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Abstract

In this paper we establish conditions which ensure the existence of self-excited oscillations
in complex dynamical systems with nondifferentiable nonlinearities, by considering those
types of systems which can be viewed as an interconnection of several simpler subsystems.
We find that the nonlinear terms of the system in which we are interested do not need to
satisfy the Lipschitz condition.

0. Introduction

In recent years, many researchers have concerned themselves with the qualitative
analysis of large-scale dynamical systems. The analysis is in terms of the qualitative
properties of the free subsystems and of the structure of the interconnecting system.
Examples of this method can be found in [2,6,7,8,10,11]. However these results are
not applicable to some systems, for example, when the nonlinearity does not satisfy
the Lipschitz condition. In this paper, we improve upon the old results and present
new results, by providing conditions for the existence of limit cycles in interconnected
systems with continuous nonlinearities which do not necessarily satisfy the Lipschitz
condition. Using the method described in this paper, we are able to improve the
oscillation result in [3] and discuss the existence of periodic solutions of second order
difference equations.

Of particular interest to the present discussion are some results in [1] and [9]. In
this paper, we extend their results to a large class of interconnected systems.
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42 Xiangjian He [2]

1. Preliminaries

We call an I x i matrix A = [a,;] an A/-matrix if au < 0 for all i ^ j and if
the successive principal minors of A are all positive. All M -matrices are, of course,
nonsingular.

Define H(co) to be the set of all square integrable functions <p : [0, ̂ ] -> R which
satisfy the conditions

U o n / ? ,
on/?.

The above definition of H(co) is easily extended to a set Ht{co) of vector-valued
functions 0 :/?->• /?£ for which each component satisfies (1.1) above.

For </> e //(o>) we let

4>{t)~-^4>,,exp(ina>t). (1.2)
nodd

Note also that ||0||2 = ± ^ n o d d |tf>n|
2 = ^ /0^ |0(f)|2 dt determines a norm for H(co).

We define projections P and P* onto //(&>) by P<j){t) = \4>xe
i<at + ^_ ,e" i a " and

P* = I — P, for each 0 e //(&>). For a continuous function n : R - • /? we define
the describing function N of « by

1 f2* 1 /"2jr

N(a) = — / e~ien(a cos8)d6 = — / cos6» n(acos9)d6
na Jo na Jo

for a > 0. Consider the 47 th order differential equation given by

L(D)x + n(x) = 0, n(-x) = -n(x) (1.3)

where L(D) = jyj=oajDJ> & = j;- ^ow, since our purpose is to find a periodic
solution x{t) of this equation, with x € H(co), we can use (1.2) to obtain L(D)x{t) ~
(!/2) £*odd (EJ=o aj(ikco)j) xke

iko". So (1.3) above is equivalent to

\ £ ( ) \
Z \y=0 / Z todd

• —where nt = (w/7r) JQ" g"'*0"/!^^)) dr. Equation (1.4) is equivalent to

* = 0. * = ± 1 , ± 3 , . . . (1.5)

https://doi.org/10.1017/S0334270000000461 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000461


[3] Oscillations of interconnected systems 43

for any co > 0 for which
//(«) by

J # 0. Hence, if we define an operator g on

Z fcodd |_ y=0 J

then (1.5) is equivalent to the operator equation x + gn(x) = 0, on

2. Interconnected systems

We now consider systems which can be described by equations of the form

t

xk + gknk{xk) = gk^2,bkmxm, nk(-xk) = -nk(xk), (2.1)
m = \

£k

k = 1, . . . , € , which can be written in matrix-vector form as

x + gn(x) = gbx, n{-x) = -n(x), (2.2)

where all symbols in (2.2) are defined in the obvious way and nk : R ->• R. We can
view (2.2) as an interconnection of £ free subsystems

gknk(xk) = 0. (2.3)

The terms gkbkm given in (2.1) comprise the interconnecting structure of composite
system (2.2). In Figures 2.1 and 2.2, the free subsystem (2.3) and composite system
(2.2) with interconnecting structure (2.1) are depicted in the form of block diagrams.

V

V
FIGURE 2.1. Free subsystems (2.3).

