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Velocity fluctuations for bubbly flows at small Re
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We experimentally investigate the effect of Reynolds number (Re) on the turbulence
induced by the motion of bubbles in a quiescent Newtonian fluid at small Re. The
energy spectra, E(k), are determined from the decaying turbulence behind the bubble
swarm obtained using particle image velocimetry. We show that when Re ∼ O(100),
the slope of the normalized energy spectra is no longer independent of the gas volume
fraction and the k−3 subrange is significantly narrower, where k is the wavenumber. This
is further corroborated using second-order longitudinal velocity structure function and
spatial correlation of the velocity behind the bubble swarm. On further decreasing the
bubble Reynolds number (O(1) < Re < O(10)), the signature k−3 of the energy spectra for
the bubble-induced turbulence is replaced by k−5/3 scaling. Thus, we provide experimental
evidence to the claim by Mazzitelli et al. (Phys. Fluids, vol. 15, 2003, pp. L5–L8) that at
low Reynolds numbers the normalized energy spectra of the bubble-induced turbulence
will no longer show the k−3 scaling because of the absence of bubble wake and that the
energy spectra will depend on the number of bubbles, thus being non-universal.

Key words: bubble dynamics, gas/liquid flow

1. Introduction

When a swarm of bubbles rises in an otherwise stagnant fluid, due to the motion of bubbles
disturbances are created in the surrounding fluid giving rise to velocity fluctuations. At a
moderate to high Reynolds number, Re, these velocity fluctuations in the wake behind
the bubbles interact with one another giving rise to the emergence of k−3 scaling of the
energy spectra, E(k), of velocity fluctuations. This signature k−3 scaling of the energy
spectra instead of the classical k−5/3 Kolmogorov scaling is regarded as bubble-induced
turbulence, also referred to as pseudoturbulence (Risso 2018).
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Lance & Bataille (1991) were the first to observe the emergence of k−3 scaling of energy
spectra, E(k), with respect to the wavenumber, k, for the bubble-induced turbulence in
Newtonian fluids. They argued that in a spectral space, the balance between the energy
produced by the motion of bubbles and the viscous dissipation in a statistically steady
state gives rise to the emergence of k−3 scaling. Following this pioneering work, a number
of numerical (Esmaeeli & Tryggvason 1996; Bunner & Tryggvason 2002b; Balachandar
& Eaton 2010) and experimental (Zenit, Koch & Sangani 2001; Martínez-Mercado,
Palacios-Morales & Zenit 2007; Riboux, Legendre & Risso 2013; Prakash et al. 2016;
Alméras et al. 2017) works supported the emergence of k−3 scaling for both the spatial
and temporal velocity fluctuations generated by the bubble motion (Risso 2018). Amoura
et al. (2017) showed experimentally that irrespective of the dispersed phase, be it bubbles
or random fixed solid spheres, the velocity fluctuations generated in the continuous phase
give rise to the k−3 scaling. Pandey, Mitra & Perlekar (2023) identified the coexistence
of Kolmogorov’s turbulence with the bubble-induced turbulence for a wide range of
Reynolds number and Galilei number (ratio of buoyancy to viscous forces). Recently,
Zamansky, De Bonneville & Risso (2024) proposed that the k−3 subrange of the energy
spectra results from the mean shear rate imposed by the bubbles, ruling out the speculation
by Lance & Bataille (1991) of the balance between spectral production and spectral
dissipation.

Experimentally determining the liquid velocity fluctuations in two-phase gas–liquid
flows is challenging. Due to the dispersed nature of bubbly flow, laser-based techniques
within the bubble swarm can only be used for very dilute flows. On the other hand,
the hot-wire-based techniques (Martínez-Mercado et al. 2007; Mendez-Diaz et al. 2013;
Alméras et al. 2017) are far from perfect as their use implies elaborate signal processing.
To overcome these difficulties, Riboux, Risso & Legendre (2010) measured the liquid
velocity fluctuations by abruptly stopping the bubble formation using a solenoid valve
thus leaving the wake behind the bubble swarm free of bubbles to be analysed using
particle image velocimetry (PIV). They showed that the k−3 scaling, independent of the
gas volume fraction and bubble diameter, is observed between the Eulerian length scale
(Λ = D/Cd) and the bubble diameter (D), where Cd is the drag coefficient of a single
rising bubble. Later Risso (2018) modified the Eulerian length scale, Λ = D/

