British Actuarial Journal (2025), Vol. 30, el, pp. 1-41

doi:10.1017/S135732172400031X Institute
and Faculty
of Actuaries

CONTRIBUTED PAPER

Quantum internal models for Solvency Il and
quantitative risk management

Muhammad Ahmer Amjad

Email: ahmeramjad@yahoo.com

Abstract

This paper extends previous research on using quantum computers for risk management to a substantial,
real-world challenge: constructing a quantum internal model for a medium-sized insurance company.
Leveraging the author’s extensive experience as the former Head of Internal Model at a prominent UK
insurer, we closely examine the practical bottlenecks in developing and maintaining quantum internal
models. Our work seeks to determine whether a quadratic speedup, through quantum amplitude
estimation can be realised for problems at an industrial scale. It also builds on previous work that explores
the application of quantum computing to the problem of asset liability management in an actuarial context.
Finally, we identify both the obstacles and the potential opportunities that emerge from applying quantum
computing to the field of insurance risk management.

Keywords: Quantum computing; risk management; Solvency II; insurance

1. Introduction

Over the past decade, significant advancements in quantum computing have culminated in the
deployment of prototype quantum computers accessible via cloud platforms to a global audience.
This accessibility has empowered a broad spectrum of individuals, ranging from quantum
information scientists to quantum software engineers and enthusiasts, to gain practical experience
with quantum processes. Currently, we find ourselves in the Noisy Intermediate-Scale Quantum
(NISQ) era, a phase characterised by quantum computers that are theoretically capable of
demonstrating quantum advantage but are hindered by high noise levels, making the achievement
of quantum supremacy in many applications unattainable (Preskill, 2018).

Building on their previous research, Egger et al. (2020) illustrated that quantum computers can
achieve a quadratic speedup over classical counterparts for Value at Risk(VaR) of a credit
portfolio. Quadratic speedup is a term from computer science that refers to a situation where a
problem can be solved in /N steps as opposed to N steps by using a quantum algorithm instead of
the best classical algorithm. These investigations, however, were limited to stylised problems and
did not extend to real-world applications.

This paper provides a high-level introduction to Internal models (For UK Solvency II firms)
and quantum computing, as necessary background for readers. Then, we assess whether a
quantum advantage exists for a VaR calculation for a sufficiently large and complex portfolio. In
particular, we try to answer the following questions:

(1) How is a quantum internal model different from the types of problems discussed in
previous research?

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Institute and Faculty of Actuaries. This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

mailto:ahmeramjad@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S135732172400031X
https://doi.org/10.1017/S135732172400031X

2 M. A. Amjad

(2) How can the methods used for solving stylised problems in previous papers be extended for
building a quantum internal model?

(3) Does a quantum advantage exist for such problems?

(4) Is there scope for a quantum advantage in other, similar problems?

2. Internal models for Solvency Il firms
2.1 Solvency 11

Solvency I is a regulatory framework for insurance firms within the European Union. It came into
effect on 1 January 2016. The directive aims to ensure that insurance companies are financially
sound and capable of meeting their obligations to policyholders. Solvency II consists of 3 main
pillars: Quantitative Requirements (Pillar1), Governance and Supervision (Pillar 2) and Disclosure
and Transparency (Pillar 3).

Internal models fit within Pillar 1 of the Solvency II framework, which deals with the
quantitative requirements that insurance and reinsurance companies must meet. Under Solvency
I1, firms are required to hold enough capital to ensure that they can withstand financial shocks and
meet their obligations to policyholders over a one-year period with a high degree of certainty. This
required level of capital is known as the solvency capital requirement (SCR).

Pillar 1 offers two main approaches for calculating the SCR: the standard formula and the use of
Internal models.

1. Standard formula: This is a one-size-fits-all approach provided by the regulatory
framework that applies broadly to all insurance firms. It uses a set methodology to calculate
the SCR based on predefined risk categories and parameters.

2. Internal models: These are bespoke, sophisticated models developed by insurance firms
themselves to calculate their SCR. The use of an Internal Model is subject to the approval of
the relevant supervisory authority. The model must meet specific criteria and demonstrate
that it is capable of accurately reflecting the firm’s risk profile.

Internal models offer several potential advantages over the standard formula:

o They can provide a more accurate and sensitive measure of the risks faced by a specific firm,
taking into account its unique characteristics, risk profile, and business model.

o They can encourage better risk management practices, as firms that develop and use Internal
models typically have a deeper understanding of their risk exposures and how they can be
managed.

o They can potentially lead to a lower SCR if the model accurately captures the risk profile and
demonstrates lower risk than the conservative assumptions under the standard formula.

However, the development, validation, and maintenance of Internal models requires significant
resources and expertise. Moreover, regulatory approval for using an Internal Model is rigorous,
requiring extensive documentation, testing, and evidence that the model meets the Solvency II
requirements for accuracy, appropriateness, and comprehensiveness in capturing the firm’s risk
profile.

2.2 Internal models

The primary function of an Internal Model is to compute the SCR, which employs a VaR
methodology to quantify the capital needed to cover potential losses over a one-year horizon with

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 3

a 99.5% confidence level. An Internal Model typically encompasses three main components
(McNeil et al., 2015):

1. Individual risk modules: These modules typically utilise parametric distributions to model
the behaviour of singular risk factors. For instance, the Lognormal distribution might be
employed to simulate equity price returns.

2. Dependency module: This component typically employs a copula approach to assess the
correlation and tail dependence among different risk factors. It determines the extent to
which shocks in one area, such as equity prices or credit spreads, are likely to coincide with
extreme events in another, along with the individual risk modules, the dependency module
determines the joint distribution function of the risks.

3. Asset and liability valuation module: This module converts the scenarios generated from
the joint distribution of risks into impacts on Own Funds or the net asset value (NAV),
facilitating the calculation of the 99.5th percentile VaR. It often relies on polynomial based
proxy models that approximate the effects on the present value of multi-year cash flows
across a vast array of scenarios efficiently. The use of proxy models enables the Internal
Model to assess balance sheet impacts under numerous scenarios within practical
timeframes.

Together, the individual risk and dependency modules form the core of the Monte-Carlo
engine. This engine generates hundreds of thousands of simulations of potential outcomes over
the forthcoming year.

The asset and liability valuation module then translates these scenarios into NAV impacts
(NAV or profit and loss PL), that can then be used to calculate the 99.5" percentile VaR. These
asset and liability valuation models (typically polynomials-based proxy models) are then used to
evaluate the balance sheet in each of the simulated scenarios.

Polynomial proxy models are frequently employed due to their capacity to significantly
accelerate balance sheet evaluations compared to the more computationally intensive cash flow
models, while maintaining simplicity. These models can be adeptly calibrated to approximate the
valuation of any asset or liability, or even the NAV of portfolios, directly. The calibration of
polynomial proxy models is a sophisticated, multi-stage endeavour, involving the adjustment of
both the structural components (such as order and cross-terms) and the coefficients of the
polynomial terms. While a detailed discussion of the calibration process is beyond the scope of this
paper, it is pertinent to acknowledge that the foundational motivation for employing polynomials
in proxy modelling is rooted in the Weierstrass approximation theorem (Rudin, 1976). This
theorem asserts that any continuous function defined on a closed interval can be uniformly
approximated as closely as desired by a polynomial function. This principle underpins the
theoretical justification for the use of polynomial models in financial mathematics and
computational finance.

The above structure lends itself nicely also to a quantum implementation, which is discussed in
Section 3.

3. Quantum Computing

Quantum computing represents a paradigm shift in computational technology, diverging
fundamentally from the classical computing frameworks that form the backbone of our digital
world. Although the physical realisations of quantum computers differ among providers, it is
essential to explore the distinctions between quantum and classical computing from a conceptual
perspective, focusing on the unique methods of information encoding and manipulation.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

4 M. A. Amjad

Classical computing relies on binary bits as the basic unit of data, which can exist in one of two
states: 0 or 1. This binary system underpins all classical computation, enabling the processing and
storage of vast amounts of data. In contrast, quantum computing introduces the concept of the
quantum bit, or qubit, which leverages principles of quantum mechanics to exist in multiple states
simultaneously through a phenomenon known as superposition. This ability allows a qubit to
represent a 0, a 1, or any combination (quantum superposition) of these states, offering a new
dimension of computational depth. We can visualise this by imagining with classical computing,
elementary unit of information (bit) can only be the north or the south pole of the Earth, whereas
with quantum computing, the elementary units (qubits) can represent a position anywhere on the
surface, specifiable with longitude and latitude coordinates.

Apart from the ‘information capacity’ of quantum bits (qubits), quantum computers can exploit
quantum phenomena such as interference and entanglement. When qubits become entangled, the
state of one qubit instantly influences the state of another, no matter the distance separating them.
Similarly, quantum interference allows computations to amplify correct paths to a solution while
cancelling out incorrect ones. These properties enable quantum systems to evolve their states at
unprecedented speeds, by exploiting parallelism that is not possible in classical systems.

However, the current NISQ era of quantum computing is characterised by quantum computers
that are powerful yet imperfect. These machines are prone to errors due to quantum noise and
decoherence, limiting their immediate practical applications. Despite these challenges, ongoing
advancements in quantum error correction and algorithm development continue to push the
boundaries of what is computationally feasible.

In summary, the key differences between quantum and classical computing stem from the
fundamental principles of quantum mechanics that quantum computers exploit: superposition,
entanglement, and interference. These principles enable quantum computers to process
information in ways that classical computers cannot, offering the potential for significant
breakthroughs in various fields, including cryptography, materials science, and complex system
simulation. As the technology matures and becomes more accessible, it is anticipated that
quantum computing will complement classical computing, tackling problems that are currently
beyond reach.

3.1. Gate based Model of Quantum Computation

The gate-based model of quantum computation (Nielsen and Chuang, 2010) is the most widely
recognised and developed model for quantum computing. It is analogous to the classical model of
computation using logic gates, but with quantum gates operating on quantum bits (qubits) instead
of classical bits:

 Qubits: The basic unit of information is the qubit, which can be in a state of 0, 1, or any
quantum superposition of these states. Multiple qubits can also be entangled, a phenomenon
where the state of one qubit can depend on the state of another, no matter the distance
between them.

+ Quantum gates: These are the building blocks of quantum algorithms, analogous to classical
logic gates. However, quantum gates manipulate qubit states using operations like
superposition and entanglement. The operations are reversible, and each gate represents a
unitary transformation.

o Quantum circuits: Quantum algorithms are constructed as quantum circuits, which are
sequences of gate operations that evolve the state of qubits to perform computations.

o Measurement: After the gates are applied, the qubits are measured, collapsing their
superposition states into definite classical states (0 or 1), providing the output of the
computation.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 5

This model is powerful because it can theoretically execute any quantum (or classical)
algorithm, making it a universal model for computation.

If a gate-based quantum computer is the quantum analogue for a digital computer, then
quantum annealers are analogous to analogue classical computers (such as a differential analyser
or a slide rule).

3.1.1. Quantum annealing

Physical process: Quantum annealing is inspired by the physical process of annealing in
metallurgy where materials are heated and then slowly cooled to remove defects. It uses quantum
fluctuations instead of thermal fluctuations.

Specialised problem-solving: It’s specifically designed to solve optimisation problems by
finding the lowest energy state of a system, which corresponds to the optimal solution of the
problem.

Adiabatic quantum computing: Adiabatic computing is a subset of quantum computing,
which is based on the principle that a quantum system remains in its ground state if the
Hamiltonian that describes it changes slowly enough. In quantum mechanics the Hamiltonian is
an operator corresponding to the total energy of the system, including kinetic and potential
energies. For quantum computing the Hamiltonian governs the time evolution of the qubits. For
example, quantum computers like those developed by D-Wave Systems use quantum annealing
based on Hamiltonian dynamics.

Not universal: While powerful for optimisation, quantum annealing isn’t known to be
universal for quantum computation and is tailored to specific types of problems rather than
general purpose computation.

3.1.2. Contrast between gate-based and quantum annealing

Universality: Gate-based quantum computing is a universal model capable of performing any
computational task that quantum mechanics allows, while quantum annealing is specialised for
optimisation problems.

Algorithms: The types of algorithms that each can run differ significantly. Gate-based
quantum computing can implement any algorithm designed for quantum computers, while
quantum annealing is limited to those that can be mapped to an optimisation problem.

Hardware implementation: Quantum annealing is typically implemented in quantum
annealers like D-Wave systems, which are designed to solve optimisation problems. In contrast,
gate-based quantum computers require a set of universal quantum gates and typically aim to be
more general-purpose.

Error correction: Gate-based models have developed error correction protocols to deal with
the fragility of quantum states, which is crucial for their scalability. Quantum annealing also deals
with noise and errors but in a different manner, often leveraging the robustness of the ground state
search process itself.

