SOME STUDIES ON KAEHLERIAN
HOMOGENEOUS SPACES

JUN-ICHI HANO and YOZO MATSUSHIMA

The present paper is devoted to the study of differential geometry of
Kaehlerian homogeneous spaces. In section 1 we deal with the canonical de-
composition of a simply connected complete Kaehlerian space and that of its
largest connected group of automorphisms. We know that a simply connected
complete Riemannian space V is the product of Riemannian spaces Vo, Vi, . . .,
Vau, where V, is a Euclidean space and Vi, ..., V, are not locally flat and
their homogeneous holonomy groups are irreducible [2]. Moreover, if V is
homogeneous, so are all V; [10]. We shall show that if V is Kaehlerian space
with real analytic metric (resp. Kaehlerian homogeneous space), each factor Vi
is also Kaehlerian (resp. Kaehlerian homogeneous) and that V is the product
of Vo, Vi, ..., Vu as Kaehlerian space. We call this decomposition the de
Rham decomposition of the Kaehlerian space V. Although this result is sup-
posedly known, there is no published proof as yet. Using this decomposition
theorem we shall show that the largest connected group of automorphisms of
a simply connected complete Kaehlerian space with real analytic metric is the
direct product of those of the factors of the de Rham decomposition. In the
Riemannian case this result has be been established in [3] by one of the authors
of the present paper.

On the other hand, a Kaehlerian homogeneous space G/B of a reductive
Lie group G is the direct product of Kaehlerian homogeneous spaces W,, Wi,
..., Wm, where W, is the center of G with an invariant Kaehlerian structure
and where Wi, W5, ..., Wn are simply connected Kaehlerian homogeneous
spaces of simple Lie groups ([1], [7], [8]). In section 2 we shall show that
this decomposition of G/B is equal to the de Rham decomposition of G/B. We
shall prove in fact a theorem that the homogeneous holonomy group of a

Kaehlerian homogeneous space of a simple Lie group is irreducible. To prove

Received June 19, 1956.

77

https://doi.org/10.1017/5S0027763000001963 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001963

78 JUN-ICHI HANO AND YOZO MATSUSHIMA

this theorem we shall use, in addition to the results established in section 1, a
lemma on the root system of a complex simple Lie algebra which is of some
interest for itself. The arguments used in the proof of this theorem give a
proof of a theorem that the restricted homogeneous holonomy group of a Rie-
mannian homogeneous space of a compact simple Lie group with non vanishing
Euler characteristic is irreducible.

Let G/B be a reductive homogeneous space of a Lie group G [9]. There
exists a decomposition of the Lie algebra ¢ of G into a direct sum of two sub-
spaces m and b, b being the Lie algebra of B, such that ad(x).m =m for all
x € B. The notion of the canonical affine connection of the first kind with
respect to such a decomposition of § has been defined in [9]. In section 3 we
shall first remark that if G/B is a Kaehlerian homogeneous space of a semi-
simple Lie group G, then the decomposition §=m+b having the above men-
tioned properties is unique. Therefore we can speak of the canonical affine
connection of the first kind of G/B. We shall then prove that G/B is hermitian
symmetric if the Riemannian connection induced by the invariant Kaehlerian
metric is the canonical affine connection of the first kind.” If G is a reductive
Lie group with non-discrete center the decomposition § = m + b such that
ad(x)*m =m for all x € B is not unique, but we can prove, also in this case, a

theorem analogous to the one mentioned above.

1. Let V be a simply connected complete Riemannian space of class C”
and let p, be a point of V. We denote by Sp, the homogeneous holonomy group
of V at the point po. The tangent space T(p,) of V at the point p, decomposes
into the direct sum of mutually orthogonal subspaces To(py), T1($), , . ., Tn(p),
where T,(p,) is the subspace of all vectors fixed by the operations of the ele-
ments of Sp, and Ti(py), To(po), . .., Tn(pe) are irreducible Sp,-stable subspaces.

By the parallel displacement of Ty(po), Ti(po), - .., Tu(pe) we can define the
completely integrable distributions Ty, T4, ..., T» on V. We denote by Vi,
Vi, ..., V, the maximal integral manifolds of the distributions Ty, T3, .. .,

T» respectively passing through the point p,. With respect to the induced Rie-

1) Tt should be noted here that Nomizu has anounced in a C.R. note a theorem that
the restricted homogeneous holonomy group of a Riemannian homogeneous space G/B’
of a simple Lie group G is irreducible. But he has told us that his arguments are exact
only in the case where the invariant Riemannian cbnnection on G/B is canonical of the
first kind with respect to a certain decomposition g =m -+ b. See also [5].
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mannian metric the homogeneous holonomy group of Vi at the point p, is equal
to the representation of Sy, in T%(py) and hence it is irreducible for 2> 0 and
‘equal to.the identity group for 2 =0. It has been proved by de Rham [2] that
there exists an isometry f of the Riemannian space V onto the Riemannian
space Vo X Vix ... xXVy. Moreover, if V is real analytic, that is, if the
underlying manifold and the Riemannian metric of V are real analytic, so are
the Vi, Vi, ..., V, and the isometry f.