√
CdRe, to

include the Reynolds number.
An intriguing question is to explore what happens to the energy spectra of the bubbly

flows at lower Reynolds number (Bunner & Tryggvason 2002a,b). When Re < 20, the
bubbles will not have significant wakes behind them (Blanco & Magnaudet 1995; Mougin
& Magnaudet 2001). A clue as to what to expect for smaller Reynolds numbers was
summarized by Mazzitelli, Lohse & Toschi (2003), who conducted numerical simulations
for bubbly Newtonian fluids considering bubbles as point particles. Specifically, they did
not observe the k−3 scaling, thus concluding the essentiality of the wakes. They further
argued that the energy spectrum slope for bubbly flows with little to no wakes behind
them will depend on the number of bubbles and will therefore be non-universal (Mazzitelli
et al. 2003; Mazzitelli & Lohse 2009). Most surprisingly, to our knowledge, there are only
a few experimental studies in this regime (Cartellier & Rivière 2001; Martínez-Mercado
et al. 2007; Mendez-Diaz et al. 2013). Cartellier & Rivière (2001) studied bubble-induced
agitations at Re ∼ O(1); however, to delay the onset of large-scale instabilities (transition
into the heterogeneous bubbly regime) an inner tube within the bubble column was used
to create the liquid flow rate due to the gas lift. Further, they did not address the nature of
energy spectra of liquid velocity fluctuations.
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Bubbly flows at small Re

In the present study we focus only on the homogeneous bubbly regime to address the
effect of Reynolds number on the bubble-induced turbulence. Using the PIV technique
proposed by Riboux et al. (2010), the liquid velocity fluctuations are determined to
calculate the energy spectra. We find that as the Reynolds number decreases the slope
of the energy spectra emerges as k−5/3 instead of the k−3 scaling observed for the
bubble-induced turbulence. Further, we show that this slope of the energy spectra depends
on the number of bubbles in the column. Understanding the spectral structure of the fluid
velocity fluctuations in two-phase flows at low Re could be justified by their relevance in
modern applications such as microfluidics (Anna 2016) and hydrogen production (Avci &
Toklu 2022).

2. Experimental set-up and methods

2.1. Experimental set-up
Figure 1(a) shows a schematic of the experimental set-up used in the present study. It
consists of a transparent acrylic tank of height 1000 mm with a cross-section of 100 mm ×
50 mm. Monodispersed air bubbles are injected at the bottom of the tank through a
removable capillary bank. The capillary bank is custom made with identical capillaries of
inner diameter 0.6 mm in tandem with a secondary capillary of inner diameter 0.25 mm,
arranged in a hexagonal array to increase the number of identical capillaries per unit area
(Martínez-Mercado et al. 2007). The tandem arrangement provides sufficient hydraulic
resistance through the capillaries such that individual bubbles are formed in a quasi-steady
manner, thereby avoiding the generation of gas jets (Oguz & Prosperetti 1993). The gas
flow rate is adjusted using a needle valve.

The velocity fluctuations in the liquid phase are measured from the wake behind the
bubble swarm, following the method used by Riboux et al. (2010). The airflow is abruptly
stopped by using a rapid solenoid valve. Then, the region behind the bubble swarm is
studied using high-speed PIV (Photron FASTCAM SA5 at 500 frames per second). The
recorded images were then analysed using PIVLab in MATLAB. For the PIV analysis,
32 × 32 pixel interrogation regions in the first pass and 16 × 16 pixel interrogation regions
in the second pass with 50 % overlap on the subsequent pass are used. The physical
distance between two neighbouring vectors is 0.3 mm. Spurious vectors are detected by
median test and replaced by interpolating neighbour vectors. From the two-dimensional
PIV data, the liquid velocity fluctuations in the bubble swarm wake are obtained as
follows: u′ = u − 〈u〉. Here 〈〉 represents the average in space. The energy spectra, E(k),
of the velocity fluctuations are determined from the decaying turbulence behind the bubble
swarm following Riboux et al. (2010). The energy spectra of horizontal and vertical
velocity fluctuations are then obtained using the Welch method by averaging the energy
spectra of each row and column, respectively. To determine the velocity fields within the
bubbly swarm at low gas volume fraction, fluorescent particles with an orange filter in the
camera were used. The details of the fluorescent particle imaging technique can be found
in our earlier study (Ravisankar et al. 2022).