ASSUMPTION AX. For k,m = 1,2, ...,£, k # m and for all co > 0, gk and bkm

are continuous linear operators on H(co). There exist continuous complex-valued
functions Gk{ia)) = Gk{-ico) ^ 0 and Bkm(ico) = Bkm(-ico) such that ifu e H{co),
w = gku, v = bkmu, then wn = Gk(inco)un and vn = Bkm(inco)un for every integer
n. Furthermore, linv_oo Gk{ico) = 0.
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n. ( )

1 k ( k - l )

bk(k+

b k ,

1)

k - l

k+ l

I

k=1,2 1

FIGURE 2.2. Interconnected system (2.2) with decomposition (2.1).

For each free subsystem (2.3), we can determine the describing function Nk(a) of
nk. Now define fk(co, a) = \Nk(a) + Gk(ico)~l\. We choose the interval / = [/z, v]
such that fk(a>,a) is not too small for a > 0, \x < a> < v and all values of
k = 1 ,...,£ except at most for one value of k. We relabel the equations in (2.3) [and
the corresponding (2.1)] so that if k < m and fu, < co < v then mino>0/t(w, a) <
mina>o /m(w, a). Next, we choose an integer p with 1 < p < I, such that if k > p,
then fk(co, a) is extremely large for /x < co < v and a > 0. In general, we like to
choose p as small as possible, because the smaller p is, the more easily assumptions
/43, A4 below will be satisfied. Note that, if p = I, no fk{a>, a) fork = 1 , . . . , £ need
be extremely large. We define the functions

p k { c o , r k ) = i n f
/i odd

rk\ k = 1,2, ...,£,

k = 1, 2 , . . . , t, m = 1 , . . . , I, k ^ m,(2A)

where St = 1 if k e {1, 2, . . . , p] and Sk = 0 if k € [p + 1 , . . . , 1], rk e R+.

= sup \Bkm(in co)\
n odd
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[5] Oscillations of interconnected systems 45

ASSUMPTION A2. For k = 1, 2, ...,(., there exist constants rk0 > 0 and Sk0 > 0 such

that \nk(z) - rkQr\ < Sk0forall r e / ? .

The results of this paper make use of a test matrix R(co) — [rkm((o)] defined by

\pk(o), rk0) k = m

Let f = {co > 0 | R(co) is an M-matrix}. Then it follows that for to € F we can find
<!-vectors d(co) > 0 and e{a>) > 0 such that R(co)e(co) = d(co) [5]. From now on, we
assume that 0 < ax < a2, 0 < a)\ < o>i and [co\, a>i\ C F. By the definition of H{a>)
in Section 1, it is obvious that, for each a> e R, if u is in H(to) then rkOu is in H(co)
and so is nk(u) which is defined by nk(u)(t) — nk(u(t)), for each t € R.

ASSUMPTION A3. For any given a) e [0)^0)2] C V,u € H(co), k = 1, 2 , . . . , p, we

have \\rkOu — nk(u)\\ < Smy/2dk{co) /'d\(a>) and for k = p + 1 , . . . , I, we have

p

\\rkOu -nk(u)\\ + a^i^km(Q)).dm(a})/d1((o) < y/2SkOdk(u)/'dx(w),

where a\ < a < a2, u e H(co) and || • |] is the norm in H(co).

Next, let i2 be the set of sequences _y = {ymJ^L-oo for which ym = 0 if m is even,
9m = 9-m, and \\y\\2

t2 = \ J2m=-oo \9m\2 < oo. Then t2 is isometrically isomorphic
to H(CD) and for any x e //(&>) we have ||x|| = \\x\\ei, where x = {Jcm}~=_00 is the
sequence of modified Fourier coefficients for x. Let i{ be the subset of l2 such that
for any y e £u \\y\\tl = \ £ \ym\ < oo. Define Hi(co) as the corresponding subset
of H(a>), and for any x € //, (<w), )|JC ||, = ||Jc ||f,. Let Q2(co) be the set of all elements
V € P*Hx(co) such that

,0

Next, we define the functions r)k{u>, a) such that if {a, co) € [ax, a2] x [a>,, a^], then

(i)

rjiico, a) = sup

m=2

1 \/2
T ] —\Blm(ico)\em((o)Sm0 : V,(0 e
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46 Xiangjian He [6]

( i i )Forfc = 2, ..., p,

r)k(o), a) = sup — I e "°'\\nk(uka cos cot) — nk{ukacoscot + Vk(t)))
an Jo

rk0Vk(t)}dt

m^'k

m=p+\

i n / / M I *J2Sk0ek{co) dk{co)\
||I4(r)|| < andMt 6 R, \uk\ < > .