In summary, the gate-based model is a general-purpose approach to quantum computing,
analogous to modern digital computers, and capable of running a wide range of algorithms,
including those not yet imagined. Quantum annealing, while potentially powerful for certain
applications, is more specialised and does not provide a universal computational model.

3.2. Quantum versus Classical Bits

Classical computers operate using bits as the basic unit of information, which can exist in one of
two states: 0 or 1. The processing of information is deterministic, meaning the output of
computation is determined exactly, given the input and the operation performed. Classical

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

6 M. A. Amjad

computing relies on logical operations, or gates (such as AND, OR, and NOT), which manipulate
bits to perform calculations and process data.

Quantum computers, on the other hand, use quantum bits or qubits as their fundamental unit
of information. Unlike classical bits, qubits can exist in a state of superposition, allowing them to
represent both 0 and 1 simultaneously (Figure 1 below). This capability, along with
entanglement - a phenomenon where the state of one qubit can depend on the state of
another, no matter the distance between them - enables quantum computers to perform a vast
number of calculations at once. Quantum computation is probabilistic rather than deterministic,
with the outcome of calculations being a probability distribution over all possible states. This
means that given the input and the operations performed, the output is a probability distribution,
rather than an exact value.

Classical Computing Quantum Computing

With quantum computing information can be encoded as

Classical computing involves information being encoded in . being on any point on the sphere’s surface.
binary form 0 (north pole) or 1(south pole).

Quantum computing gives us access to a wider repertoire of
The logical operations available for classical computing all logical operations, with a promise of solving some problems
operate on Boolean variables (0 or 1) in exponentially fewer steps.

. . . . Quantum computers operate on principles of quantum
Because information can fmly be encod‘ed I the. Osand 1s, it mechanics (super-position, entanglement and interference)
takes a large number of bits to encode information and can solve certain types of problems exponentially faster
than classical computers.

Figure 1. Difference between classical bits and quantum bits.

3.3. Quantum versus Classical Gates

Classical gates: In classical computing, gates are simple and deterministic logic circuits that
process two states, 0 and 1. These gates are the building blocks of more complex circuits that
execute algorithms and perform computational tasks. Each gate type performs a specific logical
operation and combining them in various sequences can in theory solve any computable problem.

Quantum gates: Quantum gates manipulate qubits through operations that reflect the
principles of quantum mechanics. Unlike their classical counterparts, quantum gates can exploit
superposition and entanglement, enabling a single operation to perform complex transformations
on an exponential number of states simultaneously. Quantum gates are represented
mathematically by unitary matrices, ensuring that all operations are reversible — a stark contrast
to some classical operations like the AND gate, which cannot uniquely determine inputs from the
output. This reversibility is crucial for preserving information in quantum algorithms.

Quantum gates can perform all operations that classical gates do and more, but they are not
directly analogous to classical gates. Instead, they are representations of unitary operations that
can be applied to qubits. They enable complex transformations that are crucial for quantum
algorithms. Classical gates, on the other hand, are typically irreversible (except for the NOT gate)
and manipulate bits deterministically based on Boolean logic.

Classical gates deal with definite states, adhering strictly to binary logic. In contrast, Quantum
gates, such as the Hadamard gate, create superpositions of qubits, while others, like the CNOT
gate, entangle qubits, allowing quantum algorithms to solve certain problems more efficiently than

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 7

classical algorithms can. The difference in gate functionality underpins the quantum advantage in
specific computational tasks, offering exponential or quadratic speedups in some cases (Tables 1

and 2).

Table 1. Types of quantum gates

Quantum gates
(Examples)

Description

Hadamard (H)

Pauli-X (Quantum
NOT)

Pauli-y

Pauli-Z

CNOT
Toffoli (CCNOT)

SWAP

S (Phase Gate)
T (n/8 Gate)
Phase (¢ Gate)
SQRT(NOT)

Controlled (U)

Creates a superposition of |[0> and |1>

Flips the state of a qubit, analogous to a classical NOT but with quantum properties.

Performs a rotation around the Y-axis on the Bloch sphere, also applying a complex phase.

Introduces a phase flip, leaving probabilities of finding the qubit in |0> and |1>
unchanged.

Conditional NOT, flips the target qubit only if the control qubit is in the state [1>.

Acts as a controlled-controlled NOT, similar to the CNOT gate, but there are two control
qubits.

Swaps the quantum states of two qubits.
Adds a phase of n/2 to the qubit.

Adds a phase of n/4 to the qubit.
Applies a phase shift of ¢ to the qubit.

A unique quantum operation that represents the square root of a NOT gate, something
without a classical analogue.

Applies a unitary operation U to the target qubit, contingent on the state of the control

qubit.
Table 2. Classical gates
Classical gates
(Examples) Description
NOT Inverts the bit value: 0 becomes 1, and 1 becomes 0.
AND Outputs 1 if both inputs are 1, otherwise 0.
OR Outputs 1 if at least one input is 1.
XOR Outputs 1 if the inputs are different, otherwise 0.
NAND Outputs 0 only if both inputs are 1, otherwise 1 (inverse of AND).
NOR Outputs 1 only if all inputs are 0, otherwise 0 (inverse of OR).
XNOR Outputs 1 if the inputs are the same, otherwise 0 (inverse of XOR).
Multiplexer Directs one of several input signals to a single output line based on control signals.

Demultiplexer

Encoder

Decoder

Shift

Takes a single input and channels it to one of several output lines based on control signals.

Converts information from one format or code to another, typically from simple to more
complex formats.

Reverses the encoding process, transforming complex coded signals back to their original form.

Moves all bits in a binary number to the left or the right, filling in the new space with zeros.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

8 M. A. Amjad

3.4. An Actuarial Example

Given the main application being explored in this paper is the calculation of the SCR for an
insurance firm, an insurance-inspired example is useful. Figure 2 shows the probabilities of ‘death’
at different ages for a new-born. Such tables are typically used for various actuarial calculations,
such as calculating the price of a life insurance policy, or an annuity.

AMCO00

0.0450000000
0.0400000000
0.0350000000
0.0300000000
0.0250000000
0.0200000000
0.0150000000
0.0100000000
0.0050000000
0.0000000000

Dx

72
77

17
22
27
32
37
42
47
52
57
62
67
82
87
92
97
102
107
112
117

Figure 2. An actuarial ‘life’ table.

To illustrate the difference between the power of quantum computers versus classical
computers, let us consider how many qubits(bits) are required to encode the information in the
above table.

There are approximately 120 ages plotted on the chart, which would require 120 x 64 = 7680
bits, if the probabilities are encoded in double-precision.

By contrast, the above probability distribution can be captured using just 7 logical qubits
(Figure 3 below).

qubit 0 qubit 1 qubit 2 qubit 3 qubit 4 qubit 5 qubit &
10 0] 10} 10) 10 10} 10}

" Sy " iz £ ’ _i___"'_':/y [‘:'.I:_'_Z/y l ‘/’y .’“'_:_‘_;xy

- - , » x ¥ >
1y 1) Ty 11y 1y Ui Ly

Figure 3. Actuarial ‘life’ table encoded in 7 qubits.

The reason this works is that the 7 qubits span 27 = 128 basis states, with each basis state
having a probability attached to it. To encode a life table into 7 qubits, we just need to create a
quantum circuit such that the probability of death in any particular age (as observed at birth)
corresponds to the probability of finding the 7 qubits in a particular basis state. Note that the last 3

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 9

qubits (q4,95 and q6) are entangled, which means that their state cannot be decomposed in to
states of individual qubits. Written in long form the quantum state can be written as:

|\IJ > = 610000000|0000000 > + 610000001|0000000 > + 610000010|0000010 > +
+ a1111110|1111110 > + “1111111'1111111 >

The basis states |[0000000>, [0000001> [1111110> and [1111111> are then just
binary representations of age (x last birthday) and the coefficients agpp0000> @0000001> - -+ - - - s
A11111100 41111111 are just the probability amplitudes representing /Dx for each age. The reader is
reminded that in quantum terms the probability of finding the quantum system in a particular
state is given by squaring the probability amplitude.

Sampling from the above distribution using a classical computer requires further bits for
implementing the Monte-Carlo calcualtion, in the case of quantum computation, we just create
the state encoding the above distribution and execute the circuit several times, i.e. we get the
randomness for ‘free’.

4. Classical versus Quantum Value at Risk

In their seminal work, Egger et al. (2019) highlight the potential of the quantum amplitude
estimation (QAE) algorithm to achieve quadratic speedup in risk management applications, such
as the calculation of Expected Value, VaR, and Tail Value at Risk (TVaR). However, to fully
appreciate the quantum advantage that QAE may offer, it is instructive to first understand the
standard approach to SCR calculations for the Solvency II Internal Model (SII IM) for firms
without the use of quantum algorithms (Figure 4).

Individual risk
models: Equity,
rates, credit
spreads, etc.

Scenario

Proxy model Rank PnL:

evaluation: 1m ‘ 99 5™

P&L results percentile VaR

Generation:
1m scenarios

Dependency
model:
t- copula

Figure 4. Schematic of an SCR calculation.

The conventional process of SCR calculation is a layered and computationally intensive task
that involves several key components, which can be executed in parallel in a classical computing
environment. In contrast, a quantum approach to VaR must consider the sequential nature of
quantum operations and the necessity of maintaining quantum coherence throughout the
computation.

1. Individual risk models: These models quantify specific risks, such as equity, interest rates,
and credit spreads. They form the basis of the scenario generation process.

2. Dependency model: Typically employing a copula approach, this model captures the
correlations and dependencies between different risk factors.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

10 M. A. Amjad

3. Proxy models: These models simplify the relationship between risk factors and potential
financial losses, enabling rapid computation of P&L scenarios.

Together, the individual risk models and the dependency model comprise the scenario
generation engine. This engine outputs a multitude of possible scenarios, which are then evaluated
by proxy models to calculate the corresponding P&L.

Although the high-level calculation framework is consistent across both classical and quantum
computing platforms, the implementation diverges significantly due to the fundamental
differences in information processing.

In classical computing, the problem is not encoded as a singular system. This allows for
compartmentalisation, where scenario generation and proxy model evaluation can occur
independently.

In contrast, quantum computing inherently accommodates uncertainty and probabilistic
outcomes, reflective of the quantum state’s nature. However, to leverage this feature without
disrupting the system’s quantum state — specifically, to avoid collapsing the wave function - it is
imperative to process the entire calculation within one quantum system.

It is worth noting that gate-based quantum computers are theoretically capable of performing
any computation that a classical computer can, classifying them as universal computers.
Nonetheless, replicating classical computations on a quantum computer does not confer a
quantum advantage, in fact, due to the slower ‘clock speed’ of quantum computers relative to their
transistor-based classical counterparts, such an endeavour is bound to be much slower.

The quantum implementation requires a meticulous construction of the quantum state to
represent the risk models and their dependencies. The implementation of quantum proxy models,
while conceptually similar to classical models, necessitates a different approach to ensure the
fidelity of the quantum state. The sequential nature of quantum operations also introduces new
complexities in the computation process, as the entanglement must be carefully managed to
preserve the correlations represented by the dependency model.

In the ensuing sections, we delve into the intricacies of each component within the quantum
framework, juxtaposing them against their classical analogues, and discussing the quantum
advantage that may arise in the context of computational time, accuracy, and scalability. We will
also consider the overhead time required to ‘translate’ classical problems into quantum-ready
formats, a crucial factor in the overall efficiency of quantum computing for financial applications
that has not been sufficiently explored in prior discussions.

5. Quantum VaR

In this section, we explore a high-level framework for the adaptation of an Internal Model to
quantum computing architecture. Initially, the focus will exclude the specific intricacies of the
QAE algorithm. This is a strategic exclusion, as the Internal Model’s utility extends beyond merely
calculating the 99.5th percentile VaR; it is also utilised for generating the comprehensive
distribution of P&L. So, it is useful to know how a quantum computer can produce this
information with or without a potential quantum advantage.

The QAE algorithm becomes particularly pertinent when the primary interest is centred on the
SCR, which is a VaR calculation. This is especially the case when users intend to execute the
computation multiple times across a range of initial conditions to thoroughly understand the
sensitivity of their Capital Coverage Ratio (CCR).

Quantum circuits offer a compelling method for conceptualising quantum computations,
stripping away extraneous complexities and presenting the essence of quantum operations. For
the development and visualisation of quantum algorithms, we have employed the Qiskit
framework, a Python-based library renowned for its utility in quantum programming. The

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 11

implementations have been rigorously validated on both quantum simulators on a laptop
computer, and on those available through the IBM cloud platform (for larger problems).

The forthcoming discussions provide a deeper dive into the methodology, including how each
component of the Internal Model is re-formulated in the quantum context, alongside a critical
evaluation of the potential advantages and limitations inherent to quantum computing in this
domain.