Suppose now that V is a Kaehlerian space with real analytic metric. Then
V' is a real analytic Riemannian space. Let I be the tensor field of tye (1,1) de-
fining the underlying complex structure of V. Now let I’ be the tensor field of
type (1,1) on VoxVix ... XV, such that I'(f(X)) = f(I(X)) for all vector
field X on V. Since the tensor field I and the mapping f is real analytic, so is

I' and it defines an almost complex structure on Vox Vi x ... XV, Since
I is integrable, so is I' and since V, X Vi X ... X V,is real analytic, I' defines
a complex structure on Vox Vix ... XV, It follows from the definition of I

that the mapping f is complex analytic. Moreover, since f is an isometry, we
can see that the Riemannian metric Vo x Vi x ... x V, is Kaehlerian. Thus
we have shown that Vo X Vi x ... XV, is Kaehlerian and f is an isomorphism
of Vonto Vox Vi x ... XV, with respect to the Kaehlerian structure. Now
the tangent space T'(q) of Vox Vix ... X V, at the point ¢ =(qo, q1, - - ., qn)
may be identified with the product To(qo) ¥ ... X Tw(ga), where Ti(qx) de-
notes the tangent space of Vi at the point gr.. We denote by T%(q) the sub-
space of T'(g) composed of all the vectors of the form (0, ..., Xz, O, ..., 0),
where Xp& Tr(gr). Then Ti(q), Ti(q), ..., Th»(q) are mutually orthogonal
and T'(q) = %T’k(q). The assignment g — T}(q) defines a completely inte-
grable analytic distribution T% Let S, be the homogenous holonomy group of
VoxVix ... xV, at the point q. Then T3(q) is the subspace of all the
vectors fixed by the operations of the elements of S, and T%(q) for 2> 0 is an
irreducible Sj-stable subspace. Since V, x Vi x ... XV, is Kaehlerian, the
covariant derivatives of the tensor field I' are zero. Therefore the value I; of
I' at the point g, which is an orthogonal transformation of 77(g), commutes
with the elements of the homogeneous holonomy group S;. We shall show that
the distributions T are invariant by I', that is, I, Ti(g) = Ti(q) for all point
g. This is clear for k=0, since Ti(q) is the subspace of all vectors fixed by
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the operations of the elements of Sj. As I, commutes with the elements of S,
so does exp ¢+ I, and hence (exp t+ I;)Tk(q) is an irreducible S}-stable subspace
of T'(q) for eaech 2=1,2, ..., n. Since an irreducible Sj-stable subspace of
T'(q) is equal either to a l-dimensional subspace of Ti(q) or to some Ti(q)
with ¢ > 0 (see [2]) and since (exp ¢+ I}) » Tk(g) can not be a subspace of T(q),
it coincides with some 7:(g). Now we show that (exp #+1}) * Ti(q) = Tr(q) for
sufficiently small . Let X be an element %0 of Ti(g) and consider the inner
product (X, (exp ¢+1,)+X). Since (X, (exp ¢+ 1)+ X) is continuous in ¢ and is
not zero for ¢ =0, it is not zero for sufficiently small ¢. For such ¢, (exp ¢+ INX
can not belong to Ti(q) (i % k), since T/(q) is orthogonal to Ti(q). Hence

(exp t+1,)+ Th(q) = Tiq) for sufficiently small #. Then I+ X = ltmol »%— (exp

teI,—1) Xe Tilg) for all X& Ti(q). Thus we have seen that I;+ Th(q) =
Ti(q) for k=1,2, ..., n. Then I' defines a tensor field I'® of type (1,1) on
the integral manifold Vi of the distribution 7} passing through the point (p,,
Do, ooy D) E Vox Vix ... %XV, such that I+ X=1,®« X for all X& Tk(q)
and ¢ € Vi. We can see that I'® defines a complex structure on Vi. Let as
be the real analytic homeomorphism of Vi onto Vi such that ar(x) = (o, . . .,
Do, %, Do, - .., po) and let I'® be a tensor field of type (1,1) on Vi such that
ar(IP(X)) = I'"{ar(X)) for all vector field X on Vi. I* defines a complex
structure on V. For each tangent vector X = (X, Xi, ..., X») of Vox Vi x
X V. at the point ¢ = (qo, @1, - - ., @n), we have I+ X=(IQ + X, I& + X,