Define

ok{co,a) = * ' , k — 1 , 2 , ...,p.
dk{co)

ASSUMPTION A4.

(1) 0 < a\ < ao < a2 andO < co\ < co0 < a^,
(2) [a>i, co2] C F,
(3) fi(co0, a0) = 0,
(4) f\{co\, a) > a^a)], a) a/zrf /i(a>2, «) > CTI(&>2, a)forat < a < a2,
(5) /i(a;, aO > ^ ( w , a,) and f\(a>, a2) > ax(co, a2) for u>\ < to < co2,
(6) Â ] (a) and G\ (ico)~{ are continuous and Nt (a) and Im[G i (ico)~i ] are one-to-one

for a\ < a < a2, a>\ < co < a>2,
(7) For k = 2,..., p,co\ < co < coo, and 0 < a < a2^\ we have fk(co, a) >

maxa,<a<a2CTt(&), a ) ,

(8) et(<y), ^(<w) are continuous for cox < co < <«2-

3. Main result

We now state and prove the main result.

THEOREM 3.1. Suppose that for the interconnected system (2.2), assumptions Au A2,
Ai and A4 are true, p > 0 and the functions nk(x) are continuous for all x 6 R and
k = 1,2, ...,t. Then there exists a solution x € Ht(co)withx ^Oandco\ < co < coj-
Furthermore

0 < ax < a = \xx\ < a2,
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[7] Oscillations of interconnected systems 47

11**11 < ^ ^ y ^ S t o * = p + l,...,*. (3.1)

PROOF. In the proof of this theorem we make use of the Leray-Schauder fixed point
theorem for Banach spaces. This reads: let Z be a Banach space and £2 be a bounded
open subset of Z containing the origin. Let K be a compact operator on Z. Suppose
that for any z e dQ and for any real k > 1 we have kz ^ Kz. Then there is a z° e £2
such that z° = ATz°.

Step 1. We define the set Z as follows. An element z = (zl5 z2, . . .zp, zp+i, ..., zp+t)
is in Z if and only if zk is a complex number for k = 1, 2, ..., p, zp+l € ^i andz* e £2

for k = p + 2,..., p + I. We define a norm on Z by

m=l m=p+2

Then Z is a Banach space.

Step 2. Define

A* = P*gk, Ckm = P*bkm, yk = P*xk, xk = Pxk

for k = 1, 2 , . . . , p , m = I, ...,£; a n d

hk = Ski Ckm = bkm, yk = xk, xk = 0

for* = p + l , . . . , £ , w = 1 €, (3.2)

where k^m. The two sets of equations

L
-«*(x t + >t) + ^ **mxm + J ^ fetm vm (3.3)

for/: = 1 , . . . , p and yk = -hknk(xk + yk) + hk X]»=i C,m(ym + x m ) for/: = 1 , . . . , I

are equivalent to (2.1). Define x = ( x , , . . . , xe) and y = (yi, • • •, ye)-

Step 3. We are now going to construct operators Fk and Ek in the following and
estimate them.