5.1. High Level Quantum IM Calculation

Figure 5 illustrates a conceptual schematic for implementing an Internal Model on a quantum
computer, crucial for calculating the SCR in financial risk assessment.

10> nz Generative =
Model mm

Translation of scenarios:
|0>ns — Proxy Model Evaluation

0= np

Qubits
representing §
DR

The schematic showcases a three-stage quantum process culminating in a measurement
represented by ‘meter’ icons. Each stage corresponds to a crucial component of the Internal
Model, executed using a unique set of qubits and quantum operations.

The first stage, denoted by the ‘Generative Model’ box, is implemented using n, qubits. This
generative model is designed to capture both the marginal risk distributions of individual risk
factors and the complex dependencies between them. Encoding this information quantum
mechanically can be approached in various ways. One method is an ‘exact encoding,’ which aims
to represent the probability distribution of risk factors precisely. However, this method is
computationally demanding, requiring an exponential number of quantum gates relative to the
complexity of the risk model. Alternatively, one could employ a Quantum Circuit Born Machine
(QCBM) as set out by Jacquier et al. (2022), which is a quantum machine-learning approach that
utilises the natural probabilistic nature of quantum mechanics to model distributions. While a
QCBM may offer a more efficient encoding, it might not capture the risk distributions with the
same precision as exact encoding. Each method has its trade-offs, with the exact encoding offering
potentially greater accuracy at the cost of computational resources, while the QCBM provides a
more resource-efficient solution, possibly at the expense of some fidelity in the risk distribution
representation.

The subsequent box, labelled “Translation of scenarios: proxy model evaluation’, represents the
translation of the risk scenarios generated by the generative model into financial metrics, typically
P&L. This stage is where the quantum state resulting from the generative model is manipulated to
reflect the impact of each scenario on the financial position. The number of qubits used here, n,,
depends on the desired granularity of the scenario analysis and the complexity of the proxy model.

Finally, the qubits at the end of the schematic, n,, are designated for the output — representing
the calculated P&L from the evaluated scenarios. The ‘meter’ icons indicate the measurement
process, where the quantum information encoded in the qubits is translated back into classical
information, which in this context refers to the P&L values for each scenario.

Figure 5. Schematic for a quantum internal model.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

12 M. A. Amjad

The entire process, from the generative model through to the measurement of PL, is conducted
within the quantum domain to maintain coherence and leverage the computational advantages of
quantum mechanics. The aim is to utilise the inherent parallelism and probabilistic computations
of quantum systems to perform risk analysis more efficiently than classical computers. The
practical realisation of this quantum internal model depends heavily on advances in quantum
algorithms, error correction, and hardware capabilities. It is an area of active research, with the
potential to revolutionise the field of financial risk assessment.

5.2. Quantum Generative Model

Figure 6 depicts the scaling of the circuit depth as a function of the number of qubits in the risk
model. It illustrates that the circuit depth increases sharply, indicative of an exponential growth in
the number of quantum gates required as more qubits are added. This aligns with the principle
that an exact representation of the risk model necessitates a number of gates that grows
exponentially with the number of qubits - this is because each qubit adds a dimension to the state
space, and representing detailed distributions within this space becomes computationally heavier.

5000 { = circuit depth
22N
—— exp(n)
q000{ — M
3000
2000 -
1000 A
0_
1 2 3 4 5 6 7

number of qubits

Figure 6. Qubits versus gate counts.

Figure 7 provides an example of an exact implementation for two independent risk factors
encoded with 3 (q0, q1 and q2) and 2 (g3, g4) qubits, respectively.

R,: As illustrated in Figure 1, the state of a qubit can be represented by a position on a Bloch
Sphere. All qubits are initialised in state |0>, i.e. the North Pole. This means that upon
measurement we will find them in state |0> with 100% probability and state |[1> with 0%
probability. The R, gates then represent a rotation around the Y axis. The first R, gate on q0
represents a rotation of 90 degrees, which changes the state of the qubit from being on the North
Pole, to being on the Equator. This changes the probability of distribution of g0, as the equator
represents an equal super-position of states |[0> and |1>, i.e. 50% probability for each.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 13

X: The X gate is the quantum analogue to the classical NOT gate. It flips the state of the qubit. If
the qubit is in state |0>, the X gate changes its state to |1>. For qubits in superposition, it ‘flips’ the
probabilities of finding the qubit in the computational basis states (|0> and |1>). If the initial state
before applying the X gate, represents a 70% probability of finding qO0 in state |0> and 30%
probability of |1>, the X gate this to 30% for |0> and 70% for |1>. In bra-ket notation the states
before and after the X gate can be written as:

9o > = 0.70 > + /0.3]1 >
loy > =Xlg, > = 0.3]0 > + ,/0.7]1 >

We see that the X gate ‘flips’ the probability amplitudes associated with |0> and |1>.

ol - o
o —l+ 06— M0 =
%2 5 ont o o —
o

ga Ry Ry

116 0927

Figure 7. Exact implementation for 2 risks.

CNOT: The light blue circles with a plus sign indicate a controlled-NOT gate (CNOT). This
gate flips the target qubit (denoted by the plus sign) if the control qubit (the qubit with the solid
circle) is in the state |1). These are used to entangle qubits, creating correlations between them. For
example, if g0 is in an equal super position state, and g1 is initialised to |0>, applying the CNOT
gates conditioned on g0 will create a combined state such that we will find both q0 and g1 in the
same state. If we measure g0 and it is in state |0>, gI will be in the same state with 100%
probability. Similarly, if g0 is in state |1>, upon measurement gI will also be in state |1> with
100% probability. The ‘marginal’ probability of measuring q0 and g1 in state |0> will be 50%. The
reader might recognise that the ability of entanglement to introduce correlations between qubits
whilst leaving the marginal probabilities unchanged is similar to copula-based models.

In bra-ket notation the impact of the CNOT can be illustrated as

lgo > =190 > ® |ql > = (V050> + J0.5]1>)®[0>
lo; > = CNOT[0,1]l¢y > = 4/0.5[00 > + /05|11 >)

Note that due to the ‘entanglement’ the state |§;> cannot be factorised into separate states for
q0 and ql.

CRy: The purple boxes connected to solid circles represent the controlled rotations around the
y-axis. The action of this operation is more general compared to the CNOT (or CX) gate, which
rotates the state of the qubit by 180% depending on the state of the control. In the case of CRy
gates, we can specify how much we want to rotate the target qubit. Whilst the CNOT example
above introduced +/- 100% correlations between the two qubits, the CRy operation can introduce
arbitrary correlations depending on the choice of the rotation angle. A simple worked example is
shown below, as before we start with g0 in an equal super position and gI in state |0>.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

14 M. A. Amjad

oo > =190 > ® |q1 > = (J0.5|0 > 4+ 4/0.5]1 >)® |0 >
lo) > = CRy(/2)[0,1]|gy > = 4/0.5/00 > + /0.25[10 > + ,/0.25|11 >

In simple terms, if g0 in state |0> leave g1 unchanged in state |0>. Because g0 is in equal super
position, the probability g0 is in state |0> is 50%, and this is also the probability that both q0 and
ql are in state |0> represented as |00>. In the case q0 is in state |1>, apply a y-rotation on gI and
put it in an equal super position of |0> and |1>. This means that in the scenarios where g0 is in
state |1>, we will find g1 in state |0> and |1> with equal probability of 50%. Multiplying these
probabilities with 50% of finding g0 in state |1> we get the overall probabilities:

|00 > =0.5
|10 > =0.5%0.5=0.25
|11 > =0.5%0.5=0.25

Returning to the example in Figure 7, the set of quantum gates encodes the probability
distributions shown in Figure 8 (below) in an ‘exact’ way. Note that the exact implementation on 3
qubits (g0, g1 and q2) required 13 gates, this increases exponentially with the number of qubits.
This is not ideal as ‘decoherence’ can cause the quantum system to lose information with time, so
the longer the circuit the greater the chance that errors will creep in. The QCBM architecture
(Figure 9) represents a machine-learning based alternative to the exact implementation, which is
much more suited for NISQ devices. This is due to circuit depth that does not increase with the
number of qubits.

34871 35300 [TEH]
32000 - oo
w7
24000 1 3000
o
c
3
8 16000 - 2000 1833
8000 - 7338 B2 5208 1000 808
4913
e .
[=] ~ =] ~ (=] ~ k=] ~ 0 i~ =] ry
§ 8 g & & £ 5 7 § o ~ ~
Figure 8. Histograms for the encoded risk factors.
R o ol
ol - EEE . o Bk
ar: —— - < .1. HEHE- & —HE
qrs H v l H_- 1 “
ar —— o —HEHE- o— EE
s —r— - —— R & -

Figure 9. QCBM architecture.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 15

Figure 9 demonstrates the architecture of a QCBM, which is an alternative to ‘exact encoding’
and virtually has a fixed number of gates per qubit regardless of the number of total qubits. This
makes it much more scalable in the context of NISQ devices. This QCBM comprises layers of
parameterised rotation gates (Rx and Rz) and entangling operations (CX gates). The fixed
architecture suggests a more scalable approach compared to the exact implementation. The
rotation angles for each of the gates need to be ‘trained” and hence this is usually thought of as a
machine-learning based approach where the circuit ‘learns’ to approximate the probability
distributions of risk factors.

We observe that the exact implementation, while precise, is less scalable due to its exponential
increase in gate count. This poses a significant limitation for modelling complex risk factors as
quantum hardware is currently limited in terms of qubit count and gate fidelity. On the contrary,
the QCBM approach is a more scalable solution with a fixed number of gates per qubit, making it a
potentially more practical choice for larger-scale problems.

The exact implementation would require significant quantum resources to accurately capture
complex risk distributions and their dependencies, which could be a limiting factor for near-term
quantum devices. The QCBM, while it may not capture the full complexity of the risk
distributions, offers a trade-off between accuracy and feasibility on current quantum hardware.
The QCBM does, however, require ‘training’, which is a computational overhead. From a practical
standpoint, the overhead might be acceptable if it allows one to run the problem on near-term
quantum hardware by significantly reducing the ‘circuit depth’ of the problem.

Other approaches from the field of Quantum Machine-learning (QML) are also available, for
example, like QCBM, Quantum Generative Adversarial Networks (QGANS) can also be ‘trained’
to create a generative model, with a different architecture, and trade-offs.

5.3. Quantum Proxy Representation

The adoption of proxy models by insurance firms for SII IM purposes, typically in the form of
polynomials, is driven by their analytical tractability and computational expedience. However, the
intricacies of these models can vary substantially. The complexity is often a reflection of the
multifaceted nature of the insurer’s balance sheet, which can encompass a wide array of risk factors.

The proxy model we have chosen for illustration is far from trivial, encompassing a substantial
836 terms to model the NAV directly. Key features are summarised in Table 3:

Table 3. Summary of NAV polynomial complexity

of terms 836
of risks 31
Maximum # of risks for interactions 5
Maximum order of individual risk terms 4
Maximum order for interaction terms 3

This level of complexity stands in stark contrast to the simpler models seen in earlier research.
For instance, Egger et al. (2019) detail a two-term polynomial of first order to capture P&L. Their
model, denoted by F(x,y) =1-0.1349x—0.0186y, is not only simple but also presents a clear
monotonic decrease with respect to the computational basis states.

Building on their previous research, Egger et al. (2020) explore the modelling of a portfolio’s
loss due to credit defaults, where losses given default (LGD) are exclusively positive integers. This
scenario conveniently circumvents the need for any polynomial mappings across both negative
and positive ranges, thus simplifying the translation to quantum basis states defined over a purely
positive interval [0, 2"7!].

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

16 M. A. Amjad

In stark contrast, the polynomial proxy model we are working with necessitates a nuanced
quantum computational strategy. This is not just due to the sheer volume of terms but also due to
the multidimensional interactions and the high orders of individual risk terms. A more detailed
look at the quantum intricacies entailed is as follows:

(1) Each risk factor within the model is accorded a quantum representation using a set of 20
qubits. This is to ensure a granularity that approximates the continuous nature of risk
variables, thereby avoiding the pitfall of discretisation. Such granularity enables us to
model each risk variable over more than a million discrete states.

(2) The methodology for the quantum evaluation of such a proxy model requires us to
substitute mapped qubits for each risk factor, finely tune the coefficients for all polynomial
terms, and apply sophisticated quantum algorithms for ‘weighted addition’ to compute the
collective impact of each term.

Taking the RPI_PC1 risk factor as an exemplar, which signifies a parallel shift in the Retail
Price Index (RPI) curve, we encode this using 20 qubits, effectively capturing a normal
distribution within the bounds of a practical range. The process involves translating the normal
distribution onto a quantum scale, ranging from 0 to 1,048,575 in quantum basis states.