., IS« X,). It follows that Vj is Kaehlerian and that the Kaehlerian struc-
ture of V is equal to the one which can be defined naturally by the Kaehlerian

structures of the factors Vi;. Thus we have proved the following

TueoreEM 1. A simply connected complete Kaehlerian space with real ana-
Iytic metric V is the product of the Kaehlerian spaces Vi, Vi, ..., Vn, where
Vo is @ unitary space and Vi, . . ., Vu are such that the homogeneous holonomy

groups are trreducible.

We call this decomposition the de Rham decomposition of the Kaehlerian
space V.

Let V be a Kaehlerian space and let (V) and K(V) be the group of iso-
metries and the group of automorphisms of V respectively. I(V) is a Lie group
with respect to the compact-open topology. ‘An element g &€ I(V) belongs to
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K(V) if and only if g is complex analytic. It is easily verified that K(V) is a
closed subgroup of I{ V). Therefore K(V) is a Lie group.

TuroreM 2. Let V be a simply connected complete Kaehlerian space with
real analytic metric and let V=V xVix ... XV, be the de Rhan decompo-
sition of V. Let KV) and K V;) be the largest connected groups of auto-
morphisms of V and Vi respectively. Then Ko V)= K( V)X K(V) X ... X
K(Vy).

Let I,(Vy) and I(V:) be the largest connected groups of isometries of V
and Vi. Then there exists an isomorphism g - (g, &, . . ., &) of L(V) onto
LV x (Vi) x ... x (V) such that g(po, p1, . .., Pn) = (&( ), &(p1),
.o, 8 Pn)) for all point (po, b1, ..., Pn) E V[3]. Let g€ Ko(V). Then
g€ I(V) and g is complex analytic. Let I and I'® be the tensor fields de-
fining the complex structures of V and Vi and let X = (X, Xi, ..., Xu)
be the tangent vector of V at the point p= (o, p1, ..., Pn), where X is a
tangent vector of V; at the point pr. Then L X= I +Xo, Ip) * X1, . . -,
IV« X,) and since g is complex analytic, we have g(I,+X) = Igp *8(X). As
LX) = (@(IX0), ..., g(I50+ X)) and Iep) * 8(X) = (I9py(2( X)), « . -,
IS o (@n( X)), we get @e(I% X)) = I%p0(ge( X)), which shows that ge is com-
plex analytic. It follows that g, € Ko( Vi). Conversely, if gr € Ko( V), then the
transformation g of V defined by g(po, ..., Dn) = (Q(Hs), ..., gu(Dn)) be-
longs to Ky(V). Theorem 2 is thus proved.

In the following we call the element g, of Ky( V) associated to the element
g€ Ky(V) by the isomorphism Ko(V) = Ky Vo)X ... X Ko(Vys) the K(Vp)-
componentlof g.

A Kaehlerian space V is called Kaehlerian homogeneous if the group Ky(V)

is transitive on V. In this case the Kaehlerian metric of V is real analytic.

TuroreMm 3. Let V be a simply connected Kaehlerian homogeneous space.
Then each factor of the de Rham decomposition of V is also Kaehlerian homo-

geneous.

Since V is homogeneous, V is complete and Ky(V) is transitive on V. Let
V=VoxVix ... XV, be the de Rham decomposition of V. Let pr and q:
be two points of V; and let » and g points of V whose Vi-componets are equal
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to pr and gqr respectively. There exists an element g € Ky(V) such that g(p) = q.
Let g, be the Ky(V:)-component of g. Then we have gi(pr) = qr and this shows

that Ko( V%) is transitive on Vi and hence V is Kaehlerian homogeneous.

2. A connected Lie group G is called reductive if its Lie algebra § is the
direct sum of the center ¢ and a semi-simple ideal 8 which is equal to the de-
rived algebra of 8. The subgroup C of G corresponding to ¢ is the connected
center of G and the invariant subgroup S of G corresponding to the ideal & will
be called the semi-simple part of G. Now let G/B be a Kaehlerian homogeneous
space of a reductive Lie group G and let G be effective on G/B. We know the
following facts (see [1] and [8]).

1) B is compact connected and contained in S and equal to the centraliser
in S of a toral subgroup of S. B contains a Cartan subgroup of S.