Since p*(<y, rM) > 0, / + /*o/*/t has a continuous inverse on //(<y) [11] and
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48 Xiangjian He [8]

yk = Fk(co, x, y)

r
rk0(yk + xk) - nk(yk + xk) + ] P Ckm{ym + xm)m = l (3.4)

f o r X: = 1, . . . , £ . F o r fc = 1, ..., p , w e k n o w t h a t / i A x m = 0 f o r m = \, . . . , £ f r o m
( 3 . 2 ) . A l s o ,

\\yk\\ = \\Fk(a>,x,y)\\

(3.5)\\rk0(yk + xt) - nk(yk + xt)|| + ^ ||Ct

For k = p + I, ...,£, since xt = 0 it follows from (3.4) that

\\rkOyk - nk(yk)\\
m=l (3.6)

Equation (3.3) is confined to the subspace PH{co). On this space, the operator Pg* is
invertible for k = I, ...,£. Thus, we may write (3.3) as

= p xt) - nk(xk + yk) + rkOyk

m=l m=p+l (3.7)

for k = 1 , . . . , p. Since xk can have only ± Fourier coefficients which are complex
conjugates and since all other Fourier coefficients are zero, we may solve (3.7) by
finding the first modified Fourier coefficient xk for xk. The first modified Fourier
coefficient of (3.7) is Gk(ico)~xxk + Nk(\xk\)xk = Ek{co, x, y), where xk = kkl =

% f% e-ia"xk(t)dt and

>, x, y) = — - nk(xk(t) + yk(t)) + rk0 • yk(t)

dt.

^k m=p+\

https://doi.org/10.1017/S0334270000000461 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000461


[9] Oscillations of interconnected systems 49

Hence

\Ek(co,x,y)\ =
e

nk(xk) - nk(xk + yk) + rkOyk + ] P bkmxm + ^ bkmy
m=p+\

O) f~'

x Jo
xt(r) + yk(t)) + rk0 • yk(t)] dt

\Bkm(ico)\\\ym\l (3.8)
m=p+\

Since H(co) is isometrically isomorphic to i2, we may represent each xk and yk

uniquely by xk and yk € t2, respectively, where xk is the modified first Fourier
coefficient of xk and yk is the sequence of modified Fourier coefficients for yk e H{co).
Since Fk and £m are operators on H(co), there are corresponding operators Fk and Em

on £2- Thus, we can write

Fk(co,xu ...,xp,yu...,yt) = Fk(co,x,y)

and

Em((Q,xu...,Xp,yu ...,ye) = Em(co,x,y)

fork = 1 , . . . , £ and m = 1 , . . . , p.

Step 4. Let us construct an open subset fi of Z and an operator K defined on a subset
ofZ.

In the following, we define the map z\ = J(co, a) = d(/&))"' + Ni(a) which is
continuous on a compact set (see A4) <t> = {(a>, a) : co{ < co < co2, a\ < a < a2}. Let
^ = /(<!>). Then the inverse function J~l : * —>• 4> or / " ' : zj ->• ((^(zO, a(z!))
for z\ e ^ is continuous and 0 = J(co0, a0) e Int * . For each z e Z with i\ e * , we
have co{z\) and a(zO defined above, and furthermore we define the vector operator
K = {KX Kt+P)hy

K() Ex[a>(z{), a{z{), z2a(z{),..., zpa{z\), z 1 + p , . . . , z t + p \ ;

, z 2 a(z i ) , • • •, z p a (z i ) , z 1 + p , . . . , ze+p]E
mZ a(z

m = 2, . . . , p ;

), a(zt), z2a(zi), • •., zpa(zi), z , + p , . . . ,
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50 Xiangjian He [10]

Next, we define £22(<y) as a subset of €2 corresponding o>2{co) in H{co). Let

n = {zeZ:zl € ln t* , |z M | <

Zp+l ^ "2(^(^l))»

-S(m-n\f\, ftl =

It is easy to prove that £2 is open by the definition of &2((x>) and the continuity of
dm(co), em(co) (/n = 1, 2, . . . , £ ) and p\ defined in (2.4).

Step 5. In this step, we prove that K is bounded on Q and hence show that K can be
extended to a compact operator on the whole space Z.

When zp+1 e f22(a>)> from the definition of Q2(co) we have

P\(u>,rm) y ^75 "i<

On the other hand, from the definitions of e(a)) and d(co), we have

1 /

, no)

So, for any zp+, e f22(a>), we have ||zp+1 \\e2 < V2^S]0.
To satisfy the condition for boundary points of Q, we let z be in the closure of Q.