2.2. Test fluids
To prepare viscous Newtonian fluids, water–glycerin mixtures were used. The properties of
the fluids used in the study, including shear viscosity, density and surface tension measured
using an ARES-G2 rheometer (TA Instruments), density meter (Anton Paar) and bubble
pressure tensiometer (KRUSS Scientific Instruments), are listed in table 1. To reduce
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Figure 1. (a) Schematic of the experimental set-up used in the current study. Using a solenoid valve, the
formation of bubbles is abruptly stopped and the wake behind the bubble swarm is visualized using PIV in the
measurement section. The size of the measurement section is 40 mm × 40 mm. A sample snapshot of a bubbly
flow with gas volume fraction of α ≈ 0.025 in Newtonian fluid with viscosity (b) Re = 626 and We = 3.2 and
(c) Re = 6 and We = 0.5. The scale bar is 10 mm.

Fluids ρ σ μ D U η Re We
(in water) (kg m−3) (mN m−1) (Pa s) (mm) (mm s−1) (mm)

10 % Glycerin 1003.0 73.23 0.001 2.8 ± 0.2 290 0.10 626 3.2
50 % Glycerin 1140.6 72.38 0.005 2.6 ± 0.1 243 0.43 144 2.1
60 % Glycerin 1142.1 71.97 0.007 2.6 ± 0.1 206 0.47 87 1.8
75 % Glycerin 1195.3 70.07 0.029 2.5 ± 0.2 114 1.15 11 0.6
85 % Glycerin 1224.0 70.04 0.048 2.3 ± 0.1 109 1.45 6 0.5

Table 1. Physical properties of the fluids: ρ, density; σ , surface tension; μ, viscosity; D, average bubble
diameter; U, average bubble velocity; η, Kolmogorov length scale; Re, Reynolds number; We, Weber number.

bubble coalescence, a small amount of magnesium sulfate salt (0.05 mol l−1) was added
to all the fluids used in the study, following Lessard & Zieminski (1971). The relevant
dimensionless numbers used in the current study are (i) Reynolds number, Re = ρUD/μ,
where U is the average bubble velocity, D is the average bubble diameter, ρ is the fluid
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Bubbly flows at small Re
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Figure 2. The PDFs of the liquid velocity fluctuations in (a) the horizontal and (b) vertical directions within
the bubbly flows in viscous Newtonian fluid (Re = 6) normalized by the standard deviation for gas volume
fraction of α = 0.010. The dashed line corresponds to a Gaussian profile. Here, the colour gradients, ranging
from blue to red, correspond to 2 ms of measurement within the bubble swarm.

density and μ is the fluid viscosity, and (ii) Weber number, We = ρU2D/σ , where σ is
the surface tension. The average bubble diameter and velocity were obtained from the
probability distribution derived from the image processing. The Kolmogorov length scale
was calculated as η = (ν3/ε)1/4, where ν = μ/ρ is the kinematic viscosity and ε is the
dissipation rate. In turn, ε was determined from the fluctuating rate of strain tensor using
the local isotropic assumption following Xu & Chen (2013). The mean gas volume fraction,
α = (H0/	H + 1)−1, is measured from the increase in the liquid level after the injection
of bubbles, where H0 is the initial liquid level and 	H is the liquid level increase.

3. Results and discussion

3.1. Probability density functions of the velocity fluctuations
Figure 2 shows the probability density functions (PDFs) of the horizontal and vertical
velocity fluctuations within the bubble swarm normalized by the corresponding standard
deviations for a bubble Reynolds number of Re = 6 at a constant gas volume fraction of
α ≈ 0.010. The PDFs of the vertical velocity fluctuations are positively skewed whereas
the PDFs of the horizontal velocity fluctuations are symmetric and non-Gaussian, similar
to that of the bubbly flows at high Reynolds number (Risso & Ellingsen 2002; Riboux
et al. 2010; Alméras et al. 2017). Here, determining the PDFs within the bubble swarm
is essential as the velocity fields in the wake of the bubble swarm will be symmetric
and Gaussian (Lee et al. 2021; Ma et al. 2022). Though there is little to no wake for
low-Reynolds-number bubbles, here the exponential tail and the positive skewness in the
vertical velocity fluctuations are attributed to the large fluctuations in the vicinity of the
bubbles (Riboux et al. 2010; Alméras et al. 2017).