2) The center of S is equal to (¢) and G=C x S and hence C is equal to
the center of G.

3) C and S/B are Kaehlerian homogeneous and C/B = C x (S/B) as Kaeh-
lerian space. Moreover S/B is simply connected.

4) Let S=S; X ... X Su be the decomposition of S into the direct pro-
duct of simple Lie groups. Then Si/By with Br =S N B is a simply connected
Kaehlerian homogeneous space and S/B=S,/B; x ... X Su/Bm as Kaehlerian
space.

It follows from 3) and 4) that G/B=C x S;//Bi1 X ... X Su/Bm. Since
C is an abelian Lie group with an invariant Kaehlerian structure, it is locally
flat. To see that the above decomposition of G/B is equal to the de Rham de-

composition, it is sufficient to prove the following theorem.

TaeoreM 4. Let G/B be a Kaehlerian homogeneous space of a simple Lie
group G and let G be effective on G/B. Then the homogeneous holonomy group
of G/B is irreducible.

To prove this theorem we first prove the following

Lemma 1. Let § be a simple non-abelian Lie algebra over the field of all
complex numbers and let V) be a Cartan subalgebra of 9. Let X be the set of all
non-zero roots of § with respect to the Cartan subalgebra ) and let 5, and 2> be
two subsets of X satisfying the following conditi;ms,
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1) If a € 3k, then —a€ 3, (B=1, 2).
2) If «, BE Sy and a+BE X, then a+pBE 3 (k=1, 2).
If the union of 31 and 3» is equal to 3, one of 21 and X coincides with 2.

Let 2, = 3 and we shall prove that 2i=2. For each « € J we denote by
E, an element of g such that [H, E,]=a(H)+E, for all HE ). Let u be the
subspace of § spanned by E, with a € 31 —2J,. Since Z:% 2 and T=3;U 3,
2y — 2, is not empty and therefore u = (0). We show that

(1) [E,, 1]1=(0) for all « €& 3, — 3.

Let « € 3, — 23\ and B E 3 — 2, and suppose that [E., E;]x0. Then y=a+f
is a non-zero root. As X =23,U 2, 7 is contained in 3 or in 3. If vy & 3, we
have @« =1 - and since —j € 3y, we have a« € 2| contrary to the hypothesis.
If r€ 3, we have 8 =7 — «a € 2: and this is also a contradiction. Therefore we
must have [E,, E;]1=0 and hence [E,, ul=(0).

Next we show that

(2) [Em, u]lCn for all a € 2y N 3.

Let a € 21N 3, and B &€ 32— 3, and suppose that [E,, Es1%0. Then r=a -+
is a non-zero root apd since «, fE 2, we have re 3. If = 3, we have
f=1r—a& 2 contrary to the hypothesis. Therefore y & 3;— 2, and hence
[E., E;:l€ u.

Now let ¢’ be the subalgebra of 8 generated by u. It follows from (1) and
(2) and from the fact [, uJ Cu that ¢ is an ideal of 8. Since u = (0), we
have ¢ = (0) and as ¢ is simple, ¢’ is equal to 8. On the other hand, let 4,
be the subspace of 8 spanned by Y) and E, with « € ;. Then ¢; is a subalgebra
of § containing u and therefore ¢; D ¢’. Thus we have § =8, and this implies

that 2y =2. Lemma 1 is thus proved.

Proof of Theorem 4. Let G/B be a Kaehlerian homogeneous space of a
simple Lie group G and let G be effective on G/B. Then G/B is simply con-
nected and complete. Put V=G/B and let V=VyxVix ... xV, be the de
Rham decomposition of V, where >0 and dim V,=0. We show first that
n=>1. Indeed, if V=V, then V would be a unitary space and G would be a
subgroup of the group K of automorphisms of the unitary space V. Let d be