From (3.8) and the definition of ak(co, a),

1 ,
, z 2 a ( z j ) , . . . , zpa(zi), zp+u ..., zp+e)\

CO I " • r

- / e [1
n Jo

1 ^

m=2

2n

¥m\\l

zp+i(t))
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4 M V2
m=2

For t = 2 , . . . , p,

, a(zi), z 2 a ( z i ) , . . . , zpa(z{), zp+u ..., zp+e)\

1 ft) /"^
—— - I e"'w'[/ii(a(z,)ztcosa;
a(zi) * Jo

+ rkOzp+k(t)]dt

Furthermore, since

xm)
m=2

m=2

m=2

51

(3.9)

(0)

(3.10)

and | |[/ +rkOhk] ' / j t | | < l/pk(a), rk0), we have from (3.4) and the definition of f22

that

[ ] (3.11)

For & = p + 2 , . . . , 1p, n = k — p , we have from (3.5), (3.2) and Assumption A3,

|| ) , z 2 a(z i ) , . . . . z p a (z i ) , z p + i , . . . , zP+e)\\tl

ptt(a)(zi),rn0)
\\rnOu - nn(u)\\
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pn(a)(z,),rn0)

1
l ~ V25nO

dn(co)

(3.12)

where M(O = zp+i(0+ZAa(z1)cosajf for£ = p+2,..., 2p.For/: = 2p + l,..., p +
£, n=k - p, from (3.6), Xl=i rnm(o))(em(,(o)/di(a))) = dtt(a>) / dx(a>) and Assump-
tion A 3 we have

, z 2 a ( z , ) , . . . , zpa(zi), zp+u ..., zp+l\\h

o(«) -nn(u)\\ -
i r

, , , r \\rn

Pn(co(zi),rn0)\

m=2

1 fv ,̂
/ / x T > . ^

^ ( ^ ( Z , ) , /-„(,) ^

w h e r e M ( O = zn(t), for n = p + I, ...,£.
From (2.17) to (3.13) and Assumption A4, we have that the operator K is bounded

on Q. From the definition of K, we also know that K is continuous o n f i c Z and so
we can extend K continuously to all of Z by the Tietze extension theorem ([4], pages
15-16) such that the operator K is continuous and bounded on Z. The components
Km, m = 1,2, ..., p, are one-dimensional and thus compact. The components Km

for m = p + l, ... ,1 involve the operators hm which are defined as either P*gm or gm
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on H{co). By Assumption Au lim^oo \Gm(ikco)\ = 0, m = 1,2,... ,1. Therefore,
the operator gm, and hence hm, must be compact. Thus Fm and Fm are compact. It
follows that K is a compact operator on Z.

Step 6. We now show that the boundary condition in the Leray-Schauder theorem is
satisfied. Let k > 1 and let z e Z be on the boundary of Q. We must show that
kz ^ Kz. Treating K componentwise, we consider four cases.

(1) Suppose z\ is on the boundary of * . From /44(4) and A4(5) we see that for
k = \,2 either o)(z!) = cok and

\z\\ = \J{u>k,a)\ = f\{cok,a) > ox{cok,a) = o^oizi), a)

for ai < a < a2 or a(z\) = ak and

|z,| = \J(co(zi),ak)\ = fi(co(zi),ak) > <Ti(<w(z,), ak)

for a)] < co < cu2. From (3.9) we see that | ^ i ( z ) | < O\(co{z\), a(zO) for all z in
S2. But for zi e 3 * we have

so that in this case kz =£ Kz.
(2) For 2 < m < p suppose that \zm\ = dm(<y(z,))/d1(o)(z,)). By Assumption A4

(7) and (3.10) we have

\Km{z)\ =
mzi)\jm(w(zi),\zma^i)\)

n (ni(7,\ n(7iW H-.(tn(7iX\

= \zm\ < k\zm\,

, \zma(.zi)\)
dm{a>{zx))

so that in this case kz ^ Afz.
(3) Suppose zp+i € 3 J22(w(zi)). By (3.11) and the definition of S22 we have

so that in this case Az ^ /^z.
(4) Form = / 7 + 2 , . . . , £ + p , suppose that \\zm\\t2 =