3.2. Energy spectra of the velocity fluctuations
We investigate the energy spectra of velocity fluctuations for different bubble Reynolds
number at a fixed gas volume fraction. Figure 3 shows the horizontal and vertical energy
spectra of velocity fluctuations normalized by the corresponding variance and bubble
diameter for a family of bubble Reynolds number at a constant gas volume fraction of
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Figure 3. (a) Horizontal and (b) vertical spectra of the liquid velocity fluctuations normalized by the bubble
diameter and the variances for a family of Reynolds numbers at a constant gas volume fraction of α ≈ 0.025.
The abscissa is normalized by the wavenumber corresponding to the bubble diameter, kd . The solid, dashed
and dot-dashed black lines correspond to the k−3, k−5/3 and k−1 scalings, respectively.

α ≈ 0.025. Here, the abscissa is normalized by the wavenumber corresponding to the
bubble diameter, kd = 2π/D. As seen in figure 3, at large scales (small wavenumbers) the
energy spectra of the liquid velocity fluctuations scale as k−1 in agreement with Zamansky
et al. (2024). At intermediate scales, for Reynolds numbers Re � O(10), the signature
k−3 scaling of the energy spectra is obtained similar to Martínez-Mercado et al. (2007)
and Riboux et al. (2010), which also serves as a validation of our experimental method
(see Appendix A). When the bubble Reynolds number Re ∼ O(100), the k−3 subrange
is significantly narrower compared with that when Re = 626. On further decreasing the
Reynolds number, for Re = 11 and 6, the signature k−3 scaling for the pseudoturbulence
does not emerge. The numerical results obtained for the bubble-induced turbulence by
Bunner & Tryggvason (2002b) for Re between 12 and 30 indicated that energy spectra
decay with a k−3 scaling, which agrees with the present findings. To our knowledge, no
other data for Re < O(10) exist.

1001 A34-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1123


Bubbly flows at small Re
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Figure 4. Horizontal spectra of the liquid velocity fluctuations normalized by the bubble diameter and the
variances for a family of gas volume fractions at (a) Re = 114 and (b) Re = 11. The abscissa is normalized
by the wavenumber corresponding to the bubble diameter, kd . The solid, dashed and dot-dashed black lines
correspond to the k−3, k−5/3 and k−1 scalings, respectively.

It has been argued that the observed k−3 scaling is the result of the contribution from
the bubble wakes (Risso 2018). In the current study, however, for O(1) < Re < O(10), no
significant wakes behind the bubbles are expected to appear (Blanco & Magnaudet 1995).
Thus, instead of the signature k−3 scaling for the pseudoturbulence, the energy spectra
of velocity fluctuations induced by the low-Reynolds-number bubbles in our experiments
scale as k−5/3. We argue that the k−5/3 scaling emerges from the small-scale disturbances
generated by the bubble motion, which are strong enough to generate a large-scale flow
with the same characteristics as the Kolmogorov turbulence (Mazzitelli & Lohse 2009).
Thus, we provide the first experimental evidence that for very low-Reynolds-number
bubbly flows, the energy spectra of the liquid velocity fluctuations scale as k−5/3. Further,
we note that at small scales (large wavenumbers) the energy spectra of the liquid velocity
fluctuations for O(1) < Re < O(10) follow an exponential decay due to the dominance of
viscosity beyond the Kolmogorov microscale, η, as listed in table 1. The compensated
energy spectra, included in Appendix B, show the emergence of k−3 and k−5/3 more
clearly at different length scales.

Further, Riboux et al. (2010) suggested that the k−3 scaling observed in the
pseudoturbulence does not depend on the bubble diameter and gas volume fraction for
a wide range of Reynolds numbers. We show that this is not the case at small Reynolds
number. Figure 4(a) shows the horizontal spectra of liquid velocity fluctuations normalized
by the bubble diameter and the variance for a family of gas volume fractions at Re = 114.
It is to be noted that at very low gas volume fractions, though the bubbles have significant
wake, the energy spectra do not show the k−3 scaling. However, as the gas volume fraction
increases, the k−3 scaling emerges. Note that this k−3 subrange is significantly narrower.
This is because as the number of bubbles (i.e the gas volume fraction) increases the average
distance between the bubbles decreases, thus leading to wake interactions. This is further
corroborated using spatial correlation in the next section. Whereas, for Re = 11 as seen in
figure 4(b), the k−3 scaling is not observed; instead the k−5/3 scaling is obtained. This is in
agreement with the results from Mazzitelli et al. (2003) that the slope of the energy spectra
no longer shows the signature k−3 scaling for the pseudoturbulence and that the slope of
the energy spectra depends on the number of bubbles and therefore is non-universal.
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Figure 5. The normalized second-order structure function S2(r) as a function of normalized length scale r
for a family of Reynolds numbers at a constant gas volume fraction of α ≈ 0.025. The solid and dashed lines
correspond to r2 and r2/3 scalings, respectively.