the complex dimension of V and let « be the natural homomorphism of K onto
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the unitary group U(d) ( =the group of rotations of V around a fixed point).
The restriction of « on G is a representation of G. As G is simple and has
center reduced to (e), the kernel of this representation is equal either to G
itself or to (e). The former case does not occur, because in this case G must
be abelian. In the latter case, the image G’ of G in U(d) is a simple Lie sub-
group of U(d) and since every semi-simple Lie subgroup of U(d) is closed in
U(d), G' is compact. Therefore G is also compact and so is V. This is a con-
tradiction and hence V = V, and #» 1. Now we propose to show that dimV, =0
and » =1. For this purpose, put Wi = VoxVix ... XVuy and We=
Vs. By Theorem 2 there exists an isomorphism ¢ of Ky(V) onto Ko Wy) %
Ko(Ws). Let ¢(g) = (¢i(g), ¢.(2)) for g& Ki(V). Then ¢ is a2 homomorphism
of Ko(V) onto Ko(Wpr). Since G is transitive on V, the image ¢r(G) of G in
Ko(Wp) is transitive on Wr. Moreover, since G is simple with center reduced
to (e), the homomorphism of G onto ¢x(G) is an isomorphism. Let o be the
image in V=G/B of the identity ¢ of G and let o = (0;, 0,) with or € W;. Let
G; (resp. G:) be the subgroup of G composed of all the elements g& G such
that ¢2(g) * 02 =0 (resp. ¢1(g)+01=01). Then ¢(G,) is the subgroup of ¢(G)
of all elements which leave fixed the point 0,. Since W; is a Kaehlerian
homogeneous space of the simple Lie group ¢:(G) and since ¢;(G,) is its iso-
tropy group, ¢1(Gs) is compact and connected. It follows that G, is compact
and connected. In an analogous way we can show that G, is compact and
connected. Now let W1 (resp. W3) be the submanifold of V composed of all the
points of the form (pi, 02) (resp. (o1, p2)). Let g= Gy and let (py, 0.) € WL
Then g+ (p1, 02) = (@:(g) * D1, ¢2(g) *02) = (91(g) * p1, 02), because ¢:(g) « 02 = 02 by
the definition of G;. Hence G leaves invariant the submanifold Wi. Now let
(p1, 02) and (qi, 02) be two points of Wi. Since G is transitive on V, there
exists an element g &€ G such that g« (py, 0s) = (q, 02). Since g-(p, 0,) =
(01(@) * b1, 9o(g)+02) = (@1, 02), We get ¢2(g) 0, =0, and hence g€ G;. There-
fore G, is transitive on Wi Since G is compact, Wi is compact. Moreover
the isotropy group at the point o &€ Wi is equal to B. In the same way we
can show that G, is transitive on W3, and the isotropy subgroup at the point
o€ W, is eqal to B. Since G. is compact, W5 is compact. Now W being
homeomorphic to W}, We is also compact and so is V=W, x W,. Since V=
G/B and B are compact, G is compact.
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We denote by small German letters the Lie algebras of the Lie groups de-
noted by the corresponding capital Latin letters. The tangent space of V (resp.
W) at the point o may be indentified with the vector space 8/b (resp. 8¢/b).
Since the tangent space of V at the point o is the direct sum of those of W} and
W3, we have 8/b=8;/64 8./b. It follows that 8 =9,-+9:. Let 8°be the complexi-
ficatin of 8. Since G is compact and simple, 4° is a complex simple Lie algebra.
We denote by n° the complex subspace of ¢° spanned over C by a subspace 1
of 8. If n is a subalgebra of 8, n° is a complex subalgebra of 4°. This being
said, let H be a Cartan subgroup of G contained in B. H is a maximal toral
subgroup of G and %° is a Cartan subalgebra of ¢°. Let 2 be the system of
the non-zero roots of ¢° with respect to the Cartan subalgebra §)°. Now, since
Gr D H, we have 8% D §)° and hence 9% is spanned by §)° and those E, such that
E, € gi, where E., « € %, denotes an element of ¢° such that [H, E,]1=«(H) - E,
for all He §)°. Let 3, be the subset of X of all « such that E.=8% If a,
Be 2k and if B E 2, then £, E, € 9%, and since 9% is a subalgebra, we have
[Ee, Ezl = NupEurs€8f with N,z 0. Therefore a+pe& 2. Since Gi is
compact, 4% is reductive. It follows from this that if « € 2%, then —a € 3.
Moreover, since § =8, + 8, we have ¢° =¢{ + 95 and hence J = 2;UJ,. By Lemma
1, we have either 2 =3 or 3 =3,. If I =3, then ¢° =a{ and hence 9 =9;. Then
G =G, and we have Wi= V. It follows that dim W} = dim W; = dim V, =0 and
this is a contradiction. Therefore ¥ =2, and it follows that dim W; = dim
(VoxVix ... %X Vuy)=0. Hence dim V=0 and n=1. Thus V="V, and V
is irreducible. Theorem 4 is thus proved.

Incidentally the arguments in the proof of Theorem 4 give a proof of the

following theorem.

TueoreM 5. Let G/B be a Riemannian homogeneous space of a compact
simple Lie group G with non-vanishing Euler characteristic. Then the restricted

homogeneous holonomy group of G/B is irreducible.

