 π, π, 3
2 π . The right diagram shows the Basrak plot of the

spectral measure µS of the complete positive dependence PLM. The length of the rays represents the
probability mass on the corresponding angles.
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Clayton PLC on     , = 1S2

Clayton PLC on     , = 1S2

Clayton PLC on     , = 5S2Clayton PLC on     , = 2S2

PLC of independence and
complete dependence

Clayton PLC on     , = 0.5S2
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0.8
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0.0 0.5 1.01.0 0.5

Figure 2: The first row of diagrams shows the PLC �⊥, �‖ (left), and �η,θ for η = 1 and different values
θ > 0 (right). The other diagrams show �η,θ for different values of θ and η ∈ [0, 1].

By a transformation to polar coordinates, �η,θ has representation (20) with density

µ̃S(dφ)

dφ
= (1 + θ)(| cos(φ)|θ + | sin(φ)|θ )−1/θ−2| cos(φ)|θ−1| sin(φ)|θ−1

× (η1{cos(φ) sin(φ)>0} + (1 − η)1{cos(φ) sin(φ)<0}), (22)

and (21) applies. Such densities are shown in Figure 3.
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Figure 3: Basrak graphs of the spectral densities µS2 (dφ)/dφ (top row), µS1(dφ)/dφ (middle row), and
µS∞(dφ)/dφ (bottom row) of the Clayton PLC for different parameter values of θ > 0 and η ∈ [0, 1] as

given in (18) on [0, 2π).

We visualize the Clayton PLC �η,θ in Figure 2 for η = 1 (i.e. joint jumps are always in the
same direction) and different parameter values θ > 0. We see that, for increasing parameter θ ,
the PLC values increase. This is reasoned by the increase of mass near π/4. If θ decreases, the
mass of µ̃S moves near to the axes and the PLC values decrease.
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5.2. A nonhomogeneous Pareto Lévy measure

Example 13. (Example 5 continued: nonhomogeneous PLM.) �η,ζ has the density

�η,ζ (dx1, dx2) = 2 sgn(x1x2) + ζx1 sgn(x2) + ζx2 sgn(x1) + ζ 2x1x2

(|x1| + |x2| + ζ |x1x2|)3

× (η1{x1x2>0} − (1 − η)1{x1x2<0}) dx1 dx2.

Transforming �η,ζ to polar coordinates yields (20), where µ̃S = µ̃r
S
(dφ) is given by

µ̃r
S
(dφ)

dφ
= 2 sgn(cos φ sin φ) + ζ r cos φ sgn(sin φ) + ζ r sin φ sgn(cos φ) + ζ 2r2 cos φ sin φ

(| cos φ| + | sin φ| + ζ r| cos φ sin φ|)3

× (η1{cos φ sin φ>0} − (1 − η)1{cos φ sin φ<0}). (23)

µ̃r
S

depends on the radius and decreases for increasing r; see Figure 4.
Figure 5 shows the logarithmic PLM densities �η,θ ◦ T (r, dφ) for (η = 1 and θ = 1) and

�η,ζ ◦ T (r, dφ) for (η = 1 and ζ = 0.001) for three different values of the radius r . We see

2
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−2

0
2

4
6

8
10

r (× 104) 0.0
0.5

1.0
1.5

φ

0
2

4
6

8
10r (× 104) 0.0

0.5
1.0

2.0
1.5

φ

5

0

−5

Logarithmized density Γη,θ (dφ)/dφ
for η = 1 and θ = 1

Logarithmized density Γη,ζ (dφ)/dφ
for η = 1 and ζ = 0.001

r,φφ

Figure 4: Densities µ̃S(dφ)/dφ (left) given in (22) (constant for all r) and µ̃r
S
(dφ)/dφ (right) given in

(23) (decreases with r).

Logarithmized PLM densities

 
0.0 0.5 1.0 1.5

r = 1000

r = 100 000

r = 100 000 000

Figure 5: Logarithmic PLM densities of the Clayton PLM �η,θ for η = 1 and θ = 1 (shape independent
of r), and the nonhomogeneous PLM �η,ζ for η = 1 and ζ = 0.001 (shape changes with r) for three

different values of the radius r .
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that, for small r , both densities are almost identical. When r increases, the Clayton density
decreases uniformly for all angles φ, but the nonhomogeneous density decreases strongly for
angles near π/4, and weakly for angles near 0 and π/2.

Figure 6 shows the PLC �‖ and �η,ζ for different parameter values of η ∈ [0, 1] and ζ > 0.
We see that, for small values of ζ , the PLM �η,ζ is similar to the Clayton PLM �η,θ with θ = 1.
For increasing parameter ζ , the PLC values become smaller and converge to independence.
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complete dependence
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Figure 6: The diagrams show the PLC �⊥, �‖, and �η,ζ for different parameter values η ∈ [0, 1] and
ζ ∈ (0, ∞).
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