3.3. Structure functions
To demonstrate that at low Reynolds numbers the energy spectra of the bubbly flows
exhibit a k−5/3 scaling, we consider the second-order longitudinal velocity structure
function across a length scale r defined as

S2(r) = 〈[ux(x + r)− ux(x)] · (r/r)2〉. (3.1)

Here 〈〉 denotes the spatial average. For homogeneous and isotropic turbulence in an
incompressible Newtonian fluid, it is known that if the second-order velocity structure
function scales as S2(r) ∼ rβ , then the corresponding energy spectra should scale as
E(k) ∼ k−(β+1) (Frisch 1995). For classical Kolmogorov turbulence, the second-order
velocity structure function scales as S2(r) ∼ r2/3 in the inertial range and as S2(r) ∼ r2

in the dissipative range. Figure 5 shows the normalized second-order velocity structure
function observed in the wake of the bubble swarm as a function of normalized length
scale r, across a range of Reynolds numbers for a constant gas volume fraction of
α ≈ 0.025. For all experiments, when the normalized length scale r/D < 0.25 (dissipative
range), the structure function scales as S2(r) ∼ r2. In the inertial range, because of the
bubble wake–wake interactions, instead of the S2(r) ∼ r2/3 scaling, the second-order
structure function scales as S2(r) ∼ r2 for Re � O(100) (Ma et al. 2022). At Reynolds
numbers Re ∼ O(100), for length scales smaller than the bubble diameter (r/D < 1),
the structure function scales as S2(r) ∼ r2/3. Whereas, for length scales larger than the
bubble diameter (r/D > 1), the structure function scales as S2(r) ∼ r2. This highlights
that the k−3 scaling in the energy spectra can be recovered for bubbles with sufficiently
large wakes (i.e. Re = 144 and Re = 87). On further decreasing the Reynolds number to
Re ∼ O(10), the structure function follows S2(r) ∼ r2/3 for length scales larger than that of
the dissipative range and thus the corresponding energy spectra of the velocity fluctuations
for low-Reynolds-number bubbly flows scale as E(k) ∼ k−5/3, as shown in figure 3.
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Bubbly flows at small Re

3.4. Spatial correlation
To further understand why the slope of the energy spectra depends on the gas volume
fraction for low to moderate Reynolds number, the spatial correlation of the horizontal
velocity fields is considered. The spatial correlation of the horizontal velocity, ux, is
defined as

R̄xx = 〈ux(x) · ux(x + r)〉
〈u2

x〉
. (3.2)

Here 〈〉 represents the average in space. Figure 6(a) shows the spatial correlation of the
horizontal velocity behind the bubble swarm at a constant gas volume fraction of α ≈
0.025. It is evident that as Re decreases from 626 to 144 and to 87, we observe a higher
correlation over longer distances. This may be because the size of the bubble decreases
as fluid viscosity increases (see table 1). Therefore, more bubbles are needed to reach a
fixed gas volume fraction (say α ≈ 0.025). This longer correlation with the decrease in the
Reynolds number is in agreement with the numerical results from Esmaeeli & Tryggvason
(1996), who showed that there is an emergence of flow structures many times larger than
the bubble size, which is also observed in particle suspensions at finite Reynolds numbers
(Climent & Maxey 2003). However, on further decreasing the Reynolds number (Re =
11 and 6), the velocity is decorrelated quickly as seen in figure 6(a). This agrees with
previous literature (Lance & Bataille 1991; Mazzitelli et al. 2003; Riboux et al. 2010; Risso
2018) in that the presence of a wake is essential for the signature k−3 scaling to emerge
as seen in figure 3. Figure 6(b) shows the spatial correlation of the horizontal velocity
observed behind the bubble swarm for a family of gas volume fractions at Re = 114. It is
immediately evident that as the gas volume fraction increases, the horizontal velocity is
correlated over a longer distance, thus agreeing with our results for the energy spectra, as
seen in figure 4(a), depending on the number of bubbles. However, as seen in figure 6(c),
when Re = 11, even with higher gas volume fraction, the horizontal velocity is quickly
decorrelated beyond one bubble radius.