The interactions between multiple risk factors require entangling qubits, and further amplifies
the complexity. As highlighted, a simple interaction between two such factors could result in
hundreds of new terms, each necessitating quantum representation.

Each risk factor, encoded with 20 qubits, generates a series of states that must be multiplied
with proxy coefficients; the same is true for higher powers of the risk factors.

When it comes to interactions, the requirements multiply. A single interaction term between
two risk factors, each depicted by 20 qubits, translates to 400 potential interactions - each needing
quantum representation. When extrapolated to the full scale of the model with 31 risk factors the
number of the interactions become exceedingly complex.

For the model at hand, with 836 terms including multi-risk cross terms, the quantum
computational load is immense. The exact quantum representation would necessitate a very large
number of qubits, running into the tens of millions. Specifically, the affine map to go from a proxy
model expressed in terms of risk factors, to one expressed in terms of qubits, would require a
staggering 35,247,385 qubits. We should note that the qubit requirement depends on the exact
nature of the proxy model, and that capturing coefficients and the weighted sums requires further
qubits, but these additional qubits are marginal compared to the ones required for the affine map.

This quantum proxy model hence extends far beyond the models examined by previous research,
which were significantly less demanding in terms of quantum resources (handful of qubits).

5.3.1 Polynomial to Qubit representation for a simple case

The translation from a polynomial expression in classical risk factors to a quantum representation
in terms of qubits is an intricate process that benefits from examination through a simpler
example. Let’s consider the following polynomial function:

F(x,y) =2xx—x%y+3%)°

Here x and y are risk factors represented by 2 qubits each x: [q0,q1], y:[q2,93]

To further simplify, we assume that x and y are uniformly distributed within the interval [0, 3],
aligning precisely with the basis states producible by pairs of qubits. The relationship between the
qubits and the risk factors is given by:

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 17

x =4q0+ 2qg1
y=4q2+2q3

Substituting these relationships into the polynomial F yields:

F(q0,91,42,93) = 2% (90 + 2 * q1) — (q0 + 2 % q1) * (g2 + 2 * q3)
+3%(q2+2%g3)> =2%q0+4%ql —q0*q2—2%q0%q3
—2%ql*q2—4xql*q3+3%(q2>+4%q2*q3+4xq3?)

When dealing with qubits, we apply the principle that the square of a qubit state is the state
itself, simplifying gx? to gx. Thus, the polynomial in terms of qubits is:

F(q0,q1,q2,93) =2%q0 +4%ql —q0x g2 —2% q0 % q3 —2 % gl % q2 — 4 % ql % g3
+3%xq2+12%q2%xq3+12% g3
=2%q0+4xql+3%xq2+12*%xq3—q0*%q2—2%xq0*xq3 —2*ql *xq2
—4*xqlxq3+12%q2 *q3

This simplification leads us to a quantum expression for F that involves a total of 9 terms,
which is an increase from the original 3 terms in the classical polynomial. It is important to note
that each term in the qubit representation carries a coefficient that is derived from the original
polynomial function, and these coefficients are fundamentally linked to the number of qubits that
represent each risk factor.

To effectively translate classical risk factor distributions into their quantum analogue, the range
of each risk factor must be carefully considered to ensure proper qubit encoding. In the earlier
example, we benefitted from the uniform distribution of risk factors x and y, which coincided
neatly with the qubit basis states, allowing for a direct substitution. However, when dealing with
normally distributed risk factors with a mean of 0, the conversion demands a more nuanced
approach to accommodate the symmetric distribution around the mean.

For instance, if x and y are normally distributed within the range [-3,3], the mapping to qubit
representation requires an adjustment to reflect this range. The translation would involve scaling
and translating the qubits’ basis states to the continuous risk factor values. The mapping might
take the following form:

X =-3+4(q0+291)/(3—0) * (3—(-3))

Here, the factor (3—(—3))/(3—0) in the denominator serves to normalise the range of the qubit
representation, scaling it to the range of the risk factor. The numerator adjusts the qubits’ values
within the desired range. The constants 3 and 0 in the denominator represent the highest and
lowest values in the qubit basis states, corresponding to the binary values of q0 and q1 (where ‘00’
maps to 0 and ‘11’ maps to 3, for two qubits). The addition of -3 is necessary to shift the scaled
qubit values to centre around the mean of the normal distribution.

In practice, when both q0 and q1 are in the ‘0’ state, the mapping yields the lowest point of the
range, -3. Conversely, when both are in the ‘1" state, it corresponds to the highest point, 3. This
mapping ensures that the full spectrum of the normal distribution is accounted for within the
qubit representation.

This conversion process is crucial for aligning the quantum computational framework with the
probability distributions intrinsic to the risk factors. It exemplifies the detailed attention required
to maintain fidelity between the classical statistical models of risk and their quantum counterparts.
Such transformations are foundational to accurately encoding and processing financial models on
quantum platforms.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

18 M. A. Amjad

5.3.2. Capturing coefficients
The task of calculating weighted sums of qubit terms is essential for the evaluation of complex
financial models, such as the proxy models used in quantum risk analysis. In the quantum computing
framework, particularly with frameworks such as Qiskit, this operation is facilitated by algorithms like
the Weighted Adder. However, due to the nature of this method, which is designed to handle positive
integers, the representation and handling of qubit coefficients require special attention.

Handling real coefficients with weighted adder: The Weighted Adder algorithm operates
with integers, presenting a challenge when working with real-numbered coefficients, which are
common in financial models. To reconcile this:

1. Scaling to integers: By scaling each coefficient by a factor of 10", where 7 is chosen so that
all the coefficients are transformed into integers, we can preserve the precision of the
coefficients. For instance, if we have coefficients accurate to 16 decimal places, a scaling
factor of 10! will convert all coefficients to integers without loss of precision. This method is
advantageous because it is straightforward and maintains the granularity required for
accurate financial modelling.

2. Decimal encoding: Alternatively, coefficients could be encoded as decimals within the
quantum computing framework.

The scaling approach is preferred due to its simplicity and reliability, allowing for high
precision while ensuring compatibility with the Weighted Adder’s requirements.

Managing positive and negative weights: Since the Weighted Adder is designed for positive
weights, the calculation needs to be divided into distinct operations to handle positive and
negative weights separately, combining them at the end:

1. Sum of positive weights: Aggregate all qubit terms with positive coefficients, applying the
Weighted Adder to sum these values.

2. Sum of negative weights: Separately, sum all qubit terms associated with negative coefficients.
This involves negating the coefficients temporarily to utilise the Weighted Adder.

3. Combination of sums: Finally, combine the results from the positive and negative sums. This
can be achieved using Two’s complement (see Section 5.4.4), which is a mathematical operation
on binary numbers that effectively handles subtraction of binary numbers as an addition.

Figure 10 illustrates a high-level schematic of how weighted addition is carried out in the gate
based quantum computing framework. Our implementation relies on the IBM Qiskit framework
and represents an important part of how polynomials are evaluated on a quantum computer. For
example, if a risk factor x is uniformly distribution over the range [0,7], then a simple function
y = 2*x = 2* (q0+ 2ql +4q2) can be evaluated using weights (2,4,8) for qubits (q0, q1, q2).
Similarly, more complex functions can also be evaluated by choosing appropriate weights. In the
Qiskit implementation statey, state; and so on represent the input qubits, whereas the sum is
represented by the sum qubits sum,, sum; and so on. While the Weighted Adder method
introduces additional qubits to hold the output, the number required is relatively small compared
to the large-scale multi-qubit interactions represented by the c35m qubits. However, it is crucial to
allocate sufficient qubits to store the interim and final results of the weighted additions, especially
when dealing with high-precision calculations as necessitated by complex financial models.

The implementation of these steps must be carefully designed to ensure that the quantum
circuit can handle the computational load and that the encoded polynomial is accurately reflected
in the sum qubits. This entails allowing sufficient qubits to hold the outcome of the weighted sum,
for example the circuit’s design allows for the computation of the maximum possible weighted
sum, achieved when all contributing qubits are in the state |1). This maximum sum can be
mathematically expressed as:

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 19

state_0: € ; state_0@ * weights[@]
state_1: 41 L + state_1 * weights[1]
state_2: 42 L + state_2 * weights[2]
state_3: 43 L) o state_3 * weights[3]
sum_@: 44 ;
Adder |
sum_1: 45 r = sum_©@ * 270 + sum_1 * 271 + sum_2 x 2A2
sum_2: 46 ;
carry_©O: 47 ;
carry_1: 48 ;
control_@: 49 ;

Figure 10. Weighted adder schematic.
Source: Weighted Adder | IBM Quantum Documentation.

S=1+ {logz (Z‘UT:;)’ Aj)J

Here, the floor function represents rounding down to the nearest whole number, and }j is the
weight assigned to the j qubit. It should be noted that the additional qubits required to handle the
‘weighted sum’ are marginal compared to the c35m qubits for the handling of the multi-qubit
interactions in our quantum polynomial construction.

As set out, as the Weighted Adder implementation in Qiskit does not permit negative weights,
the positive and negative weights need to be operated on separately and summed together at a later
stage. This summation can be carried out by converting both the positive and the negative sums in
the respective sum registers to a Two’s complement format. The calculation of a Two’s
complement is explained in Section 5.3.3.1.

5.3.3. Calculating net asset value

The Weighted Adder circuit shown in Figure 10 is utilised to calculate the quantum weighted sum.
The sum qubits represent the additional qubits required to hold the output of weighted sum.
While we do not know what the weighted sum will be we can calculate the additional qubits
required precisely. Following the computation of weighted additions, it becomes necessary to
amalgamate the two sum registers — one for the weighted sum derived from positive weights and
another from negative weights.

5.3.3.1. Two’s complement. Up to this point, both positive and negative sums are represented by
positive values due to Weighted Adder implementation in Qiskit not permitting negative weights,
which makes a direct addition not feasible. To circumvent this, each is converted into the ‘two’s
complement’ format, enabling their subsequent combination.

Two’s complement is a mathematical operation and binary encoding scheme for representing
both positive and negative integers in binary number systems. It’s the most common method of
representing signed integers on computers.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

20 M. A. Amjad

For positive numbers the two’s complement representation is the same as the standard binary
representation. For negative numbers, we start with the binary representation of its absolute value,
flip all the bits and add 1 to the least significant bit.

For example, to represent -5 in a two’s complement system with at least three bits:

o Start with the binary representation of 5, which is 101.

o Invert the bits to get the one’s complement: 010.

o Add 1 to the Least Significant Bit (LSB) which is the right-most bit to get the two’s
complement: 011, so -5 is represented as 1011 in a four-bit system. Notice the extra 1 that
gets appended as the Most Significant Bit (MSB) for a negative number in this format, its
positive counterpart would be 0101.

Two’s complement greatly simplifies the process of binary subtraction, as it allows for the use of
the same addition circuits as addition. For example, subtracting a number is equivalent to adding
its two’s complement, adding 5 and -5 would yield 1011 + 0101 = 0000, as expected.

5.3.3.2. Ripple carry addition. For the amalgamation of these two registers (post two’s complement),
the CDKM ripple carry adder can be utilised effectively. This adder requires that both ‘sum
registers’ match in size, necessitating the expansion of the smaller register with additional qubits to
ensure compatibility. Other schemes for addition are also available, but the CDKM scheme was
chosen because it can carry out the summation with minimum extra qubits.

In Figure 11, the CDKM Ripple Carry Adder’s configuration is illustrated, outlining its
fundamental structure. Here, ciny symbolises the initial carry-in qubit, a, a;, a, the qubits of the
first register, and by, b;, b, those of the second register. The carry-out from the addition is denoted
by cout,. This method can be used in the Qiskit framework ‘out of box’, so a detailed explanation is
not provided here. Interested readers are referred to Cuccaro et al. (2004).

The resultant sum through this addition process is effectively captured by four qubits,
represented as |couty, by, b;, by>. The reader is reminded that the registers to be summed need to
be of the same size. For example, if the sum over the negative register can be captured by 5 qubits,
and the positive weights by 10 qubits (both post two’s complement), extra qubits will need to be
added to the negative register before carrying out ripple carry addition.

cin_©: 4 2 F

a_o0: 4 ’- ¢ ’- -
‘I 1 :|

a_1: {4 MAI H 2 —2 He H umA |

UMA '—| B

T
I

e

|
T

] Iy |
b_@: -:_—— H ! —— 1
—

I
cout_0: 1 x
L

Figure 11. Schematic of CDKM ripple carry adder.
Source: CDKMRippleCarryAdder | IBM Quantum Documentation.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 21

5.3.4. Calculating VaR

Upon completion of the preparatory steps, executing the quantum circuit multiple times serves a
purpose similar to that of running simulations in a Monte Carlo method. However, a distinct
advantage in the quantum scenario is the generation of truly random samples, as opposed to the
pseudo-random nature of samples in classical computing. The exact number of iterations or
“shots” required for the circuit will vary depending on the specific convergence needs of the SCR
calculation. Insurance and financial institutions often rely on a range of 500,000 to 1,000,000
simulations to ensure convergence of their SCR estimates.