In view of (3.12) and (3.13) we have

DA:.Will, = ||Fm_,(z)||,2 < ^ C m - ; ( ^ ( ; i ) ^ ( m - p ) 0 = \\zm\\h < k\\zm\\tl,

so that in this case kz =£ Kz.
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54 Xiangjian He [14]

It now follows from the Leray-Schauder theorem that there is an element z in the
closure of Q such that z = K(z). We define an element x € Hi(a)(zi)) by modified
Fourier coefficients of x and y given by

xk = zka(zx) fork = 2,...,p,

xk = 0 fork = p + l,...,i,

yk = Zp+k fork = l , . . . , £ .

Then x = x + y e He(co(zi)) and x is a solution of (2.2) with x ^ 0.

Step 7. Now let us verify that (3.1) is true. Since z is in the closure of £2, the bounds
on the zk (k = 1, 2 . . . , p) and zm(m = p + \, p + 2,..., p + i) are satisfied. In the
following we let co = co{z\) and a = a(zx). Since ii = a(zO = a, we have

0 < a\ < a = |Jci| < a2,

II2 =

V25,o + Y ] glM

\\Xkf = llxjl2 + | |^| |2 = |z,a(z,)|2 + \\zp+k\\
2
ti

, (see Step 5)

= \\yk\\e2 = \\zP+k\\t2 < S*O * = (see Step 5).

This completes the proof of Theorem 3.1.

4. An example

To demonstrate the applicability of the present results, we consider a specific
composite system consisting of two subsystems, described by

d X\ dx\
dt2 dt

'} + 2 0 0 ^ - 4 0 0 ^ - 600*2 + f(x2) = x,,
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where

Oscillations of interconnected systems 55

/(*) =

- 1 , x < - 1 ,

1, X > 1.

(4.2)

It is easy to see that f(x) is continuous but does not satisfy the Lipschitz condition
when x is small. System (4.1) is a special case of (2.1) with p = I = 2, n.\ =
n2, S\o = S2o = 1. fio = r2o = 0. The system (4.1) is equivalent to the system

(4.3)

glf(Xl) = g2<,Xi),

where g\ and g2 are two operators on H(co), such that for k = 1, 2, and 0 € H(a>),

Gk(inco)4>n exp(incot).
nodd

Also Gi(S)-1 = 53 + 252 + 45 + 6 and G2(5)-' = 10053 + 200S2 - 4005 - 600.
Next, since nx{x) = n2(x) = f(x), the describing functions N{(a) and N2(a) of nx

and n2 when 0 < a < 1 are

AT, (a) = N2(a) = — / (cos 0) f (a cos 0) d0
na Jo

= ?— \ J (cos 0yd9 = —-= / J (cos 0)4d8.
na Jo n\/a2 Jo

It is evident that

1 = (2a>2-6) + /(a>3-4a>)

and

-G2(/<w)~1 = (200w2 + 600) + i(100af •

Now, from fi(co, a) = |Gi(/w)"' + Nx(a)\ = 0, we obtain the solution co0 = 2 and

M ( o o ) - 2 = 0. (4.4)

Note that (see Figure 4.1)

(cosd)*dO < I cos6d6 + (Area of ACDE)

.A)
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).97

and

f
Jo

(cos 0)5 dG > (Area of Trapezoid OABF)

ri
+ (Area of Trapezoid BCEF) + / cos2 9 d9i:

J 3

0.64 + 0.1344 + 0.0453 % 0.82.

n/4 71/3 n/2

So

FIGURE 4.1.

•0.82 <
n\/a2

• 0.97.