Since the Euler characteristic of G/B does not vanish, B contains a maxi-
mal toral subgroup of G [4]. Let G be the universal covering group of G and
let B be the subgroup of G corresponding to the subalgebra b of 8. Then G is
compact simple and B is a closed subgroup of G containing a maximal toral

subgroup of G. Since G/B-is the universal covering space of G/B, the in-
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variant Riemannian metric on G/B defines an invariant Riemannian metric on
G /B such that the homogeneous holonomy group of G/B can be identified with
the restricted homogeneous holonomy group of G/B. By the arguments used
in the proof of Theorem 4 we can see that the homogeneous holonomy group
of G/B is irreducible.

3. In this section we shall use the following notations. The small German
letters denote the Lie algebras of the Lie groups denoted by the corresponding
capital Latin letters. 4° denotes the complexification of a real Lie algebra § and
n° denotes the complex subspace of §° spanned by a subspace n of 8. If nis a
subalgebra of 8, then n° is a complex subalgebra of °.

Now let G/B be a reductive homogeneous space of a connected Lie group
G [9]. There exists a demposition of § into the direct sum 8 =m+b% such
that ad(x) *m=m for all ¥ &€ B. Such a decomposition of § will be called in
the following a B-invariant decomposition of 8. To each invariant affine con-
nection on G/B there is associated a bilinear function &« on m x m with values
in m such that ad(x)+a( X, Y)=«(ad(x) « X, ad(x)+Y) for all x & B and
X, Yen ([9], Theorem 8.1). We shall call « the connection function of
the invariant affine connection with respect to the B-invariant decomposition
g=m4 b We know that there exists one and only one invariant affine con-
nection on G/B satisfying the following conditions :

1) The torsion is zero.

2) The images in G/B of the one-parameter subgroups generated by the
elements of m are the paths ([9], Theorem 10. 1).

The invaraint affine connection of G/B satisfying these two conditions will be
called the canonical affine connection of the first kind on G/B with respect to

the B-invariant decomposition § = m+ b. Its connection function is given by
@(X, ¥) = 5[X Yn

for all X, Y& m, where [X, Yln denotes the m-component of the element
[X,Yl€g=m+0.

We denote in the following by o the image in G/B of the identity e of G.
We can identify the vector space m with the tangent space of G/B at the point
0. Suppose now that there is defined an invariant complex structure on G/B

and let I be the tensor field of type (1, 1) déﬁning this complex structure,
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Then the value [, of I at the point o may be considered as an endomorphism

of the vector space m. I, satisfies the following condition [6]:

(1) i= — L
(2) ad(X)+ L Y=5Lead(X)-Y for all X b and Y & m.
(3) X Yl - LLX, YIn—-[X, bYIn - LIL X, L YIn=0

for all X, Ye m, where [X, Y1u denotes the m-component of the element
[X,Yleg=m+),

Now let us consider an invariant affine connection on G/B such that the
covariant derivatives (with respect to this affine connection) of the tensor field
I are zero and let « be the corresponding connection function with respect to
the B-invariant decomposition §=m+5. It follows from the definition of «

(see [9], Theorem 8.1) and from the invariance of I that
(4) alX, Lo Y)=5LealX,Y)

for all X, Y e m.

This being said, we now prove the following

LemMa 2. Let G/B be a Kaehlerian homogeneous space of a semi-simple
Lie group G and let G be effective on G/B. Then G/B is reductive and the
B-invariant decomposition of 8 is unique, ie. if 3=m-+b and 3=m'+b are two

B-invariant decompositions of 9, then m =m'.

Since B is compact, G/B is reductive and let §=m+b be a B-invariant
decomposition of 8. Since ad(x) m=m for all x € B, m is a representation
module of the compact connected Lie group B. Let H be a Cartan subgroup
of G contained in B. Then H is a maximal total subgroup of B and m°® de-
composes into the direct sum m®=23m$, where 2 denotes a linear function on
h° and m5 is the subspace of m° composed of all the elements Y & m® such that
[X, YI=2(X)-Y for all X& §°. Since §° is a Cartan subalgebra of the complex
semi-simple Lie algebra 9° and since m® C §° and m®, t°=(0), A is a non-zero
root of §° with respect to )°. For each non-zero root « we denote by K, an
element of ¢° such that [ X, E.]=a(X)E, for all X& §°. Then m° is spanned
by those E) such that E, ¢ b°. The same arguments show that if § = m/+ 0 is
an another B-invariant decomposition of §, m'° is also spanned by these E\.