The result of this quantum sampling process yields a distribution reflecting the P&L of a
company. This distribution is the outcome of the encoded proxy model - a polynomial function
mapping the myriad risk variables (such as interest rates, inflation rates, property values, equity
prices, and longevity risks) directly to the company’s value.

Importantly, the reader is reminded that the output states from the quantum circuit are in a
two’s complement format. This encoding was chosen to facilitate the handling of both positive and
negative values within the binary system. To derive meaningful NAV results from each scenario,
these two’s complement-encoded outputs must be decoded back into their respective integer
values, which can then be converted to a loss amount. This decoding step is crucial for translating
the binary data produced by the quantum circuit into meaningful financial outcomes.

5.4. VaR using Quantum Amplitude Estimation

Having explored the direct computation of VaR with quantum computing, we now focus on
quantum algorithms that confer a quantum advantage, particularly through QAE.

QAE, as delineated in the foundational work by Egger et al. (2019), is pivotal for achieving
nearly quadratic acceleration for VaR applications. It leverages an operator A to initiate a
superposition across n+1 qubits such that it results in the final qubit having a probability a of
being observed in state |1>. The overall structure of the problem can be written down as follows:

A|0> n+l = \/(l—a)|\l-’0 > nio > +\/(a)|\ljl > n|1 >

The operator A acts on n+1 qubits initialised to |0> and creates a superposition, such that the
last qubit will upon measurement find itself in state |1> with probability a.

The goal is to estimate the VaR of a portfolio using QAE. To do this, we need to construct a
quantum operator A that can encode the portfolio loss into a quantum state.

A takes n+1 qubits in the state |0> and creates a superposition of states, where the last qubit
depends on the value of the portfolio loss. If the portfolio loss is greater than a certain threshold,
the last qubit will be in the state |1> with probability a. Otherwise, it will be in the state |0>. The
threshold is chosen to match the desired confidence level for the VaR calculation.

For example, for the SCR, we want a threshold corresponding to a = 0.5%, which means that
the last qubit will be in the state [1> with 0.5% probability if the portfolio loss exceeds the SCR.

By implementing a bisection search, we can find the VaR in at most m steps, where m
represents the number of qubits required to encode the P&L (the number of qubits in sum register
for CDKM Ripple Carry Addition).

To summarise, our strategy to utilise QAE for SCR calculation is as follows:

(1) Encode the individual risk models and the dependency structure. This is done such that

each of the individual risks is distributed over its computational basis states |0> to [2"-1>
where n; represents the number of qubits encoding risk i.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

22 M. A. Amjad

(2) The proxy model capturing the sensitivity of the Own Funds (or P&L) will be
‘reformulated’ such that it aligns to the qubit basis states for each of the risks, and
interactions.

(3) Implement a ‘comparator’ such that it will flip the state of the last qubit to |1> if the loss
exceeds a particular threshold.

(4) Estimate the probability a of the measurement qubit finding itself in state |1>

(5) Carry out a bisection search until a equals the desired confidence level for the VaR calculation.

5.4.1. But where is the quantum advantage?

We started by setting out that there is a quadratic speedup when using QAE, but have ended up
specifying an algorithm that requires repeating the calculation up to m times. Whilst superficially
this does not look more efficient, it is theoretically more efficient than calculating the entire P&L
distribution directly, as set out below:

(1) Measuring just the indicator versus measuring all qubits representing the P&L.

(2) Fewer ‘shots’ required to measure the probability associated with a particular threshold.
For example, if we are interested in the 99.5™ percentile (1 in 200), running 1000 shots
might be sufficient to estimate the p-value of a particular threshold accurately. We know
through [2] that the standard error using QAE is 1/n, as opposed to 1/,/n. So, in theory
this method requires up to m*1000 shots, which is considerably less than the 1,000,000
typically used, even for m = 60.

5.4.2. Building a comparator

The job of the comparator is to flip the state of the measurement qubit, if the P&L exceeds a
specified threshold. As the P&L output will be encoded in a binary format, we can utilise standard
binary arithmetic techniques to accomplish this task.

Once again, the two’s complement format is used to achieve the required transformation. To
recap, two’s complement format allows us to add positive and negative numbers without having to
worry about signs. In the context of building a comparator, a carry out is required if the P&L
exceeds a certain pre-specified threshold.

This can be achieved by:

(1) Encoding the two’s complement of the threshold
(2) Adding this to the PL
(3) If the P&L exceeds the threshold, there will be a carry out on the measurement qubit.

Figure 12 shows the implementation of a comparator for the quantum generative risk models
shown in Figure 7. Here the P&L of the system is simply the computational basis state obtained by
measuring the qubits |qsq4q3q,q,> converted into an integer and can be calculated as q1+2q2+
4q3+8q4+16q5 and would span the range [0,31].

The two’s complement of the threshold is encoded in qubits |q;0999sq7qs>, which is 01111(in
the example), which means that the threshold is the positive number 10001, i.e. 17. The qubit q,
and q;; represent the carry in and carry out qubits respectively. This implementation will produce
a carry out in qubit q,; if and only if the state |q5q4q3q.q;> exceeds 17, i.e. when g5 and at least
one other qubit is in state |1>.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 23

Qs
-
o
-
o

qio

qn

Figure 12. Stylised example of a comparator circuit.

5.4.3. Encoding the threshold

To recap, QAE offers a sophisticated means to accurately estimate the probability that a
measurement qubit will be found in the state |1>. For VaR calculations, we aim to determine the
P&L such that, when it is used as a threshold, the probability of observing the ‘measurement qubit’
in state [1> is equal to the confidence level for the VaR.

In this process, we construct a quantum operator, referred to as A, that is designed to flip the
state of the measurement qubit to |1> only when the simulated financial loss surpasses this
threshold. Importantly, the actual value of the loss is not directly observed; instead, its effect is
inferred through the qubit’s state.

A notable challenge arises from the encoding of P&L values using the two’s complement
system. This binary representation allows for the encoding of both positive and negative values but
results in a non-monotonic sequence of numbers, because negative numbers have their most
significant bit (MSB) set to 1, contrasting with 0 for positive numbers. This discrepancy disrupts
the monotonic progression required for the comparator to function accurately, as demonstrated in
Table 4.

When setting a threshold, such as 2, the binary representation of this value and those above it
should ideally result in the measurement qubit flipping to |1>. However, due to the non-
monotonic ordering of two’s complement values, both negative and positive P&L values around
this threshold would incorrectly trigger the flip. Specifically, P&L values from -5 to -1, alongside 2,
3, 4 and 5, would all cause the qubit to flip, despite our intention to target only positive values
exceeding the threshold.

To resolve this, we introduce an innovative approach by adding an extra bit ahead of the MSB
to explicitly denote the sign of the number. This adjustment ensures a monotonically increasing
sequence of two’s complement representations, directly aligning with the integers they represent.
Consequently, the binary sequence now facilitates an accurate comparison, allowing the
comparator to precisely identify when the P&L exceeds the set threshold (Table 5).

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

24 M. A. Amjad

Table 4. Illustration of two’s complement

Integer Two’s complement
-5 1011
—4 1100
-3 1101
-2 . 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101

Table 5. Modified two’s complement

Integer Modified two’s complement
=5 01011
—4 01100
=3 01101
-2 01110
=il 01111
0 10000
1 10001
2 10010
3 10011
4 10100
5 10101

With this modification, the new threshold for the comparator is correctly set to the binary
equivalent of 2 (10010) in our modified notation, ensuring that the measurement qubit is flipped
to |1> only under the appropriate conditions.

Note that the state of the Most Significant Bit (MSB) depends on whether the P&L is positive or
negative. This does not require that we explicitly measure the qubits representing the PL, as
described in Section 5.4.4. Instead, we can use a controlled-Not gate to flip the state of the extra
qubit to |1> if the MSB is [0>, or keep the extra qubit at [0> otherwise.

5.4.4. How to two’s complement an ‘unobserved’ quantity
As mentioned above, the QAE based approach is different to the Monte Carlo based approach
where an explicit distribution of P&L is generated. In the QAE case, we ensure that all the risk

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 25

models, and their relationships to each other and the P&L are encoded in the quantum system,
and the quantum advantage arises from estimating the probability of finding a single qubit in state
|1> and carrying out a binomial search comparing it to the VaR threshold (e.g. 0.5% for SCR)
instead of measuring all the qubits that encode the P&L. Directly measuring the P&L would result
in a ‘collapse of the quantum state’ and the quantum calculation would collapse to its classical
counterpart. To preserve the structure of the problem in the quantum state, we circumvent the
need to directly measure the P&L for each simulation. We do this by appending a ‘comparator
circuit’ to our implementation which would flip the state of a ‘measurement qubit’ initialised to |
0> if the P&L exceeds a prespecified threshold, as illustrated in Figure 13.

0> 2 Generative
Model N
Translation of
scenarios:
[T P Proxy Model

Evaluation
Modified

Two's Comp

|0= np

Ripple
|0> np Carry
Addition

|0=1

Figure 13. Building the operator A for QAE.

Figure 13 illustrates how the operator A, in the context of QAE, is implemented. Notice that, in
contrast to Figure 5, there are three further circuits that are implemented: one for calculating the
MTC of the PL, one for the MTC of the Threshold and a Ripple Carry Addition Circuit that
compares the P&L to the Threshold and flips the state of the final qubit to |1> if the P&L
exceeds it.

Whilst we can run this circuit several times to calculate the probability of finding the last qubit
in state |1>, in practice the last qubit is not measured. QAE is used to estimate the probability of
finding this qubit in state |1>; this crucial step is what gives rise the quadratic speedup as opposed
to direct measurement, but it is instructive to show the calculation in this manner.

5.4.5. Quantum amplitude estimation (QAE)
Now that we have a strategy for implementing the operator A, let’s dive into the QAE algorithm
itself.

QAE leverages the quantum effect of ‘phase kickback’ and a mathematical operation called
Inverse Quantum Fourier Transform to efficiently estimate this probability g, that the ‘objective
qubit’ will find itself in state |1>. The accuracy of the estimate depends on the number of qubits
used for sampling the phase.

Figure 14 shows the schematic for the canonical QAE algorithm (Brassard et al., 2002). At a
high level, this algorithm is split into two components, measurement qubits (first register), and the
A operator (second register). To calculate the SCR, we implement an A operator that flips the state
of the final qubit to |1> (as per Figure 13), but instead of directly measuring the final qubit and
calculating the probability of finding it in state |1> empirically, QAE uses a quantum
phenomenon known as phase-kickback to achieve that more efficiently.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

26 M. A. Amjad

00 —»{H Y > [
The .
First ¢ |0) H FT' b — -
Register

10) H ? BN
The . \ -
Second [D)) A Q: Qz' - O? _
Register) > » B>

Figure 14. Canonical Quantum Amplitude Estimation. Source: The quantum circuit of the generalised quantum amplitude
estimation | Download Scientific Diagram (researchgate.net).

This algorithm has the following distinct components:

The A operator, which we have already covered.

The measurement register (first register in Figure 14), which is prepared in an equal
superposition. This moves the individual qubit states to the ‘equator’, allowing a phase to be
encoded at a later stage through phase kickback.

The controlled Q operators, which generate a phase kickback into the measurement register.
These operations encode the binary representation of the probability amplitude as phases in the
measurement register.

The inverse QFT, which makes the phase an observable quantity upon measurement.

Post-processing - the measured quantity will not be probability of the ‘objective qubit’ being in
state |1>, rather it will be the probability amplitude encoded as a phase into the First Register.
Therefore, the phase information needs to be decoded back into a probability.

The measurement outcome is related to probability via:

P(p,N) = sin(p/(2N) * 1/2)?

where ® is the observation in binary translated into an integer, and N is the number of qubits in
the first register.

Increasing the number of measurement qubits increases the granularity with which the phase
can be measured, which in turn increases the resolution of the probability grid for our VaR
calculation. However, given the above function is non-linear in ¢, we find the resolution of the
probability grid is much higher at the edges compared to the centre. We have shown this effect for
N = 8 qubits below (Table 6).

Note that we get sufficient resolution at the edges for a 99.5 percentile VaR calculation. If the
P&L function represents losses as a positive value, then the corresponding percentile will be 99.5%;
otherwise it will be 0.5%.