Hence, using (4.4), we have that 0.377 < a0 < 0.48.
Now we choose w, = 1.98, coj = 2.02, a, = 0.30 and a2 = 0.58. We have denned

the functions p\ (co, ri0) and P2U0, r2o) in (2.4). For this example,

= inf
nodd
II1
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= inf J(nco)6 — 4(AJO>)4 — 8(na>)2 + 36
nodd

)6 - 4(3o;)4 - 8(3a;)2 + 36 (4.5)

and

, r20) = fh(oo, 0) = inf \G2(inco)~x\
nodd

= inf y/[l00(nco)3 + 400nw]2 + [200(«w)2 + 600]2

n odd

= y/[l00(3a>y + 400 x 300]2 + [200(3w)2 + 600]2

+ 12a>]2 + [18a;2 + 6]2, (4.6)

for a) e [&>i, o>i].
It is easy to verify that p\((o, 0) and (h(o), 0) are increasing functions on [cou <w2].

S o , for a> € [co\, CO2],

P\(co, 0) > v/(3w,)6 - 4(3w,)4 - 8(3o>!)2 + 36

= 7 ( 3 • 1.98)6 - 4(3 • 1.98)4 - 8(3 • 1.98)2 + 36 ^ 196.72

and

, 0) > 100v/[(3a;1)3 + 12a;,]2 + [18w2 + 6]2

1.98)3 + 12 • 1.98]2 + [18 • 1.982 + 6]2 % 24558.5.

Therefore, from

- 1 P2(ft>,0)J'

we have \R(co)\ = p\(co, 0)p2(co, 0) — ^ > 0 for co € [to\, w2]- Hence R(co) is an
M-matrix.

From the properties of M -matrices it follows that for co e T, we can find 2-vectors

0, e(oo) -

such that R(co)e(a>) = d(co).
For this example, it is evident that we can let e\(co) = e2(co) = 1, and thus

(-303000) = Pifcw.O) - ^ ^ > 0,
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d2(co) = - e , (co) + P2(co, 0)e2(co) = /^(co, 0) - 1 > 0

for co € [co\, CO2].
Next for any V\(t) e Q2(co), from the definition of Q2(co), we have

[18]

1 1

P\(co,0) «i(<w) p\(co

S o , w h e n V\(t) G f22(<w) a n d a e[a\, a2],

CO f*"
— / e~ia"\f(a cos cur) - f(a cos cot +
GOT Jo

- 3^0 " !96-72 - ^
: 0.005.

/a cos fl-Jocose + V,(-)
CO

< — I cos 9 \^/acos9 + 0.005 - v â cos ̂ 1
a?r Jo L J

H / sin6» [^a cos 6> +0.005 - ^ a c o s
a?r Jo L

= —— / 2 [(a cos6 + 0.005)^a cos0 + 0.005 - a cose
a2n Jo L

°;°05
^ a cos 0+0.005 </0

O.OOS)4 + ^ ( a

< 4 ~ /"2 [^(a + 0.005)4 - v'a4! J6» - 4 ' 0 ;°0 5 / ' -
a2n Jo 1 J a2n Jo

J(a + 0.005)4 - ^ a

(a + 0.005)4 -

2
< —

4
a27T

jifl + 0.005)4 - ^a 4 - - 0 .005^1
J

(4.7)

d6

d9
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+ -4- \j/(a + 0.005)4 ->/a*- v^O.005)4 - 0 . 0 0 5 ^ 1
a2n I J

= *(<»).

Therefore, by the definition of r\\,

?7i(«, a) 1 d2((o)
al(co,a) = ———- < / j ( a ) + — — — — . (4.8)

di (&>) 3000 rfi (&>)

Since p2(<*>2, 0) «a 25925.8,

1 d2(o) 1 p2(<W2,0)-l _ 1 25924.8

3000^(w) ~ 3000p,(o),,0) - ^ ~ 3000 196.72
3UUU

for a) e [c^i, ftj2]. Thus we have that

V ^

- 0.044 = — 1 + - ^ ( f l l + 0.005)4 - J a 4

af \ f / L V

4 • 0.005 r ,/ ,- -\

-Y-^ I ^0005 + ^ , 1 + 0.044

^0.1032 + 0.044 = 0.1472,

cr, (ft), a2) </i(a2) +0.044 = -^ ( 1 + - } \^(a2 + 0.005)4 - fi~$
a2 \ *) L V .4^0005 r^o^OS + ̂ l +0.044

a\n

^ 0 . 0 3 8 + 0.044 =0 .082 .