Hence we have m°=m’ and since m=9,. m° and m’' =4 - m'’’, we get m =/,
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It follows from this lemma that if G/B is a Kaehlerian homogeneous space
of a semi-simple Lie group G, we can speak of the canonical affine connection
of the first kind of G/B, because the B-invariant decomposition of ¢ is unique.

Now a homogeneous space G/B of a connected Lie group is called her-
mitian symmetric, if the following conditions are satisfied :

A) G/B admits an invariant complex structure.

B) B is compact and there exists an involutive automorphism ¢ of G such
that: 1) o(x) =« for all x € B, 2) B contains the connected component of the
identity of the closed subgroup of G composed of all ¥ € G such that ¢(x) =%,

Now we prove the following

TueoruM 6. Let G/B be a Kaehlerian homogeneous space of a semi-simple
Lie group G and let G be effective on G/B. If the Riemannian connection on
G/B induced by the invariant Kaehlerian metric of G/B is the canonical affine

connection of the first kind, then G/B is hermitian symmetric.

Let § = m+ b be the unique B-invariant decomposition of § and let §) be a
Cartan subalgebra of ¢ contained in b. We denote by «, 8, ... the non-zero
roots of §° with respect to §° and by E, an element of ¢° such that [X, E,]=
a(X)E, for all Xe)°. Then m® is spanned by those E, such that E, & b°
(cf. the proof of Lemma 2). Let I be the tensor field of type (1,1) defining
the underlying invariant complex structure of G/B. Its value I; at the point o
is an endomorphism of the vector space m satisfying the conditions (1), (2)
and (3). We can extend I, to a complex endomorphism I§ of m°. Then the

following conditions are satisfied :

1) IH*= -1
2 ad(X)L+Y=Lad(X):Y for all X’ and Y ‘.
(38)  ISLX, Ylme —[I5+ X, Y1me —[X, I5* Yme — IS[I5+ X, I5* Yme =0

fo; all X, Y e m®, where [X, YIme denotes the m‘-component of the element
[X, Y16 =m'+1°.

Now let E, = m°. Since H)° CV, it follows from (2') that [ X I{+E.]=
a(X)+Ii+E, for all X !° and hence I§:E, = aE., where a is a complex
number. Since the eigen-values of I§ are =7 by (1'), we have ¢ = =7. Thus
I§*E,= =i+ E,. Let ® (resp. ®') be the set of the non-zero roots « such that
E.em’and I{-E,=i*E, (resp. I§*E, = —{“E,). We shall show that « € ®
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if and only if —a €®'. For this purpose, let X - X be the real endomorphism
of the vector space §° such that X =>4+ X;, where (Xi, ..., X») is a base
of § and X=31a;* X; with ;&€ C. Then [X, E,]=a(X)+E, for all X&) and

since [X, E,]1=[X, E.], we have [X, E.l=a(X)+E, for all X9, As H is
compact, the eigen-values a(X) of ad(X) are purely imaginary for all X& .
Hence we have [ X, E.]1= — «(X)+E, for all X&) and hence for all X §°. It
follows that E. = aFE-.,, where a is a suitable complex number. Now, since I
is the extension to m° of the endomorphism I, of m, we have I§+ X=I§+X for
all Xem’. Let «a€®. Then I{+E,=i+E, and I{+E,=I{+E, = —i*E,.
Since E,=aFE-,, we get I¢*E_,= —i*E-, and hence —~a € %'. In the same
way we can show that if —a &€, then «a €9D. Thus we have shown that
a €D if and only if —a & ®. Using the relation (3'), we can show that if «,
BED (resp. a, fED') and if « + B is a root, then a +B8E D (resp. a + fE D)
(cf. [6], p. 574).

Suppose that the Riemannian connection on G/B induced by the invariant
Kaehlerian metric is the canonical affine connection of the first kined. Then

the connection function « is given by
(5) (X, ¥) = 5 [% Y

for all X, Y & m. Since the covariant derivatives of the tensor field I are zero,
it follows from (4) and (5) that

(6) X, Yin=[X, I Y]n
for all X, Y& m and hence
(6') Ig[Xy Y]mc = [-X) Ig Y]mc

for all X, Y& m°.