The reader might be intrigued as to why we have estimated the probability in such a
roundabout way, going through phases and trigonometric functions, rather than finding a way of
encoding a directly as a binary number that can be extracted upon measurement. The power of
QAE stems from its ability to leverage ‘interference patterns’, particularly in cases where the
probabilities are not known a priori and cannot be directly encoded.

Above, we have presented the canonical Amplitude Estimation algorithm, but due to the
repeated controlled-Q operations, it requires large circuits and is computationally expensive.
There are other faster variations available, such as Iterative Amplitude Estimation (Grinko et al.,
2019), Maximum Likelihood Amplitude Estimation (Suzuki et al., 2019), and Faster Amplitude
Estimation (Nakaji, 2020). These approaches are available in Qiskit via the AmplitudeEstimator
interface.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 27

Table 6. Mapping between measurement outcome and QAE probability

Binary Integer Probability (%) Difference (%)
00000000 0 0.0000

00000001 1 0.0038 0.0038
00000010 2 0.0151 0.0113
00000011 3 0.0339 0.0188
00000100 4 0.0602 0.0263
00000101 5 0.0941 0.0339
00000110 6 0.1355 0.0414
00000111 7 0.1844 0.0489
00001000 8 0.2408 0.0564
00001001 9 0.3047 0.0639
00001010 10 0.3760 0.0714
00001011 11 0.4549 0.0788
00001100 12 0.5412 0.0863
00001101 13 0.6349 0.0938
01111000 120 45.0991 0.6103
01111001 121 45.7101 0.6110
01111010 122 46.3218 0.6116
01111011 123 46.9340 0.6122
01111100 124 47.5466 0.6127
01111101 125 48.1596 0.6130
01111110 126 48.7729 0.6133
01111111 127 49.3864 0.6135
10000000 128 50.0000 0.6136
11110100 244 99.4588 0.0938
11110101 245 99.5451 0.0863
11110110 246 99.6240 0.0788
11110111 247 99.6953 0.0714
11111000 248 99.7592 0.0639
11111001 249 99.8156 0.0564
11111010 250 99.8645 0.0489
11111011 251 99.9059 0.0414
11111100 252 99.9398 0.0339
11111101 253 99.9661 0.0263
11111110 254 99.9849 0.0188
11111111 255 99.9962 0.0113

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

28 M. A. Amjad

5.4.6. Bringing it all together: binary search

Section 5.4.5 describes how the probability amplitude associated with finding the objective qubit
in state |1> is encoded as the phase in the First Register. There is a total of 2N basis states
corresponding to different probabilities/phases, which can be quite a large space to explore. With
binary search/bisection search, we can find the threshold, that results in a probability estimate in
line with the VaR confidence interval in at-most N steps.

The quantity we vary in each iteration of the bisection search will be the P&L Threshold. The
threshold that corresponds to the probability of 0.995 will be the SCR, i.e. loss that exceeds 99.5"
percentile of the loss distribution.

Whilst the standard bisection search algorithm assumes that the ends of the maximum and the
minimum values of the P&L are known a priori, this will not necessarily be the case for the SCR
calculations. We sample the P&L directly as in Section 5.3.4 but that will defeat the purpose of
using QAE. Even though we do not know the bounds of our P&L function, we do know that the
losses will be sorted, thanks to the adjusted two’s complement approach in Section 5.4.4.

Also, the SCR calculations from previous cycles provide reasonable guesses for the bounds. We
can use the following approach to establish updated bounds before initiating the bisection search.

1. Start with an initial guess for the bounds. This can be the maximum and minimum P&L

from a previous SCR calculation.

2. Check if the target is outside the guessed bounds. If the target is higher than the upper
bound, increase the upper bound exponentially (e.g. double it) and repeat the check. If the
target is less than the lower bound (in cases where the minimum is not known), decrease the
lower bound exponentially. We can check whether the target is inside or outside the bounds
by running the QAE algorithm with the threshold set as each of the bounds. If the [min,
max] produce probabilities [0.1,0.9] we know that the target value is outside bounds, as we
are interested in [0.005]; in this case we would exponentially decrease the lower bound.

. Repeat this process until the target value is within the guessed bounds.

4. Once suitable bounds are found, apply the bisection search within these bounds to find the

target value.

w

6. Quantum Advantage

Quantum advantage represents a crucial milestone in the evolution of quantum computing,
signifying the juncture at which a quantum computer outperforms classical computers at a specific
task, achieving results faster or more efficiently than any existing classical system would be able to
under practical conditions. This concept does not imply that quantum computers are universally
superior to classical computers; rather, it highlights their superior performance in handling certain
specialised tasks that are inherently complex for classical computing architectures.

Such tasks might include complex simulations of quantum mechanical systems, optimisation
problems in logistics and manufacturing, or certain types of cryptographic challenges that are
currently considered secure against classical computational attacks. The achievement of quantum
advantage suggests that for these select problems, quantum computing can offer transformative
solutions, unlocking new possibilities in fields ranging from materials science to cryptography.

It is important to distinguish between quantum advantage and quantum supremacy. Quantum
supremacy is achieved when a quantum computer can solve a problem that is practically
impossible for classical computers to solve within a reasonable timeframe, regardless of whether
the problem has practical application. Quantum advantage, on the other hand, stresses the
practical utility of quantum computing in solving real-world problems more efficiently than
classical systems, marking a pivotal step toward the widespread adoption and development of
quantum technology.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 29

In this paper, we have tackled the promise of quantum advantage for a specific problem,
namely the calculation of SCR for Internal Model firms in Europe/UK. The theoretical foundation
was laid out by Egger et al. (2019), where they proved that in theory a near-quadratic speedup is
possible. However, their analysis did not consider in any detail the differences in the clock speeds
of classical and quantum computers, just that a quantum computer could calculate VaR in fewer
steps. In this section we examine this claim in a bit more detail.

6.1. Why polynomials?

Egger et al. (2019) used polynomials to approximate the P&L of a portfolio for several reasons,
which are closely tied to the inherent strengths and operational paradigms of quantum computing,
as well as to the specific needs of financial risk analysis:

1. QAE: Quantum computing offers unique advantages in certain computational tasks, among
which is QAE. QAE can provide quadratic speedup for estimating the mean of a quantum
observable. However, QAE requires the input to be encoded in the amplitudes of a quantum
state. By approximating the P&L distribution of a portfolio with polynomials, it becomes feasible
to efficiently encode this information into quantum states, leveraging the quantum speedup
offered by QAE for risk analysis tasks like VaR and Conditional Value at Risk (CVaR).

2. Simplicity and efficiency: Polynomial functions are mathematically simple and
computationally efficient to evaluate, both on classical and quantum computers. This
simplicity aids in the practical implementation of the approximation within the circuit
design of a quantum algorithm. Moreover, the efficiency of polynomial evaluations means
that the resource requirements (in terms of qubits and quantum gates) are kept within
feasible limits, making the approach more accessible with current and near-term quantum
technology.

3. Flexibility in approximation: Polynomials can approximate a wide range of functions to a
desired degree of accuracy by adjusting the degree of the polynomial. This flexibility is
crucial in financial applications where the P&L distribution can take various forms
depending on the underlying assets and market conditions. By using polynomials, Egger
etal. (2019) ensured that their methodology could be adapted to different portfolios and risk
scenarios without requiring a complete redesign of the quantum algorithm.

4. Compatibility with quantum algorithms: Quantum computers are inherently probabilis-
tic, and many quantum algorithms naturally produce outcomes in terms of probability
amplitudes. The polynomial approximation of P&L fits well into this paradigm, as it allows
for a direct mapping between the financial metrics being estimated and the probabilistic
outcomes of quantum measurements.

5. Analytical differentiability: Polynomial functions are analytically differentiable, which is a
valuable property for optimisation and sensitivity analysis. In the context of quantum risk
analysis, this allows for the direct calculation of risk sensitivities and gradients, which are
essential for portfolio optimisation and risk management.

The use of polynomials in both quantum risk analysis and the calculations by insurance
companies with internal models is not entirely coincidental. Both applications leverage
polynomials for their beneficial mathematical and computational properties, although the
underlying motivations and contexts differ.

6.2. Clock Speeds and Coherence Times

In this section we briefly explore the difficulties associated with comparing the clock speeds of
classical computers, such as those with an Intel i9 processor, to quantum computers, like those

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

30 M. A. Amjad

used in the IBM Condor processor. One realises we are looking at fundamentally different
technologies with distinct operational principles, and a direct comparison is misguided. Let’s
outline the differences in the context of clock speeds and operational paradigms.
Classical computers (e.g., Intel i9)
 Clock speed: The clock speed of a classical processor, like the Intel 19, is a measure of its
operational frequency and is typically represented in gigahertz (GHz). This means billions of
cycles per second. For instance, an Intel Core i9 processor might have a base clock speed
ranging from 3.6 GHz to 5.3 GHz, depending on the specific model and generation. This
speed indicates how many instruction cycles the processor can perform in a second.
« Operational principle: Classical computers operate on binary information, processing bits
that are either Os or 1s. The clock speed directly influences how fast these bits can be
processed, with higher speeds indicating faster processing capabilities.

Quantum computers (e.g., IBM condor)

+ Clock speed: The concept of “clock speed” as it applies to classical computers doesn’t directly
translate to quantum computers. Quantum computers operate on qubits, which can
represent 0, 1, or any quantum superposition of these states. The performance of a quantum
computer is not dictated by clock speed but by the coherence time, error rates, and the
number of qubits. The IBM Condor processor, aiming to be one of the most advanced
quantum processors with a significant number of qubits, doesn’t have a “clock speed” in the
traditional sense.

« Operational principle: Quantum computers leverage the principles of quantum mechanics,
including superposition, entanglement, and interference, to perform calculations. The
efficiency and capability of a quantum computer are more about its ability to maintain the
quantum state of its qubits (coherence time), the quality of qubit interactions (gate fidelities),
and its capacity to scale up (number of qubits) without significant increases in error rates.

Key differences

« Measurement of performance: Classical computer performance is often gauged by clock
speed, among other factors like core count and cache size. In contrast, quantum computer
performance is measured by coherence time, error rates, qubit count, and the ability to
perform error correction.

o Operational paradigm: Classical processors process information in a binary format,
executing instructions one after another or in parallel across multiple cores. Quantum
processors perform operations on qubits that can exist in multiple states simultaneously,
allowing them to explore a vast computational space with fewer operations, but under
constraints of quantum coherence and error rates.

6.3. Quantum Disadvantage before Quantum Advantage

What disadvantages stem from trying to solve this problem using a quantum computer?

Whilst the approach set out by Egger et al. (2020) promises to calculate VaR in fewer steps (and
simulations) compared to its classical counterpart, this does not tell us whether calculating SCR using a
quantum computer will deliver any quantum advantage. A direct comparison between the clock
speeds is potentially misguided, so how do we assess if quantum computing confers an advantage?

A simple way to answer this is to consider whether one can speed up the calculation by
replacing classical computers with quantum computers for specific parts or the whole calculation.

Figure 15 shows the processes involved in the end-to-end calculation of the SCR for an internal
model firm. The dotted box shows the components of the calculation that we have identified for
quantum acceleration.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 31

Risk calibration

Proxy Model
calibration

models: Equity,
rates, credit

Individual risk

spreads, etc.

Scenario

Proxy model Rank PnL:

evaluation: 1m - 99,5t

P&L results percentile VaR

Generation:
1m scenarios

Dependency
model:
t- copula

Copula
calibration

Figure 15. End to end SCR calculation.

However, the above schematic is not representative of the end-to-end calculation when
utilising a quantum computer, as it will entail additional steps for making the dotted box
‘quantum ready’. Figure 16 (below) illustrates the process with quantum acceleration.

A comparative analysis of Figure 15 and Figure 16 reveals that the quantum-accelerated
approach involves a greater number of procedural steps than its classical counterpart. This
observation is pivotal when assessing the practical benefits of quantum advantage, necessitating a
careful evaluation of the complexities introduced by these additional steps in relation to the overall

speedup achieved.
Proxy Model
calibration

Affine Mapping
-risk factors to
qubits

Risk calibration

Generative
Model -
Quantum
Individual risk Sy
models: Equity,
rates, credit
spreads, etc.

Dependency A operator for a particular

model:
t- copula

threshold

Bisection
Copula Search
calibration

Figure 16. SCR calculation with quantum acceleration.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

32 M. A. Amjad

The complexity primarily emanates from two critical components:

1. Generative model

The calibration of individual risks and the copula within a quantum framework mandates

intricate processes. These can be approached through:

(a) Exact implementation: Necessitating a circuit depth that grows exponentially with the
number of qubits assigned to represent risk factors. For instance, with 31 risk factors,
each represented by 20 qubits, the circuit depth would approximate O(2%%°), rendering it
impractically deep for execution within reasonable timeframes. Moreover, Monte-Carlo
sampling fails to provide sufficient basis state diversity for accurate circuit initialisation.