Note that

and

Put y, = A^i(ai), j2 = 2.329, yfc2 = N i f e ) and /t, = 1.763. Then we have

/,(&», a,)2 = |(A^,(a,) + 6 - 2w2) + /(4cu - co3)\2

= Oi - y2)2 + 2(y, - ;2)[6 - 2w2 + y2] + [6 - 2w2 + ; 2 ] 2 + [Aw - co3]2

> (7i - hf + 2O'i " ;2)[6 - 2co\ + ; 2 ] + [6 - 2w2 + y2]2 + [4a> - co3f
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since [6 — 2co\ + j2] > 0. It can be verified numerically that the minimum of the
right-hand side occurs at co = 2.02 and the minimum value is 0.0283+0.0264=0.0547.
So,

fi(co,ai) > V0.0547 ^ 0.2339 > 0.1472 > a{(co, a,).

Similarly,

/ , (co, a2)
2 = | (N, (a2) + 6 - 2co2) + i (Aco - co3) |2

= (&2 - &i)2 + 2(k2 - £i)[6 - 2co2 + ki] + [6 - 2w2 + kx]
2 + [Aco - cv3]2

> (k2 — k\)2 + 2(k\ — k2)[2co2 — k\ — 6] + [6 — 2co2 + kj]2 + [4ft> — ft)3]2

> [6 - 2w2 + kxf + [Aco - co3]2,

since [2co2 — k\ — 6] > 0. The minimum of the right-hand side occurs at co = 1.985
and the minimum value is 0.0278. So,

f\(co, a2) > V0.0278 % 0.1667 > 0.082 > ox(co, a2).

Now, when a e [au a2],

h\a) = 4- \-(a + 0.005)5 _ -ai _ l(a + 0.005)5 + -c
a2 |_3 3 a a

+ ^-\t(a + 0.005)5 _ -a\ _ -(a + 0.005)5 + lc
a2jr 3 3 a a

+-O.OO55 + - 0 .
a a

0.005)i 005)] - al ( i - ?„

+

[1 - §«, + 0.
0.005)! [1 - \a +0.005)] -«J (1 - la)

+-0.005 (^0.005 +

+
2 • 0.005 / 3
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= -—, W + 0-005)5 _ a\\ - ° ^ ( a + 0.005)5
3a2 L l a "

%- \(a + 0.005)5 - a
l A - ~ \(a + 0.005)5 _ ^0.005 -

3a2n L J a3n I
—'—(a + 0.005)5 _ _ _ f(a + 0.005)5 _ ^0.005 -

a5 a5iz L

= - ^ [-(a + 0.005)5 + (a + 0.005)5 - ^0.005 -

< - ^ f-(ai + 0.005)5 + (fll + 0.005)5 _ ^0.005 - ^

0.04

a'n
(1.057 + 0.673 - 0.17 - 0.669) < 0.

Hence h(a) is a decreasing function on [au a2]. Thus, when a € [au a2] and co

<Ti(to,a) <

by (4.8) and (4.9). Next,

fi(.(oita) >

0.044 = 0.1472

= |4<u, - w j | = 0.157608

- a^| = 0.162408.

Hence,

fi((ok,a) > 0.1472 >

To verify A4(7), we note that

for it = 1,2, a, < a < a2.

— / " e~i<ot{f{u2a cos cot) - f(u2acosoot + V2(t))} dt

<(- + !) di(co) < (— + 1 J di(a>) « 14.333 • ^ (

This means that r)2{a>, a) < 14.333 • d\ (co) and hence

dx(co) + dx(co)

o2(co, a) < 1 4 . 3 3 3 ^ ^ < 14.333.
d2(co)

But

f2(co,a) =
4+ —

na
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3 14.333,

for oi\ < o> < coj. Thus, f2(u>,a) > CT2(&>, a) . So, A4(7) is satisfied. Assumptions
A| , A2, A3 and A4(l) , (2), (6) and (8) are satisfied evidently. Therefore, all of A\
through A4 are satisfied. Hence, by Theorem 3.1, there is a nontrivial solution,
(xi, x2) € H2(co) with coi < a) < <w2> of the system (4.1).
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