Now let «a €D and & D' and let «a+ F be a root. Let us show that
[E., EleY. If a+p=0, then [E,, E 1) C¥. Let now a+ =0 and
suppose that [E,, E;1e5°. Then we have [E., Esdue = [E., Es] and it follows
from (6') that I§[E,, E;]= —i[E., E], because 3 & 9. In the same way we
can show that I5[E;, E,1=:-[E;,, E,] and hence I{[E,, E;]1=i[E,, Es]. There-
fore we get IS[E,, E;] =0 and this contradicts the hypothesis that [E., E;] &
¥°. Hence [E,, Es]1€ v
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Now let a, 3 € D and suppose that « + 8 be a root. Then we have r =a +
BED and f=7+(—a) with yED and —a € D'. It follows from what we
have proved above that [Er, E-.J€ ¥ and hence E;&t°. This is a contra-
diction, because € D. Thus we have shown that if «, FE D, then a+ 5 can
not be a root. In the same way we can show that if «, &€ ', then a + 8 can
not be a root. It follows from what we have proved that [m®, m°] C % and
hence [m, m] Cb. The endomorphism s of § such that ¢X= — X for Xem
and ¢X=X for X€ b is an involutive automorphism of the Lie algebra 8. ¢

defines an involutive automorphism 7 of the simply connected Lie group G cor-
responding to the Lie algebra 9. G is the universal covering group of G and
since the center of G is equal to (e), we have G =G/Z, where Z denotes the
discrete center of &G. Since we have 3+Z =Z, 7 induces an involutive auto-
morphism of G which we denote again by 5. Since the involutive automor-
phism of ¢ induced by & is clearly equal to s, we can see that G/B is hermitian
symmetric. Theorem 6 is thus proved.

Now let G/B be a Kaehlerian homogeneous space of a reductive Lie group
with non-discrete center and let G be effective on G/B. Then S/B is also
Kaehlerian, where S denotes the semi-simple part of G. We prove now the

following

LemMma 3. Let G/B be a Kaehlerian homogeneous space of a reductive Lie
group G with non-discrete center C. Lel 8=n-+b be the unique B-invariant de-
composition of 8 and let 3 be the center of b. Let §=m-+b be a B-invariant
decomposition of 8. Then m=1%Y+n, where t is a subspace of c¢+3 such that

oY) = ¢, p being the projection of ¢+ 3 onto .

Let H be a Cartan subgroup of S contained in B. Then H is a maximal
toral subgroup of B and m° decomposes into the direct sum m°= X m$, where 2
denotes a linear function on %)° and mj is the subspace of all Y € m® such that
[X, YI=2(X)+Y for all Xe°. If 20, then m{C §°, because [§°, mi]= m5
and [¢°, 9] =¢°. It is easily verified that n° :A}gmi. Then we get m=m ~ mg
+n Let X&m,mf§ and let X=X+ X;, where X;€c and X, €8 We shall
show that X, 3. As X&m - mi and X; & ¢, we have [W, X]1=L[W, X;]1=0 for
all We §). Since l) is a Cartan subalgebra of 8, the normalisor of §) in 8 is equal
to § and hence X, 0. Now let YEb. Then we have [V, XI1=L[Y, X.], be-
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cause X;&¢. As Xem and [b-m]Cm, we have [V, X1 m. On the other
hand, since X €9 and ) Cb, we have [V, XoJ&b. Therefore [Y, XI1=[7, X:]
=0, becduse m b= (0). It follows that X; is an element of the center 3 of b.

Therefore I =m . m§ is a subspace of ¢+3. It is easily verified that o(t) =c.

Turorem 7. Let G/B be a Kaehlerian homogeneous space of a reductive
Lie group G and let G be effective on G/B. If the Riemannian connection on
G/B induced by the invariant Kaehlerian metric is the canonical affine con-
nection of the first kind with respect to a certain B-invariant decomposition of
8, then G/B is hermitian symmetric.

Let C and S be the center and the semi-simple part of G respectively.
Then C and S/B admit the homogeneous structures such that G/B=C x S/B.
Let §=m+b be the B-invariant decomposition of § with respect to which the
Riemannian connection on G/B is canonical of the first kind. Let §=n+b be
the unique B-invariant decomposition of 8 Then we have m > n by Lemma 3.
Let #™(t) be the image in G/B of the one parameter subgroup of G generated
by an element of n. Then it is a path. Since x#*(¢) C S/B, it is a path of S/B.
It follows that the Riemannian connection on S/B induced by the invariant
Kaehlerian metric is canonical of the first kind. Hence S/B is hermitian
symmetric by Theorem 6. Therefore there exists an involutive automorphism
s of S such that B is equal to the connected component of the identity of the
closed subgroup of S of all ¥ € S such that ¢(x) = x. Now let ¢/ be the mapping
of G=C x S onto itself such that ¢'(x, y) = (x7%, ¢(»)), where x€ C and y € S.
Then ¢' is an involutive automorphism of G and B is equal to the connected
component of the identity of the closed subgroup of G of all w & G such that
o'(w) =w. Therefore G/B is hermitian symmetric.
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