(b) Quantum machine-learning (QML): We introduced a QML strategy known as QCBM
for encoding probability distributions into qubits at a predetermined circuit depth,
extendable to multivariate distributions. Nevertheless, when dealing with numerous risk
factors and their interdependencies, the model’s ‘training’ phase might extend
significantly, marking a notable consideration in terms of overhead.

(c) Quantum analogues to parametric distributions and copulas: Traditionally,
parametric distributions serve as efficient approximations for modelling underlying
processes or risks at an acceptable computational expense. Although these models never
perfectly match the data, they are invaluable for interpolation and extrapolation in the
absence of direct observational data. In the quantum context, one could streamline the
process by transitioning directly from data to quantum-efficient distributions,
bypassing traditional parametric fitting. This suggests a more direct method of
leveraging quantum computing for generative risk modelling, potentially reducing
complexity and enhancing efficiency.

2. Proxy model mapping

In Section 5.3.1, it is outlined that proxy models typically function by mapping the values of

risk variables directly to P&L. However, a direct application of these models is not feasible

due to the necessity of translating these mappings into a form compatible with qubits. This
translation process introduces significant overhead.

(a) Affine mapping from risk factors to qubits:

Affine mappings are essential for converting polynomial expressions of risk factors into
equivalent qubit representations. For instance, a risk factor x represented by three qubits,
|g29190), in a range [0,7], would be transformed into x=q0+2ql+4q2 via affine
mapping. This transformation process, however, is notably complex, with different
strategies presenting their own advantages and challenges:

o Computational graph construction or symbolic computing: While this method
allows for systematic substitutions within the polynomial, it is highly memory
intensive. Even at moderate problem scales, this approach can lead to significant
memory constraints.

o Numerical substitution: This alternative, which involves the use of linear algebra
techniques for substitution, offers a balance between memory usage and
computational efficiency. Unfortunately, due to the size of the matrices involved,
this method may still necessitate some degree of iterative computation, significantly
slowing down the process compared to direct model evaluations.

(b) Implementing the proxy model on a quantum computer:

Section 5.3.1 illustrates the mapping from risk factor polynomial to a qubit polynomial,
reproduced in Tables 7 and 8.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 33

Table 7. Illustration of NAV as a function of risk factors

Risk factor polynomial

Term RiskFactorl RiskFactor2 Powerl Power2 Coefficient
1 X None 1 None 2

2 y None 2 None 3

3 X Y 1 1 -1

Table 8. NAV as a function of qubits (where qubits encode underlying risk distributions)

Qubit polynomial

Term RiskFactorl RiskFactor2 Powerl Power2 Coefficient
1 q0 None 1 None 2

2 ql None 1 None 4

3 q2 None 1 None 3

4 q3 None 1 None 12

5 qo0 q2 1 1 =i

6 qo0 a3 1 1 -2

7 ql q2 1 1 =7

8 ql q3 1 1 —4

9 q2 q3 1 1 12

Whilst terms 1-4 in the qubit representation in Table 8 are straightforward, terms 5-9 can
be constructed via multi-controlled x gates targeted at qubits initialised to |0> - these will
be the interaction qubits. The coefficients for each of these terms can be captured via the
‘weighted addition” procedure set out in Section 5.3.2.

As shown above, the transition from a risk factor polynomial to a qubit-based polynomial
introduces a substantial increase in complexity. For example, a proxy model with 863
terms can expand into a qubit polynomial with more than 35 million terms. While the
initial terms of such a qubit polynomial might be straightforward to construct, the
complexity escalates with terms representing interactions, which require multi-
controlled x gates and careful initialisation of interaction qubits.

The implementation of such extensive quantum circuits is exceedingly time-consuming.
Constructing a quantum circuit for a relatively simpler model with around 50,000 terms,
as opposed to 35 million, can take upwards of 16 hours. This significant time investment
highlights the practical challenges in translating complex proxy models into quantum
computational frameworks.

6.4. But which is Faster?

In the realm of financial engineering, the determination of whether quantum computing offers a
tangible advantage over classical computing is intricately tied to the specific timeframe considered
for comparison. This nuance is well understood by seasoned quants and financial engineers. For

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

34 M. A. Amjad

instance, after the construction phase of a quantum circuit is complete, running an SCR
calculation on a quantum computer might indeed prove faster than performing the same task on a
classical system. However, this perspective overlooks substantial preliminary overheads, casting
doubt on the practical feasibility of achieving a genuine ‘quantum advantage’ in this context. The
time required to design and build the quantum circuit is substantial, during which several SCR
calculations could potentially be executed on a classical computer. This overhead is due to the
translation of the Monte-Carlo problem in quantum terms and the construction of the quantum
circuit, both of which are carried out on classical computers. In simpler terms, the performance
benefit of running the SCR calculation on a quantum computer is far outweighed by the overhead
necessary to translate the problem from classical to quantum terms.

The performance benchmark for classical computing, which serves as the reference point for
these comparisons, is influenced by a multitude of factors:

1. Model complexity: The efficiency of computation on classical computers varies significantly
with the complexity of the model in question. Factors such as the size and order of the
polynomial, the number of cross terms, and the total number of risk factors involved play a
crucial role.

2. Hardware capabilities: The type of hardware used can greatly impact computation speed.
Graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) often
outperform central processing units (CPUs) due to their superior processing speed, memory
capacity, and ability to handle parallel computations.

3. Programming language: The choice of programming language can also affect performance.
Lower-level languages such as C++ are typically faster and more efficient than higher-level
languages like Python or Julia, especially for computationally intensive tasks.

4. Algorithmic efficiency: The specific numerical methods employed for simulation are
critical. Ongoing advancements in algorithms can drastically reduce computation times,
enhancing the overall efficiency of classical computing solutions.

Understanding these factors is essential for accurately assessing the potential for quantum
computing to offer advantages in financial applications. It underscores the importance of
considering not just the raw computational speed post circuit construction but also the
preparatory stages and inherent limitations that may impact the overall viability of quantum
computing for tasks such as SCR calculations. The dialogue between quantum and classical
computing capabilities continues to evolve, with each of these considerations playing a pivotal role
in shaping the future of financial engineering and quantitative analysis.

6.5. What about Noisy Qubits?

In the discussion so far, we have only considered ‘logical qubits’, which is a term used for
‘idealised’ qubits that have very low error rates and quantum gates that have a very high fidelity.

However, we are currently in the NISQ era, which means that the quantum computers available
to us are noisy and have limited gate fidelity. This means that ‘useful’ computation requires a level
of redundancy within the quantum system for error correction.

Quantum error correction (QEC) schemes, including widely studied protocols like the surface
code, are designed to overcome limitations in gate fidelity and other types of errors (such as qubit
decoherence and initialisation errors) that quantum computers face. Gate fidelity refers to the
accuracy with which quantum gates - operations that change the state of qubits - can be
performed. High-fidelity gates are crucial for quantum computing because errors in gate
operations can propagate and undermine the computation’s correctness. QEC schemes address
the challenge of limited gate fidelity in the following way:

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 35

1. Encoding logical qubits in multiple physical qubits

QEC schemes work by encoding the information of one logical qubit into a highly entangled
state spread across multiple physical qubits. This redundancy allows the system to detect and
correct errors without measuring the quantum information directly, which would otherwise
collapse the quantum state due to the measurement postulate of quantum mechanics.

2. Syndrome measurement

Error correction codes use syndrome measurements to identify errors. These measurements
involve ancilla (helper) qubits that are entangled with the logical qubits’ physical qubits. By
measuring the ancilla qubits, the system can infer the presence and type of errors on the logical
qubits without disturbing their quantum state. This process allows for the detection of both bit-flip
and phase-flip errors, which are common types of errors in quantum computing.

3. Fault-tolerant gate operations

To address gate fidelity directly, QEC protocols implement fault-tolerant gate operations. This
means that even if a gate operation introduces an error, the error can be detected and corrected
without causing a failure in the computation. Fault-tolerant gate constructions often involve
sequences of physical gate operations that, collectively, perform a logical gate operation on the
logical qubits. These sequences are designed so that any single gate error can be corrected by the
error correction protocol.

4. Threshold theorem

The threshold theorem for fault-tolerant quantum computing states that if the error rate per
gate and per qubit is below a certain threshold, an arbitrary long quantum computation can be
performed reliably by sufficiently enlarging the error-correcting code. This theorem underpins the
entire field of quantum error correction and is the reason why developing high-fidelity gates and
error correction codes is so critical. If gate fidelities can be improved beyond this threshold,
quantum error correction schemes can effectively suppress errors, allowing for scalable and
reliable quantum computations.

5. Error correction and gate improvement cycles

In practice, error correction schemes and improvements in gate fidelity go hand in hand. As
gate fidelities improve, the requirements for error correction (in terms of the number of physical
qubits needed per logical qubit) can become less stringent, making quantum computations more
resource efficient. Conversely, effective error correction schemes can make certain computations
feasible even with current gate fidelity levels.

Quantum error correction schemes address the challenge of limited gate fidelity by spreading
information across multiple qubits, employing syndrome measurements for error detection,
implementing fault-tolerant operations, and relying on the threshold theorem to enable scalable
quantum computing.

One of the most efficient and widely studied quantum error correction protocols is the surface
code. The efficiency of an error correction protocol in quantum computing is typically measured
by its ability to correct errors with minimal overhead in terms of physical qubits required for each
logical qubit; while also being compatible with the operational constraints of the quantum
computing architecture, such as nearest-neighbour interactions.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

36 M. A. Amjad

Surface code

« Efficiency: The surface code is highly regarded for its relatively high threshold error rate
(approximately 1% under certain conditions), meaning that if the physical error rates of
qubits and operations can be kept below this threshold, the surface code can effectively
correct errors. This makes it one of the most promising protocols for large-scale fault-
tolerant quantum computing.

« Qubit overhead: The exact overhead in qubit requirements depends on the desired error rate
of the logical qubits (how often a logical qubit might experience an error after correction). To
achieve fault tolerance, the surface code typically requires a grid of qubits, with a significant
overhead: each logical qubit might require hundreds to thousands of physical qubits,
depending on the quality (error rate) of the physical qubits and the level of error correction
desired.

Considerations

« Physical versus logical qubits: It is important to differentiate between physical qubits, which
are the actual quantum bits in a quantum computer; and logical qubits, which are error-
corrected qubits formed from multiple physical qubits using quantum error correction codes.
The overhead comes from the need to use many physical qubits to create a single, more
reliable logical qubit.

o Threshold error rate: The threshold error rate is a critical parameter that defines the
maximum physical error rate that can be tolerated while still successfully correcting errors.
Surpassing this rate makes fault-tolerant quantum computing feasible, and protocols like the
surface code are designed to maximise this threshold.

While surface code is notable for its practicality and threshold, other protocols like the toric
code (closely related to the surface code) and colour codes also offer paths to error correction, each
with its trade-offs in terms of error tolerance, qubit overhead, and operational complexity.

Each method significantly increases the qubit requirement for quantum computing, often
necessitating an order of magnitude more physical qubits than logical qubits to ensure fault
tolerance.

The case study explored in this paper requires approximately 36 million logical qubits, which
means that roughly 36 billion physical qubits might be required to perform useful computation
using today’s noisy qubits and known error correction schemes. This is a very large qubit
requirement for a problem that can be solved on a personal laptop within minutes/seconds.

As quantum computing technology evolves, the efficiency of error correction protocols and the
reduction in physical qubit requirements for effective error correction will be crucial areas of
development.

6.6. The Quantum Conundrum: Is It Worth It?

Sections 6.1-6.5 have outlined many challenges associated with using quantum computers for the
practical application of calculating an SCR for a medium sized firm. This is an application for
which classical computing is already very efficient, even using personal laptops, and modestly
efficient code. So why bother with quantum computing? We will answer this question in two parts:
part one considers the application itself and part two is more general.

Quantum risk appetite

While it is true that SCRs can be effectively computed with classical computing methods, the
sole purpose of an internal model is not just to calculate the SCR. Under Solvency II, companies
must integrate their internal models into their decision-making processes, demonstrating they
meet the ‘use-test’ criteria.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 37

Companies often define their risk tolerances and constraints according to the calibrations of
their internal models. Commonly, companies use a singular scenario that represents the 1-in-10-
year events for specific risks, and a single multivariate loss scenario.

Though this approach may be more beneficial than taking no action, and it allows companies to
claim they’ve utilised the internal model in setting risk appetites and limits, it doesn’t fully leverage
the potential offered by an internal model. Particularly, as the author observes, the 1-in-10-year
scenarios that companies typically focus on for setting their risk appetites and limits vary widely in
their impact on the solvency ratio, as depicted in Figure 17.