4. Conclusions

The bubbly flow properties in viscous Newtonian fluids have been studied experimentally
by varying the concentration of glycerin in a water mixture. The PIV technique was used
to visualize the wake behind the bubble swarm to determine the velocity fluctuations in
the decaying agitations. We demonstrated experimentally that the signature k−3 scaling
of the pseudoturbulence is replaced by k−5/3 scaling for the energy spectra of velocity
fluctuations induced by low-Reynolds-number bubbles. We showed that as the Reynolds
number decreases to Re ∼ O(100), the k−3 subrange becomes significantly narrower.
Further, for low-Reynolds-number bubbly flows the slope of the energy spectra depends
on the number of bubbles in the flow.

These experimental results agree with the numerical results of Mazzitelli et al. (2003)
in that the energy spectra are non-universal for bubbles with O(1) < Re < O(10). To
understand why the slope of the energy spectra depends on the gas volume fraction, the
spatial correlation of the velocity field was considered. For a constant gas volume fraction,
with O(10) < Re < O(100), a higher correlation over longer distances was observed in
agreement with the results from Esmaeeli & Tryggvason (1996). As the bubble size
decreases with Reynolds number, more bubbles (i.e. higher gas volume fraction) are
required to maintain the same gas volume fraction. Thus, as the distance among bubbles
decreases, the wake interactions are more pronounced. Whereas for O(1) < Re < O(10)
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Figure 6. Spatial correlation of the horizontal velocity observed in the wake of the bubble swarm (a) at
a constant gas volume fraction of α ≈ 0.025 for a family of Reynolds numbers. Spatial correlation of the
horizontal velocity for a family of gas volume fractions (mentioned in figure 4) at (b) Re = 114 and (c) Re = 11.
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Figure 7. Vertical spectra for each vertical column of the liquid velocity fluctuations at Re = 626 and gas
volume fraction α ≈ 0.0025 are shown by the grey lines. The solid red line corresponds to the average energy
spectra of the vertical velocity fluctuations. The abscissa is normalized by the wavenumber corresponding to
the bubble diameter, kd . Solid black line with symbols corresponds to the spectrum obtained from experiments
by Riboux et al. (2010) at Re = 670 and gas volume fraction α ≈ 0.0046.

the velocity quickly decorrelates beyond the bubble radius, and thus the signature k−3

scaling for the bubble-induced turbulence does not emerge.
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Figure 8. Compensated energy spectra of the (a) horizontal and (b) vertical liquid velocity fluctuations
showing the emergence of k−3 scaling for a family of Reynolds numbers at a constant gas volume fraction
of α ≈ 0.025. The solid line denotes the k−3 scaling.
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showing the emergence of k−5/3 scaling for a family of Reynolds numbers at a constant gas volume fraction of
α ≈ 0.025. The dashed line denotes the k−5/3 scaling.
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Appendix A. Comparison with the experiments of Riboux et al. (2010)

In figure 7, we compare our measurement technique with that of Riboux et al. (2010). The
grey lines correspond to the energy spectra of the vertical liquid velocity fluctuations for
each column of the velocity field obtained from the PIV measurement. The average of all
these vertical energy spectra is shown as a solid red line. Here, we compare our result
with that obtained by Riboux et al. (2010) at Re = 670 and gas volume fraction α ≈ 0.046
(solid black line with symbols). Further, we clearly identify the k−1 scaling at large scales
(dot-dashed black line), k−3 scaling at intermediate scales (solid black line) and k−5/3

scaling at small scales (dashed black line) in accordance with Zamansky et al. (2024).
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Appendix B. Compensated energy spectra of velocity fluctuations

In figure 8, we plot the compensated spectra of the horizontal and vertical liquid velocity
fluctuations showing the emergence of the k−3 scaling for a range of Reynolds numbers
at a constant gas volume fraction of α ≈ 0.025. Here, the abscissa is normalized by the
wavenumber corresponding to the Kolmogorov length scale, kη = 2π/η. It is evident that
the compensated energy spectra show the emergence of k−3 scaling when Re � O(10).
Whereas, when Re ∼ O(10), the energy spectra of the liquid velocity fluctuations show
a k−5/3 scaling as seen from figure 9. Note that for Re � O(10), the k−5/3 scaling is
recovered for wavenumbers greater than that of the bubble diameter.
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