The chart displays the Solvency Ratio (SR) distribution for a hypothetical company, with the
solvency ratio calculated as:

Solvency Ratio Distribution

A00.00%

(800,000,000.00 600,000.000.001 400,000,000.00 200,000,000.00) 200,000,000.00 400,000,000.00 00,000.000.00 800,000,000.00

Figure 17. Solvency ratio distribution.

SR = NAV/SCR

where NAV represents the Net Asset Value (Own Funds), and SCR stands for the Solvency Capital
Requirement.

The chart illustrates the process of calculating the SCR, which involves simulating the NAV of
the firm across numerous scenarios and determining the 99.5th percentile of the worst-case
variation in NAV. However, companies are not required to estimate what the SCR would be in
those specific scenarios.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

38 M. A. Amjad

During the process of setting risk appetites and limits, firms explore what the world might
resemble after a moderate 1-in-10-year adverse event, considering its influence on the SCR and
Solvency Ratio. The plot captures both the change in NAV on the horizontal axis and the Solvency
Ratio after the SCR recalculation on the vertical axis. The blue dots depict scenarios from the
complete distribution of NAV, while the green dots represent the 1-in-10-year event scenarios.
Observers will note that even though the green dots signify the same NAV loss (indicated by their
horizontal axis position), they result in quite disparate SCR outcomes (vertical axis position).
Notably, it demonstrates the sensitivity of the Solvency Ratio, even in moderately adverse scenarios.
This sensitivity is often not accounted for in the processes of setting risk appetite and limits,
potentially leading to less-than-optimal decisions for risk mitigation and portfolio management.

Regarding quantum computing, although it might not justify the overhead costs to compute the
SCR once, the equation changes when there is a need to calculate the SCR numerous times to gain
a comprehensive understanding of the risk landscape. It is also pertinent to mention that the risk
appetite process usually happens outside of the regular business cycle in many companies,
meaning that the additional time required to reformulate the problem for quantum processing
shouldn’t introduce delays for this purpose.

The general case

Quantum computing stands at the forefront of the next technological revolution, offering the
potential to transform industries, solve previously intractable problems, and redefine
computational boundaries. While the journey to realise its full potential is fraught with technical,
conceptual, and operational challenges, the pursuit of quantum computing is justified by several
compelling reasons:

1. Unprecedented computational power: Quantum computers leverage the principles of
quantum mechanics to process information in ways that are fundamentally different from
classical computers. By exploiting superposition and entanglement, quantum machines
can process vast amounts of data simultaneously, offering exponential speedups for certain
calculations.

2. Solving complex problems: Quantum computing has the potential to address problems
that are currently beyond the reach of classical computers. This includes simulating
complex molecular interactions for drug discovery, optimising large-scale logistics and
supply chains, and providing new insights into natural phenomena through simulation.

3. Advancing cryptography: Quantum computers could revolutionise the field of
cryptography. While they pose a threat to current encryption methods, they also pave
the way for quantum encryption technologies, like quantum key distribution, which could
provide levels of security that are theoretically unbreakable under the laws of quantum
physics.

4. Accelerating machine-learning: Quantum algorithms could dramatically accelerate
machine-learning processes, making it possible to analyse larger datasets and perform
more complex pattern recognition than is currently achievable, potentially leading to
breakthroughs in artificial intelligence.

5. Economic and strategic advantage: The nations and organisations that master quantum
computing technology are poised to gain significant economic and strategic advantages.
This could impact national security, economic competitiveness, and technological
leadership, motivating sustained investment and research despite challenges.

6. Boosting scientific research: Quantum computing offers powerful tools for scientists
across disciplines. It could lead to new discoveries in physics, chemistry, biology, and
beyond, as it allows for the simulation and analysis of phenomena that are too complex for
classical computation.

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 39

7. Enabling scientific breakthroughs: Quantum computing holds the key to scientific
advancements in fundamental physics, including the mysteries of dark matter and the
intricacies of quantum gravity, potentially leading to a deeper understanding of the
universe and our place within it.

8. Long-term technological progress: Like the space race of the 20th century, the pursuit of
quantum computing drives progress in numerous ancillary fields, including materials
science, engineering, and software development, furthering overall technological
advancement.

9. Inspiring a new generation of scientists and engineers: The challenges of quantum
computing are inspiring a new generation of problem solvers. Educating and training this
talent pool not only prepares us for the quantum era but also enriches the broader scientific
community.

10. Sustainable solutions: Quantum computing could optimise energy consumption, waste
reduction, and resource allocation, contributing to more sustainable solutions and helping
tackle climate change.

6.7. Avenues for Future Research on this Topic

The preceding sections have critically examined the formidable challenges associated with
harnessing quantum advantage for VaR calculations. Some challenges are the subject of active
research, such as the advancement of Error Correction Schemes and the pursuit of the optimal
qubit implementation paradigm. However, alongside these complex avenues, there exist
promising research paths that may offer more immediate progress. Section 7.3 delved into the
specific bottlenecks encountered when translating the VaR calculation into the quantum domain.

1. Efficient encoding of multivariate distributions: Our discussion highlighted innovative
approaches like Quantum Circuit Born Machines (QCBMs) and introduced Quantum
Generative Adversarial Networks (QGANs) as alternative methods. These quantum
algorithms have the potential to streamline qubit requirements and circuit depths, yet they
come with the significant challenge of training these models. Future research should
prioritise the discovery of ‘quantum analogues of parametric distributions - quantum-
native methods that can represent complex statistical distributions with quantum efficiency.

2. Efficient mapping of polynomials to qubits: To leverage a quantum computer for SCR
calculations, one must translate the proxy model - used to represent a company’s NAV or
P&L - into a quantum-compatible format. This conversion necessitates the construction of
an affine map that relates each risk factor to its corresponding qubits and then reconstitutes
the proxy model by replacing risk factors with their quantum representations.
Advancements in algorithmic design are necessary to make this process more streamlined
and less resource intensive.

3. Efficient construction of large quantum circuits: From the author’s practical experience,
the most compute-intensive aspect of the calculation was assembling the quantum circuit
for the A operator, as dictated by the canonical QAE method for the chosen proxy model.
There is a pressing need for the developers of quantum software frameworks, like Qiskit, to
innovate on this front. Enhancing the tools and algorithms for quantum circuit construction
could significantly reduce computational overhead and time investment.

In each of these three areas, there is considerable scope for improvement. By developing more
sophisticated quantum algorithms and software tools, we can mitigate the current limitations in
the application of quantum computing to financial modelling. This progress is essential not only
for achieving practical quantum advantage in financial risk assessments but also for pushing the

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172400031X

40 M. A. Amjad

boundaries of what is computationally achievable, laying the groundwork for future quantum-
enabled discoveries across various disciplines.

7. Conclusions

This paper critically assesses the potential for ‘quantum advantage’ in risk management
applications, such as the calculation of VaR using quantum computers for practical problems. It is
clear that the journey towards this goal is filled with complexities, and that significant hurdles will
need to be overcome. However, the evolving landscape of quantum computing shows promise of
overcoming these challenges over time.

7.1. Classical Realm Considerations for Quantum Readiness

1. Quantum-compatible problem formulation: Transitioning the VaR calculation to a
quantum-ready format is non-trivial, and potentially more expensive computationally than
calculating VaR using a classical computer in the first place. Further research can help to
discover algorithms to streamline this process.

2. Efficient quantum circuit design: The development of large quantum circuits is currently a
significant hurdle, yet the progress in quantum algorithms and software tools is
encouraging. It is plausible that more intuitive and efficient methods for circuit design
will emerge as the field matures.

7.2. Quantum Realm Progress and Pragmatism

1. Qubit quantity and quality: While today’s quantum computers would require an
impractically high number of qubits to match the performance of a personal laptop in
certain tasks (potentially 36 billion physical qubits for the task examined in this paper),
ongoing advancements in quantum error correction and qubit coherence are anticipated to
lower these requirements gradually and sustainably.

2. Advancements in quantum hardware: The size and fidelity of quantum computers imposes
significant constraints on the types of problems that can be tackled with present day
quantum computers. However, considering the rapid pace of technological development,
more refined and less noisy quantum systems are expected to become available. This
evolution will likely make quantum applications more viable for specific use cases, including
those in risk management.

In summary, the path towards realising quantum advantage in practical financial applications
is nuanced and requires a balanced view. While we are witnessing considerable progress, the full
potential of quantum computing in this context remains on the horizon. This paper presents a
realistic appraisal of the current state of quantum computing, acknowledging both its limitations
and its potential, with a grounded expectation that continued research and development will
eventually enable quantum computers to meaningfully contribute to risk management and other
complex financial calculations.

References

Berry, T. & Sharpe, J. (2021). Asset-liability modelling in the quantum era. British Actuarial Journal, 26, e7. https://doi.org/
10.1017/81357321721000076

Brassard, G., Hoyer, P., Mosca, M. & Tapp, A. (2002). Quantum amplitude amplification and estimation. Contemporary
Mathematics, 305, 53-74. https://doi.org/10.1090/conm/305

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1017/S1357321721000076
https://doi.org/10.1017/S1357321721000076
https://doi.org/10.1090/conm/305
https://doi.org/10.1017/S135732172400031X

British Actuarial Journal 41

Cuccaro, S.A., Draper, T.G., Kutin, S.A. & Moulton, D.P. (2004). A new quantum ripple-carry addition circuit. arXiv
preprint arXiv/0410184v1.

Egger, D.J., Gutiérrez, R.M., Mestre, J.C. and Woerner, S. (2019). Quantum risk management. Quantum Finance, 1,
105-112.

Egger, D.J., Gutiérrez, R.M., Mestre, J.C. & Woerner, S. (2020). Quantum computing for finance: Overview and prospects.
IEEE Transactions on Quantum Engineering, 1, 3100915. https://doi.org/10.1109/TQE.2020.3030314

Grinko, D., Gacon, J., Zoufal, C. & Woerner, S. (2019). Iterative quantum amplitude estimation. arXiv preprint
arXiv:1912.05559.

Jacquier, A., Kondratyev, O., Lipton, A. & Lopez de Prado, M. (2022). Quantum Machine-learning and Optimisation in
Finance. Packt Publishing.

McNeil, A.J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Revised
Edition. Princeton University Press.

Nakaji, K. (2020). ‘Faster Amplitude Estimation’, arXiv preprint arXiv:2003.02417.

Nielsen, M.A. and Chuang, LL. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press.

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79

Rudin, W. (1976). Principles of Mathematical Analysis (3" ed.). McGraw-Hill.

Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T. & Yamamoto, N. (2019). Amplitude Estimation without Phase
Estimation. arXiv preprint arXiv:1904.10246.

Cite this article: Amjad MA. (2025). Quantum internal models for Solvency II and quantitative risk management. British
Actuarial Journal. https://doi.org/10.1017/S135732172400031X

https://doi.org/10.1017/5135732172400031X Published online by Cambridge University Press

https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1017/S135732172400031X
https://doi.org/10.1017/S135732172400031X

	Quantum internal models for Solvency II and quantitative risk management
	1.. Introduction
	2.. Internal models for Solvency II firms
	2.1. Solvency II
	2.2. Internal models

	3.. Quantum Computing
	3.1.. Gate based Model of Quantum Computation
	3.1.1.. Quantum annealing
	3.1.2.. Contrast between gate-based and quantum annealing

	3.2.. Quantum versus Classical Bits
	3.3.. Quantum versus Classical Gates
	3.4.. An Actuarial Example

	4.. Classical versus Quantum Value at Risk
	5.. Quantum VaR
	5.1.. High Level Quantum IM Calculation
	5.2.. Quantum Generative Model
	5.3.. Quantum Proxy Representation
	5.3.1. Polynomial to Qubit representation for a simple case
	5.3.2.. Capturing coefficients
	5.3.3.. Calculating net asset value

	5.3.3.1.. Two's complement
	5.3.3.2.. Ripple carry addition
	5.3.4.. Calculating VaR

	5.4.. VaR using Quantum Amplitude Estimation
	5.4.1.. But where is the quantum advantage?
	5.4.2.. Building a comparator
	5.4.3.. Encoding the threshold
	5.4.4.. How to two's complement an `unobserved' quantity
	5.4.5.. Quantum amplitude estimation (QAE)
	5.4.6.. Bringing it all together: binary search

	6.. Quantum Advantage
	6.1.. Why polynomials?
	6.2.. Clock Speeds and Coherence Times
	6.3.. Quantum Disadvantage before Quantum Advantage
	6.4.. But which is Faster?
	6.5.. What about Noisy Qubits?
	6.6.. The Quantum Conundrum: Is It Worth It?
	6.7.. Avenues for Future Research on this Topic

	7.. Conclusions
	7.1.. Classical Realm Considerations for Quantum Readiness
	7.2.. Quantum Realm Progress and Pragmatism

	References

